1
|
Younas A, Awan Z, Khan T, Mehta S, Munir A, Raja HAA, Jain H, Raza A, Sehar A, Ahmed R, Nashwan AJ. The effect of colchicine on myocardial infarction: An updated systematic review and meta-analysis of randomized controlled trials. Curr Probl Cardiol 2025; 50:102878. [PMID: 39393620 DOI: 10.1016/j.cpcardiol.2024.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION Myocardial infarction (MI) is associated with a significant post-event inflammatory response which further contributes to post-MI prognosis. Colchicine, an anti-inflammatory agent, exhibits potential benefits in various cardiovascular conditions such as coronary artery disease, pericarditis and atrial fibrillation. This meta-analysis predominantly aimed to provide an up-to-date evaluation of the efficacy and safety of colchicine in reducing adverse cardiovascular events in patients following acute MI. METHODS A Comprehensive search was conducted on PubMed, Cochrane Library, Scopus, Google Scholar and clinicaltrials.gov for randomized controlled trials (RCTs) investigating the effect of colchicine on patients with MI from inception till May 2024. Our primary outcome was a composite of adverse cardiovascular events, while secondary outcomes included all-cause mortality, incidence of stroke, incidence of cardiac arrest, hospitalization urgency, incidence of recurrent MI, adverse gastrointestinal events and levels of high-sensitivity C - reactive protein (Hs-CRP). Risk ratios (RR) and mean differences (MD) were pooled under the random-effects model. RESULTS Eleven trials with 7161 patients were included in our analysis out of which 3546 (49.51 %) were allocated to colchicine and 3591 (50.14 %) received placebo. Colchicine demonstrated statistically significant reduction in the composite of adverse cardiovascular events (RR = 0.75, 95 % CI: 0.60-0.94, P = 0.01, I2 = 47 %), and hospitalization urgency (RR = 0.46, 95 % CI: 0.31-0.68, P = 0.0001, I2 = 0 %) but statistically significant increment in adverse gastrointestinal events (RR = 1.86, 95 % CI: 1.14-3.02, P = 0.01, I2 = 79 %). However, all-cause mortality (RR = 1.00, 95 % CI: 0.72-1.39, P = 0.98, I2 = 0 %), incidence of cardiac arrest (RR = 0.81, 95 % CI: 0.33-1.95, P = 0.63, I2 = 0), incidence of stroke (RR = 0.45, 95 % CI: 0.17-1.19, P = 0.11, I2 = 36 %), incidence of recurrent MI (RR = 0.78, 95 % CI: 0.57-1.06, P = 0.11, I2 = 11 %) and the levels of hs-CRP (MD= -0.87, 95 %CI: -1.80-0.06, P=0.07, I2=67 % remained comparable across the two groups. CONCLUSION The use of colchicine post-MI reduces the composite of adverse cardiovascular events, and hospitalization urgency but increases adverse gastrointestinal events. However, colchicine does not impact all-cause mortality, cardiac arrest, stroke incidence, incidence of recurrent MI and the levels of hs-CRP. Large scale multicenter RCTs especially with longer follow-up duration are warranted to validate these findings.
Collapse
Affiliation(s)
- Ayesha Younas
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Zainab Awan
- Department of Medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Tehreem Khan
- Department of Medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Samay Mehta
- Department of Medicine, Hywel Dda University Health Board, Carmarthenshire, United Kingdom
| | - Aqsa Munir
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Hritvik Jain
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Ahmed Raza
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Ayesha Sehar
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Raheel Ahmed
- Department of Medicine, Imperial College London, United Kingdom
| | - Abdulqadir J Nashwan
- Nursing & Midwifery Research Department (NMRD), Hamad Medical Corporation, Doha, Qatar; Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Pi H, Wang G, Wang Y, Zhang M, He Q, Zheng X, Yin K, Zhao G, Jiang T. Immunological perspectives on atherosclerotic plaque formation and progression. Front Immunol 2024; 15:1437821. [PMID: 39399488 PMCID: PMC11466832 DOI: 10.3389/fimmu.2024.1437821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerosis serves as the primary catalyst for numerous cardiovascular diseases. Growing evidence suggests that the immune response is involved in every stage of atherosclerotic plaque evolution. Rapid, but not specific, innate immune arms, including neutrophils, monocytes/macrophages, dendritic cells (DCs) and other innate immune cells, as well as pattern-recognition receptors and various inflammatory mediators, contribute to atherogenesis. The specific adaptive immune response, governed by T cells and B cells, antibodies, and immunomodulatory cytokines potently regulates disease activity and progression. In the inflammatory microenvironment, the heterogeneity of leukocyte subpopulations plays a very important regulatory role in plaque evolution. With advances in experimental techniques, the fine mechanisms of immune system involvement in atherosclerotic plaque evolution are becoming known. In this review, we examine the critical immune responses involved in atherosclerotic plaque evolution, in particular, looking at atherosclerosis from the perspective of evolutionary immunobiology. A comprehensive understanding of the interplay between plaque evolution and plaque immunity provides clues for strategically combating atherosclerosis.
Collapse
Affiliation(s)
- Hui Pi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Guangliang Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Qin He
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Xilong Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| |
Collapse
|
3
|
Sazonova MA, Kirichenko TV, Ryzhkova AI, Sazonova MD, Doroschuk NA, Omelchenko AV, Nikiforov NG, Ragino YI, Postnov AY. Variability of Mitochondrial DNA Heteroplasmy: Association with Asymptomatic Carotid Atherosclerosis. Biomedicines 2024; 12:1868. [PMID: 39200332 PMCID: PMC11351276 DOI: 10.3390/biomedicines12081868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Background and Objectives: Atherosclerosis is one of the main reasons for cardiovascular disease development. This study aimed to analyze the association of mtDNA mutations and atherosclerotic plaques in carotid arteries of patients with atherosclerosis and conditionally healthy study participants from the Novosibirsk region. Methods: PCR fragments of DNA containing the regions of 10 investigated mtDNA mutations were pyrosequenced. The heteroplasmy levels of mtDNA mutations were analyzed using a quantitative method based on pyrosequencing technology developed by M. A. Sazonova and colleagues. Results: In the analysis of samples of patients with atherosclerotic plaques of the carotid arteries and conditionally healthy study participants from the Novosibirsk region, four proatherogenic mutations in the mitochondrial genome (m.5178C>A, m.652delG, m.12315G>A and m.3256C>T) and three antiatherogenic mutations in mtDNA (m.13513G>A, m.652insG, and m.14846G>A) were detected. A west-east gradient was found in the distribution of the mtDNA mutations m.5178C>A, m.3256C>T, m.652insG, and m.13513G>A. Conclusions: Therefore, four proatherogenic mutations in the mitochondrial genome (m.5178C>A, m.652delG, m.12315G>A, and m.3256C>T) and three antiatherogenic mutations in mtDNA (m.13513G>A, m.652insG, and m.14846G>A) were detected in patients with atherosclerotic plaques in their carotid arteries from the Novosibirsk region.
Collapse
Affiliation(s)
- Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Chazov National Medical Research Center of Cardiology, 15a, 3rd Cherepkovskaya Str., Moscow 121552, Russia;
| | - Tatiana V. Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| | - Anastasia I. Ryzhkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Marina D. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Natalya A. Doroschuk
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Andrey V. Omelchenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Nikita G. Nikiforov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| | - Yulia I. Ragino
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630089, Russia;
| | - Anton Yu. Postnov
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Chazov National Medical Research Center of Cardiology, 15a, 3rd Cherepkovskaya Str., Moscow 121552, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| |
Collapse
|
4
|
Ciampi CM, Sultana A, Ossola P, Farina A, Fragasso G, Spoladore R. Current experimental and early investigational agents for cardiac fibrosis: where are we at? Expert Opin Investig Drugs 2024; 33:389-404. [PMID: 38426439 DOI: 10.1080/13543784.2024.2326024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Myocardial fibrosis (MF) is induced by factors activating pro-fibrotic pathways such as acute and prolonged inflammation, myocardial ischemic events, hypertension, aging process, and genetically-linked cardiomyopathies. Dynamics and characteristics of myocardial fibrosis development are very different. The broad range of myocardial fibrosis presentations suggests the presence of multiple potential targets. AREA COVERED Heart failure treatment involves medications primarily aimed at counteracting neurohormonal activation. While these drugs have demonstrated efficacy against MF, not all specifically target inflammation or fibrosis progression with some exceptions such as RAAS inhibitors. Consequently, new therapies are being developed to address this issue. This article is aimed to describe anti-fibrotic drugs currently employed in clinical practice and emerging agents that target specific pathways, supported by evidence from both preclinical and clinical studies. EXPERT OPINION Despite various preclinical findings suggesting the potential utility of new drugs and molecules for treating cardiac fibrosis in animal models, there is a notable scarcity of clinical trials investigating these effects. However, the pathology of damage and repair in the heart muscle involves a complex network of interconnected inflammatory pathways and various types of immune cells. Our comprehension of the positive and negative roles played by specific immune cells and cytokines is an emerging area of research.
Collapse
Affiliation(s)
- Claudio M Ciampi
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Sultana
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Paolo Ossola
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Farina
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| | - Gabriele Fragasso
- Heart Failure Unit Head, Division of Cardiology, IRCCS Vita-Salute San Raffaele University Hospital, Milan, Italy
| | - Roberto Spoladore
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| |
Collapse
|
5
|
Xiao T, Wu A, Wang X, Guo Z, Huang F, Cheng X, Shen X, Tao L. Anti-hypertensive and composition as well as pharmacokinetics and tissues distribution of active ingredients from Alpinia zerumbet. Fitoterapia 2024; 172:105753. [PMID: 37992780 DOI: 10.1016/j.fitote.2023.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Alpinia zerumbet is a food flavor additive and a traditional medicine herb around the world. Several studies have reported that A. zerumbet has excellent effects on a variety of cardiovascular diseases, but its potential hypertensive applications, and pharmacokinetic features of main active substances have not been fully investigated. The mechanism of anti-hypertension with ethyl acetate extracts of A. zerumbet fruits (AZEAE) was evaluated by L-NNA-induced hypertensive rats and L-NAME-injured human umbilical vein endothelial cells (HUVECs). Blood pressure, echocardiographic cardiac index and H&E staining were used to preliminary evaluate the antihypertensive effect of AZEAE, the levels of TNF-α, IL-6, and IL-1β were evaluated by ELISA, and the proteins expression of IL-1β, IL-18, AGTR1, VCAM, iNOS, EDN1 and eNOS were also evaluated. In addition, isolation, identification, and activity screening of bioactive compounds were carried ou. Next, pharmacokinetics and tissues distribution of dihydro-5,6-dehydrokavain (DDK) in vivo were measured, and preliminary absorption mechanism was conducted with Caco-2 cell monolayers. AZEAE remarkably enhanced the state of hypertensive rats. Twelve compounds were isolated and identified, and five compounds were isolated from this plant for the first time. The isolated compounds also exhibited good resistance against injury of HUVECs. Moreover, pharmacokinetics and Caco-2 cell monolayers demonstrated AZEAE had better absorption capacity than DDK, and DDK exhibited differences in tissues distribution and gender difference. This study was the first to assess the potential hypertensive applications of A. zerumbet in vivo and vitro, and the first direct and concise study of the in vivo behavior of DDK and AZEAE.
Collapse
Affiliation(s)
- Ting Xiao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Ai Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xiaowei Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Zhenghong Guo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Feilong Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xingyan Cheng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| |
Collapse
|
6
|
Pan Q, Xie X, Yuan Q. Monocarboxylate transporter 4 protects against myocardial ischemia/reperfusion injury by inducing oxidative phosphorylation/glycolysis interconversion and inhibiting oxidative stress. Clin Exp Pharmacol Physiol 2023; 50:954-963. [PMID: 37771072 DOI: 10.1111/1440-1681.13821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is the primary cause of heart damage in the treatment of myocardial infarction, and the imbalance of the energy metabolism in the pathogenesis of myocardial I/R is one of the main triggers of cardiac dysfunction. Monocarboxylate transporter 4 (MCT4) is a key transporter of lactate, which plays a vital role in cellular metabolism. The present study investigated the role and underlying mechanism of MCT4 in myocardial I/R injury. The results of this study showed that MCT4 was upregulated during oxygen-glucose deprivation (OGD) and restored after reoxygenation in cardiomyocytes HL-1. Interestingly, the overexpression of MCT4 increased cell viability and decreased apoptosis of OGD/R-induced HL-1 cells. Furthermore, MCT4 boosted glucose uptake and lactate levels and promoted protein expression of glycolysis regulator LDHA, while also impeding oxidative phosphorylation (OXPHOS) regulators C-MYC and NDUFB8 in OGD/R-induced HL-1 cells. A reduction in reactive oxygen species and oxidative stress markers malonaldehyde and superoxide dismutase was also observed within the OGD/R stimulated HL-1 cells. Additionally, the in vivo exogenous application of MCT4 restored cardiac function, as demonstrated by the reduced infarct size and decreased myocardial apoptosis in I/R rats. OXPHOS and oxidative stress declined, while glycolysis was activated when the I/R mice were injected with AAV-MCT4. Our findings indicate that MCT4 could exert a cardioprotective effect after myocardial I/R injury by inducing OXPHOS/glycolysis interconversion and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Qiao Pan
- Department of Cardiology, Xi'An International Medical Center Hospital, Xi'an, China
| | - Xiaobo Xie
- Department of Infectious Disease Prevention and Control, Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, China
| | - Qingxia Yuan
- Intensive Care Unit, Xi'An International Medical Center Hospital, Xi'an, China
| |
Collapse
|
7
|
Zhang J, Ji C, Zhai X, Tong H, Hu J. Frontiers and hotspots evolution in anti-inflammatory studies for coronary heart disease: A bibliometric analysis of 1990-2022. Front Cardiovasc Med 2023; 10:1038738. [PMID: 36873405 PMCID: PMC9978200 DOI: 10.3389/fcvm.2023.1038738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023] Open
Abstract
Background Coronary heart disease (CHD) is characterized by forming of arterial plaques composed mainly of lipids, calcium, and inflammatory cells. These plaques narrow the lumen of the coronary artery, leading to episodic or persistent angina. Atherosclerosis is not just a lipid deposition disease but an inflammatory process with a high-specificity cellular and molecular response. Anti-inflammatory treatment for CHD is a promising therapy; several recent clinical studies (CANTOS, COCOLT, and LoDoCo2) provide therapeutic directions. However, bibliometric analysis data on anti-inflammatory conditions in CHD are lacking. This study aims to provide a comprehensive visual perspective on the anti-inflammatory research in CHD and will contribute to further research. Materials and methods All the data were collected from the Web of Science Core Collection (WoSCC) database. We used the Web of Science's systematic tool to analyze the year of countries/regions, organizations, publications, authors, and citations. CiteSpace and VOSviewer were used to construct visual bibliometric networks to reveal the current status and emerging hotspot trends for anti-inflammatory intervention in CHD. Results 5,818 papers published from 1990 to 2022 were included. The number of publications has been on the rise since 2003. Libby Peter is the most prolific author in the field. "Circulation" was ranked first in the number of journals. The United States has contributed the most to the number of publications. The Harvard University System is the most published organization. The top 5 clusters of keywords co-occurrence are inflammation, C-reactive protein, coronary heart disease, nonsteroidal anti-inflammatory, and myocardial infarction. The top 5 literature citation topics are chronic inflammatory diseases, cardiovascular risk; systematic review, statin therapy; high-density lipoprotein. In the past 2 years, the strongest keyword reference burst is "Nlrp3 inflammasome," and the strongest citation burst is "Ridker PM, 2017 (95.12)." Conclusion This study analyzes the research hotspots, frontiers, and development trends of anti-inflammatory applications in CHD, which is of great significance for future studies.
Collapse
Affiliation(s)
- Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenyang Ji
- Science and Technology College of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Xu Zhai
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingqing Hu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Morfino P, Aimo A, Castiglione V, Gálvez-Montón C, Emdin M, Bayes-Genis A. Treatment of cardiac fibrosis: from neuro-hormonal inhibitors to CAR-T cell therapy. Heart Fail Rev 2023; 28:555-569. [PMID: 36221014 PMCID: PMC9553301 DOI: 10.1007/s10741-022-10279-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/05/2023]
Abstract
Cardiac fibrosis is characterized by the deposition of extracellular matrix proteins in the spaces between cardiomyocytes following both acute and chronic tissue damage events, resulting in the remodeling and stiffening of heart tissue. Fibrosis plays an important role in the pathogenesis of many cardiovascular disorders, including heart failure and myocardial infarction. Several studies have identified fibroblasts, which are induced to differentiate into myofibroblasts in response to various types of damage, as the most important cell types involved in the fibrotic process. Some drugs, such as inhibitors of the renin-angiotensin-aldosterone system, have been shown to be effective in reducing cardiac fibrosis. There are currently no drugs with primarily anti-fibrotic action approved for clinical use, as well as the evidence of a clinical efficacy of these drugs is extremely limited, despite the numerous encouraging results from experimental studies. A new approach is represented by the use of CAR-T cells engineered in vivo using lipid nanoparticles containing mRNA coding for a receptor directed against the FAP protein, expressed by cardiac myofibroblasts. This strategy has proved to be safe and effective in reducing myocardial fibrosis and improving cardiac function in mouse models of cardiac fibrosis. Clinical studies are required to test this novel approach in humans.
Collapse
Affiliation(s)
- Paolo Morfino
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | - Vincenzo Castiglione
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carolina Gálvez-Montón
- Institut del Cor, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Michele Emdin
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Antoni Bayes-Genis
- Institut del Cor, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Tong S, Zhang P, Cheng Q, Chen M, Chen X, Wang Z, Lu X, Wu H. The role of gut microbiota in gout: Is gut microbiota a potential target for gout treatment. Front Cell Infect Microbiol 2022; 12:1051682. [PMID: 36506033 PMCID: PMC9730829 DOI: 10.3389/fcimb.2022.1051682] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Numerous studies have demonstrated that gut microbiota is essential for the host's health because it regulates the host's metabolism, endocrine, and immune systems. In recent years, increasing evidence has shown that gut microbiota plays a role in the onset and progression of gout. Changes in the composition and metabolism of the gut microbiota, result in abnormalities of uric acid degradation, increasing uric acid generation, releasing pro-inflammatory mediators, and intestinal barrier damage in developing gout. As a result, gout therapy that targets gut microbiota has drawn significant interest. This review summarized how the gut microbiota contributes to the pathophysiology of gout and how gout affects the gut microbiota. Additionally, this study explained how gut microbiota might serve as a unique index for the diagnosis of gout and how conventional gout treatment medicines interact with it. Finally, prospective therapeutic approaches focusing on gut microbiota for the prevention and treatment of gout were highlighted, which may represent a future avenue in gout treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyong Lu
- *Correspondence: Xiaoyong Lu, ; Huaxiang Wu,
| | - Huaxiang Wu
- *Correspondence: Xiaoyong Lu, ; Huaxiang Wu,
| |
Collapse
|
10
|
Fernandez Rico C, Konate K, Josse E, Nargeot J, Barrère-Lemaire S, Boisguérin P. Therapeutic Peptides to Treat Myocardial Ischemia-Reperfusion Injury. Front Cardiovasc Med 2022; 9:792885. [PMID: 35252383 PMCID: PMC8891520 DOI: 10.3389/fcvm.2022.792885] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) including acute myocardial infarction (AMI) rank first in worldwide mortality and according to the World Health Organization (WHO), they will stay at this rank until 2030. Prompt revascularization of the occluded artery to reperfuse the myocardium is the only recommended treatment (by angioplasty or thrombolysis) to decrease infarct size (IS). However, despite beneficial effects on ischemic lesions, reperfusion leads to ischemia-reperfusion (IR) injury related mainly to apoptosis. Improvement of revascularization techniques and patient care has decreased myocardial infarction (MI) mortality however heart failure (HF) morbidity is increasing, contributing to the cost-intense worldwide HF epidemic. Currently, there is no treatment for reperfusion injury despite promising results in animal models. There is now an obvious need to develop new cardioprotective strategies to decrease morbidity/mortality of CVD, which is increasing due to the aging of the population and the rising prevalence rates of diabetes and obesity. In this review, we will summarize the different therapeutic peptides developed or used focused on the treatment of myocardial IR injury (MIRI). Therapeutic peptides will be presented depending on their interacting mechanisms (apoptosis, necroptosis, and inflammation) reported as playing an important role in reperfusion injury following myocardial ischemia. The search and development of therapeutic peptides have become very active, with increasing numbers of candidates entering clinical trials. Their optimization and their potential application in the treatment of patients with AMI will be discussed.
Collapse
Affiliation(s)
- Carlota Fernandez Rico
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, Valbonne, France
| | - Karidia Konate
- PHYMEDEXP, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emilie Josse
- PHYMEDEXP, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, Valbonne, France
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, Valbonne, France
| | - Prisca Boisguérin
- PHYMEDEXP, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
11
|
Tang Y, Shi C, Qin Y, Wang S, Pan H, Chen M, Yu X, Lou Y, Fan G. Network Pharmacology-Based Investigation and Experimental Exploration of the Antiapoptotic Mechanism of Colchicine on Myocardial Ischemia Reperfusion Injury. Front Pharmacol 2022; 12:804030. [PMID: 34975499 PMCID: PMC8716846 DOI: 10.3389/fphar.2021.804030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background: The beneficial effects of colchicine on cardiovascular disease have been widely reported in recent studies. Previous research demonstrated that colchicine has a certain protective effect on ischemic myocardium and has the potential to treat myocardial ischemia reperfusion injury (MIRI). However, the potential targets and pharmacological mechanism of colchicine to treat MIRI has not been reported. Methods: In this study, we used network pharmacology and experimental verification to investigate the pharmacological mechanisms of colchicine for the treatment of MIRI. Potential targets of colchicine and MIRI related genes were screened from public databases. The mechanism of colchicine in the treatment of MIRI was determined by protein-protein interaction (PPI), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Additionally, we evaluated the effect of colchicine on H9C2 cell activity using CCK-8 assays, observed the effect of colchicine on H9C2 cell apoptosis via flow cytometry, and further verified the expression of key targets after colchicine treated by Western blot. Results: A total of 626 target genes for colchicine and 1549 MIRI disease targets were obtained. 138 overlapping genes were determined as potential targets of colchicine in treating MIRI. the PPI network analysis demonstrated that the targets linked to MIRI were ALB, TNF, ACTB, AKT1, IL6, TP53, IL1B, CASP3 and these targets showed nice affinity with colchicine in molecular docking experiments. The results of GO analysis and KEGG pathway enrichment demonstrated that the anti-MIRI effect of colchicine involves in apoptotic signaling pathway. Further tests suggested that colchicine can protect H9C2 cell from Hypoxia/Reoxygenation (H/R) injury through anti-apoptotic effects. Western blot results demonstrated that colchicine can inhibited MIRI induced apoptosis of H9C2 cell by enhancing the decreased levels of Caspase-3 in myocardial injure model induced by H/R and activating the PI3K/AKT/eNOS pathway. Conclusions: we performed network pharmacology and experimental evaluation to reveal the pharmacological mechanism of colchicine against MIRI. The results from this study could provide a theoretical basis for the development and clinical application of colchicine.
Collapse
Affiliation(s)
- Yuanjun Tang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenyang Shi
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingyi Qin
- Department of Health Statistics, Naval Medical University, Shanghai, China
| | - Shuowen Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Pan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Chen
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuemei Yu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Liang QQ, Liu L. Application of vascular endothelial cells in stem cell medicine. World J Clin Cases 2021; 9:10765-10780. [PMID: 35047589 PMCID: PMC8678855 DOI: 10.12998/wjcc.v9.i35.10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell medicine is gaining momentum in the development of therapy for various end-stage diseases. The search for new seed cells and exploration of their application prospects are topics of interest in stem cell medicine. In recent years, vascular endothelial cells (VECs) have attracted wide attention from scholars. VECs, which form the inner lining of blood vessels, are critically involved in many physiological functions, including permeability, angiogenesis, blood pressure regulation, immunity, and pathological development, such as atherosclerosis and malignant tumors. VECs have significant therapeutic effects and broad application prospects in stem cell medicine for the treatment of various refractory diseases, including atherosclerosis, myocardial infarction, diabetic complications, hypertension, coronavirus disease 2019, and malignant tumors. On the one hand, VECs and their extracellular vesicles can be directly used for the treatment of these diseases. On the other hand, VECs can be used as therapeutic targets for some diseases. However, there are still some obstacles to the use of VECs in stem cell medicine. In this review, advances in the applications and challenges that come with the use of these cells are discussed.
Collapse
Affiliation(s)
- Qing-Qing Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
13
|
Chen M, Chen J, Li C, Yu R, Chen W, Chen C. Improvement of cardiac function by mesenchymal stem cells derived extracellular vesicles through targeting miR-497/Smad7 axis. Aging (Albany NY) 2021; 13:22276-22285. [PMID: 34528899 PMCID: PMC8507268 DOI: 10.18632/aging.203533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022]
Abstract
Background: The extracellular vesicles (EVs) secreted by bone marrow mesenchymal stromal cells (MSCs) have the ability to improve Myocardial infarction (MI). Some microRNAs (miRNAs) including miR-497 and related target genes have been proved to be closely linked with heart diseases. However, EVs could regulate MI process through miR-497, and the mechanisms have not been fully reported. Methods: Ligation of left anterior descending artery was performed to established MI animals model. Hypoxia cell model was established through lowering the level of oxygen. The cell invasion, migration, and proliferation were measured using tanswell, wound heating, and MTT assays. HE, Masson trichrome, and Sirius Red staining were used to investigate the morphological changes. Results: Overexpression of miR-497 reversed the promotion of cell migration, invasion, and proliferation caused by EVs. The improvement of cardiac function induced by EVs could also be reversed by overexpression of miR-497. Direct binding site between Smad7 and miR-497 was identified. Knockdown of Smad7 reversed the improvement of cardiac function induced by EVs. Conclusions: We found that EVs isolated from MSCs might improve the cardiac injury caused by MI through targeting miR497/Smad7. This study provides novel potential therapeutic thought for the prevention and treatment of MI through targeting miR-497/Smad7.
Collapse
Affiliation(s)
- Min Chen
- Department of Critical Care Medicine, Affiliated Hospital of Putian University, Putian 351100, Fujian, China
| | - Jianfei Chen
- Department of Critical Care Medicine, Affiliated Hospital of Putian University, Putian 351100, Fujian, China
| | - Caiting Li
- Department of Critical Care Medicine, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Ranjie Yu
- Department of Critical Care Medicine, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Weiwen Chen
- Department of Intensive Care Unit, Quan Zhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Cunrong Chen
- Department of Critical Care Medicine, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian, China
| |
Collapse
|
14
|
Shi Y, Cai H, Niu Z, Li J, Pan G, Tian H, Wei L, Chen L, Yang P, Wang J, Cao H, Gao L. Acute oral colchicine caused gastric mucosal injury and disturbance of associated microbiota in mice. Toxicology 2021; 461:152908. [PMID: 34453961 DOI: 10.1016/j.tox.2021.152908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Colchicine (COL), an ancient and well-known drug, has been used in clinical practice for centuries. On the other hand, COL has also attracted extensive concerns for its potent toxic effects, especially gastrointestinal adverse reactions (nausea, vomiting, and diarrhea) before clinical symptoms relief. In this study, we used a rodent model to study the effects of COL on gastric mucosa and associated microbiota. The mice were exposed to various concentrations of COL (0.1, 0.5, and 2.5 mg kg-1 body weight per day) for 7 days, and the results showed that COL treatment caused severe gastric mucosal damage, accompanied by a significant decrease in gastric mucosal proinflammatory cytokines (IL-1β, IL-6, and TNF-α). The 16S rRNA gene sequencing revealed that COL significantly perturbed the gastric microbiota composition and reduced the gastric microbiota diversity in mice. Also, we identified bacterial biomarkers associated with diarrhea, including phylum Firmicutes, class Bacilli, order Lactobacillales, family Lactobacillaceae, genu Lactobacillus, and genu Blautia, suggesting that COL-triggered adverse reactions are closely related to gastric microbial perturbations. Our findings open new paths for understanding the mechanism of COL-related adverse gastrointestinal reactions, broadening the scientific view on the interaction between drugs and host gastrointestinal microbiota.
Collapse
Affiliation(s)
- Yongpeng Shi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
| | - Zhanyu Niu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiande Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Gaowei Pan
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huanbing Tian
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Wei
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Linchi Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pengfei Yang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ji Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hanwen Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lan Gao
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
15
|
Gholoobi A, Askari VR, Naghedinia H, Ahmadi M, Vakili V, Baradaran Rahimi V. Colchicine effectively attenuates inflammatory biomarker high-sensitivity C-reactive protein (hs-CRP) in patients with non-ST-segment elevation myocardial infarction: a randomised, double-blind, placebo-controlled clinical trial. Inflammopharmacology 2021; 29:1379-1387. [PMID: 34420187 DOI: 10.1007/s10787-021-00865-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/07/2021] [Indexed: 11/28/2022]
Abstract
Myocardial infarction without ST-segment elevation (NSTEMI) is considered an inflammatory disorder associated with a high mortality rate worldwide. High-sensitivity C-reactive protein (hs-CRP) is an important inflammatory marker for NSTEMI and related to cardiovascular events. Colchicine, as a potent anti-inflammatory drug, is frequently prescribed for the treatment of gout and pericarditis. The present study aimed to evaluate the effects of colchicine, as an anti-inflammatory drug, on hs-CRP levels in NSTEMI patients. We performed a randomised, double-blind, placebo-controlled trial involving 150 NSTEMI patients referred to Imam Reza and Ghaem Hospitals affiliated to Mashhad University of Medical Sciences. The patients were randomised to receive colchicine or placebo along with optimal medications for 30 days. The hs-CRP was measured at the admission and end of the study. Our results revealed that, in both colchicine and placebo groups, hs-CRP levels were significantly mitigated in NSTEMI patients compared to baseline (P < 0.001). However, the decreasing properties of colchicine on hs-CRP levels were remarkably stronger than placebo following the 30 days of treatment (P < 0.001). Nevertheless, neither colchicine nor placebo treatment could achieve hs-CRP levels lower than 2 mg/L. There were no significant differences between the effects of colchicine on the hs-CRP decrease in diabetic and non-diabetic, male and female, and normal and preserved LVEF NSTEMI patients. It can be concluded that colchicine may prevent the disease progression and succedent cardiovascular events in NSTEMI patients by attenuating the inflammation.
Collapse
Affiliation(s)
- Arash Gholoobi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Naghedinia
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Ahmadi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vida Vakili
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Siak J, Flint N, Shmueli HG, Siegel RJ, Rader F. The Use of Colchicine in Cardiovascular Diseases: A Systematic Review. Am J Med 2021; 134:735-744.e1. [PMID: 33609528 DOI: 10.1016/j.amjmed.2021.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 01/16/2023]
Abstract
The medicinal properties of colchicine have been recognized for centuries. Although previously used for gout and familial Mediterranean fever, its immune-modulating, anti-inflammatory, and antifibrotic effects are increasingly recognized as beneficial in the treatment of cardiovascular disorders. In this systematic review, we summarize the current evidence on colchicine's effectiveness in 1) pericarditis, 2) coronary artery disease, and 3) atrial fibrillation. We also discuss the safety, potential adverse effects, and common drug interactions that should be considered during use.
Collapse
Affiliation(s)
- Jessica Siak
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, Calif
| | - Nir Flint
- Department of Cardiology, Tel Aviv Sourasky Medical Center affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Hezzy G Shmueli
- Department of Cardiology, Tel Aviv Sourasky Medical Center affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Robert J Siegel
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, Calif
| | - Florian Rader
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, Calif.
| |
Collapse
|
17
|
Liu Y, Lai S, Liang L, Zhang D. Study on the interaction mechanism between C-reactive protein and platelets in the development of acute myocardial infarction. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1012. [PMID: 34277812 PMCID: PMC8267311 DOI: 10.21037/atm-21-2733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023]
Abstract
Background Myocardial infarction (MI) is the single most critical event in coronary disease. Platelets are involved in the processes of acute MI (AMI). They lack nuclear DNA but retain megakaryocyte mRNAs, hence, their transcriptome could provide information preceding coronary events. However, their mechanisms are not clear. In this study, we obtained a gene expression atlas of platelets from patients after their very first AMI, and our purpose was to clarify the mechanisms of platelet involvement in the occurrence of AMI through bioinformatics analyses and animal models of AMI in vivo. Methods We obtained a gene expression atlas of platelets from patients after their very first AMI from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were retrieved using R language. Weighted gene co-expression network analysis (WGCNA) was implemented in order to construct a gene co-expression correlation network among DEGs. Animal models of AMI in vivo were constructed to confirm the results of the bioinformatics analysis. Results Gene integration analysis yielded 2,852 DEGs (P<0.05, |log2FC| >1). Bioinformatics analysis demonstrated a significant association between C-reactive protein (CRP) and Staphylococcus aureus infection (SAI) (P=0.015). Data from in vivo experiments showed that CRP increased significantly in AMI rats (P<0.001), and the expression of FCGR2B mRNA and HLA-DRB4 mRNA was elevated in response to the increase of CRP (P<0.001). Conclusions From the results of this study, we speculate that in the development of AMI, the increase in CRP activates platelets and induces platelets to play an anti-inflammatory role.
Collapse
Affiliation(s)
- Yubao Liu
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Shuhui Lai
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Lijie Liang
- Ultrasound Department, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Donghai Zhang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| |
Collapse
|
18
|
Xiong H, Huang X, Rao L, Zhao J. Efficacy and safety of colchicine in the treatment of acute myocardial infarction: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25429. [PMID: 33832144 PMCID: PMC8036066 DOI: 10.1097/md.0000000000025429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND There are no meta-analyses evaluating the efficacy and safety of colchicine in the treatment of acute myocardial infarction (AMI). Our protocol is conceived to evaluate the efficacy and safety of colchicine in comparison of placebo and test the hypothesis that a short course of treatment with colchicine could lead to reduced infarct size in patients presenting with AMI. METHODS We will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines and the recommendations of the Cochrane Collaboration to conduct this meta-analysis. Reviewers will search the PubMed, Cochrane Library, Web of Science, and EMBASE online databases for all English-language cohort studies published up to April, 2021. The cohort studies focusing on assess the efficacy and safety of colchicine in the treatment of AMI will be included in our meta-analysis. At least one of the following outcomes should have been measured: reduced infarct size, C-reactive protein (CRP) level, adverse events, death and major cardiovascular events. Review Manager software will be used for the meta-analysis. All outcomes are pooled on random-effect model. A P value of <.05 is considered to be statistically significant. RESULTS Our protocol is conceived to evaluate the efficacy and safety of colchicine in comparison of placebo and test the hypothesis that a short course of treatment with colchicine could lead to reduced infarct size in patients presenting with AMI. REGISTRATION NUMBER 10.17605/OSF.IO/NTU5F.
Collapse
Affiliation(s)
- Hui Xiong
- Department of Cardiology, Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology
| | - Xianli Huang
- Department of Cardiology, Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology
| | - Lingzhang Rao
- Department of Cardiology, Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology
| | - Jinhe Zhao
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Hubei, China
| |
Collapse
|
19
|
Kurup R, Galougahi KK, Figtree G, Misra A, Patel S. The Role of Colchicine in Atherosclerotic Cardiovascular Disease. Heart Lung Circ 2021; 30:795-806. [PMID: 33461916 DOI: 10.1016/j.hlc.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
Colchicine, an inexpensive immunomodulatory drug used traditionally to treat gout and familial Mediterranean fever, is rapidly accumulating basic and clinical evidence for a therapeutic role in atherosclerotic cardiovascular disease. Its athero-protective properties are thought to be mainly related to its effect on tubulin polymerisation, enabling a broad range of effect on multiple atherosclerotic plaque cell types and cellular processes, including cell division, cell migration as well as pro-inflammatory cytokine and chemokine secretion. These properties indicate the potential to favourably affect all stages of atherosclerotic plaque development including formation, progression, destabilisation, and plaque rupture. This review focusses on the pharmacology of colchicine, the mechanisms by which it modulates atherosclerosis pathobiology, and summarises the current clinical evidence for its use along with the upcoming clinical trial landscape. Given the current lack of primary immunomodulatory drugs in the treatment of atherosclerosis, colchicine is a promising candidate to fill this therapeutic gap.
Collapse
Affiliation(s)
- Rahul Kurup
- The Heart Research Institute, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia. https://twitter.com/drrahulkurup
| | - Keyvan Karimi Galougahi
- The Heart Research Institute, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Gemma Figtree
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Ashish Misra
- The Heart Research Institute, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Sanjay Patel
- The Heart Research Institute, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|