1
|
Wu M, Huang W, Yang N, Liu Y. Learn from antibody–drug conjugates: consideration in the future construction of peptide-drug conjugates for cancer therapy. Exp Hematol Oncol 2022; 11:93. [DOI: 10.1186/s40164-022-00347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractCancer is one of the leading causes of death worldwide due to high heterogeneity. Although chemotherapy remains the mainstay of cancer therapy, non-selective toxicity and drug resistance of mono-chemotherapy incur broad criticisms. Subsequently, various combination strategies have been developed to improve clinical efficacy, also known as cocktail therapy. However, conventional “cocktail administration” is just passable, due to the potential toxicities to normal tissues and unsatisfactory synergistic effects, especially for the combined drugs with different pharmacokinetic properties. The drug conjugates through coupling the conventional chemotherapeutics to a carrier (such as antibody and peptide) provide an alternative strategy to improve therapeutic efficacy and simultaneously reduce the unspecific toxicities, by virtue of the advantages of highly specific targeting ability and potent killing effect. Although 14 antibody–drug conjugates (ADCs) have been approved worldwide and more are being investigated in clinical trials so far, several limitations have been disclosed during clinical application. Compared with ADCs, peptide-drug conjugates (PDCs) possess several advantages, including easy industrial synthesis, low cost, high tissue penetration and fast clearance. So far, only a handful of PDCs have been approved, highlighting tremendous development potential. Herein, we discuss the progress and pitfalls in the development of ADCs and underline what can learn from ADCs for the better construction of PDCs in the future.
Collapse
|
2
|
Intra-Domain Cysteines (IDC), a New Strategy for the Development of Original Antibody Fragment–Drug Conjugates (FDCs). Pharmaceutics 2022; 14:pharmaceutics14081524. [PMID: 35893780 PMCID: PMC9331466 DOI: 10.3390/pharmaceutics14081524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Antibody–drug conjugates (ADCs) derived from a full immunoglobulin-G (IgG) are associated with suboptimal solid-tumor penetration and Fc-mediated toxicities. Antibody fragment–drug conjugates (FDCs) could be an alternative. Nevertheless, innovative solutions are needed to implant cysteines as conjugation sites in the single-chain fragment variable (scFv) format, which is the backbone from which many other antibody formats are built. In addition, the bioconjugation site has the utmost importance to optimize the safety and efficacy of bioconjugates. Our previous intra-tag cysteine (ITC) strategy consisted of introducing a bioconjugation motif at the C-terminal position of the 4D5.2 scFv, but this motif was subjected to proteolysis when the scFv was produced in CHO cells. Considering these data, using three intra-domain cysteine (IDC) strategies, several parameters were studied to assess the impact of different locations of a site-specific bioconjugation motif in the variable domains of an anti-HER2 scFv. In comparison to the ITC strategy, our new IDC strategy allowed us to identify new fragment–drug conjugates (FDCs) devoid of proteolysis and exhibiting enhanced stability profiles, better affinity, and better ability to kill selectively HER2-positive SK-BR-3 cells in vitro at picomolar concentrations. Thus, this work represents an important optimization step in the design of more complex and effective conjugates.
Collapse
|
3
|
Critical parameters for design and development of multivalent nanoconstructs: recent trends. Drug Deliv Transl Res 2022; 12:2335-2358. [PMID: 35013982 PMCID: PMC8747862 DOI: 10.1007/s13346-021-01103-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
A century ago, the groundbreaking concept of the magic bullet was given by Paul Ehrlich. Since then, this concept has been extensively explored in various forms to date. The concept of multivalency is among such advancements of the magic bullet concept. Biologically, the concept of multivalency plays a critical role in significantly huge numbers of biochemical interactions. This concept is the sole reason behind the higher affinity of biological molecules like viruses to more selectively target the host cell surface receptors. Multivalent nanoconstructs are a promising approach for drug delivery by the active targeting principle. Designing and developing effective and target-specific multivalent drug delivery nanoconstructs, on the other hand, remain a challenge. The underlying reason for this is a lack of understanding of the crucial interactions between ligands and cell surface receptors, as well as the design of nanoconstructs. This review highlights the need for a better theoretical understanding of the multivalent effect of what happens to the receptor-ligand complex after it has been established. Furthermore, the critical parameters for designing and developing robust multivalent systems have been emphasized. We have also discussed current advances in the design and development of multivalent nanoconstructs for drug delivery. We believe that a thorough knowledge of theoretical concepts and experimental methodologies may transform a brilliant idea into clinical translation.
Collapse
|
4
|
McCombs JR, Chang HP, Shah DK, Owen SC. Antibody-drug conjugate and free geldanamycin combination therapy enhances anti-cancer efficacy. Int J Pharm 2021; 610:121272. [PMID: 34763035 DOI: 10.1016/j.ijpharm.2021.121272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/07/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Antibody drug-conjugates (ADCs) targeting human epidermal growth factor (HER2) are a rapidly expanding class of cancer therapeutics. Such ADCs are known to suffer from inefficient trafficking to the lysosome due to HER2 endosomal recycling, leaving most bound ADCs at the cell surface or in early endosomes. This study aims to increase the maximum cytotoxicity of ADC treatment by co-delivering a small molecule inhibitor targeting the primary chaperone of HER2, heat shock protein 90 (HSP90). We hypothesized that inhibiting HSP90 could aid ADC cytotoxicity by overcoming HER2 endosomal recycling. Flow cytometric studies tracking HER2 surface expression revealed ∼ 10 nM geldanamycin (GA) as the threshold for inhibiting HSP90 mediated HER2 recycling. Cytotoxicity studies in HER2 overexpressing cancer cell lines NCI-N87, MDA-MB-453, and SKOV3 demonstrated that co-administration of ADC alongside 100 nM GA significantly increased cytotoxicity compared to ADC alone. In all cases, baseline cytotoxicity was observed even in low HER2 expressing line MDA-MB-231 cells, indicating possible off-target effects. To mitigate this baseline cytotoxicity, a "pulse treatment" regime was adopted where cells are pre-loaded with T-DM1 or T-MMAE ADCs for 4 h, followed by a 4-hour pulse treatment with ADC and 100 nM GA to initiate trafficking of HER2 bound ADC to the lysosome. Afterwards, GA is removed, and ADC treatment is continued. GA pulse co-treatment decreased the amount of ADC required to achieve maximum cytotoxicity while minimizing baseline cytotoxicity. No such co-treatment regime featuring a pulse sequence has been explored before. Such co-treatments could offer a viable solution to increase ADC efficacy in hard to treat or resistant HER2-positive cancers.
Collapse
Affiliation(s)
- Jessica R McCombs
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, United States
| | - Hsuan Ping Chang
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Shawn C Owen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, United States; Department of Biomedical Engineering, Department of Medicinal Chemistry, Department of Internal Medicine, United States.
| |
Collapse
|
5
|
Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-Drug Conjugates: The Last Decade. Pharmaceuticals (Basel) 2020; 13:ph13090245. [PMID: 32937862 PMCID: PMC7558467 DOI: 10.3390/ph13090245] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of.
Collapse
Affiliation(s)
- Nicolas Joubert
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
- Correspondence:
| | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien en Genevois, France;
| | - Charles Dumontet
- Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS 5286/UCBL, 69000 Lyon, France;
- Hospices Civils de Lyon, 69000 Lyon, France
| | - Caroline Denevault-Sabourin
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
| |
Collapse
|
6
|
Beck A, Dumontet C, Joubert N. [Antibody-drug conjugates in oncology. New strategies in development]. Med Sci (Paris) 2020; 35:1043-1053. [PMID: 31903916 DOI: 10.1051/medsci/2019228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
An Antibody-Drug Conjugate (armed antibody) is a vectorized chemotherapy that results from the grafting of a cytotoxic agent on a monoclonal antibody via a judiciously designed spacer arm. ADCs have made considerable progress in 10 years. In 2009, only gemtuzumab ozogamicin (Mylotarg®) was used clinically. In 2019, 4 other ADCs have been approved and more than 80 others are in active clinical trials. The second part of this review will focus on new emerging strategies to address ADCs drawbacks and attempt to broaden their therapeutic window. Finally, combinations with conventional chemotherapy or checkpoint inhibitors will be discussed, in the pursuit to make Antibody-Drug Conjugates the embodiment of Paul Ehrlich's dream of the magic bullet.
Collapse
Affiliation(s)
- Alain Beck
- Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien-en-Genevois, France
| | - Charles Dumontet
- Cancer Research Center of Lyon (CRCL), Inserm 1052/CNRS, 69000 Lyon, France - Université de Lyon, 69000 Lyon, France - Hospices Civils de Lyon, 69000 Lyon, France
| | - Nicolas Joubert
- GICC EA7501, Université de Tours, équipe IMT, 31 avenue Monge, 37200 Tours, France
| |
Collapse
|
7
|
Zwaagstra JC, Sulea T, Baardsnes J, Radinovic S, Cepero-Donates Y, Robert A, O’Connor-McCourt MD, Tikhomirov IA, Jaramillo ML. Binding and functional profiling of antibody mutants guides selection of optimal candidates as antibody drug conjugates. PLoS One 2019; 14:e0226593. [PMID: 31891584 PMCID: PMC6938348 DOI: 10.1371/journal.pone.0226593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/30/2019] [Indexed: 12/15/2022] Open
Abstract
An increasingly appreciated conundrum in the discovery of antibody drug conjugates (ADCs) is that an antibody that was selected primarily for strong binding to its cancer target may not serve as an optimal ADC. In this study, we performed mechanistic cell-based experiments to determine the correlation between antibody affinity, avidity, internalization and ADC efficacy. We used structure-guided design to assemble a panel of antibody mutants with predicted Her2 affinities ranging from higher to lower relative to the parent antibody, Herceptin. These antibodies were ranked for binding via SPR and via flow-cytometry on high-Her2 SKOV3 cells and low-Her2 MCF7 cells, the latter acting as a surrogate for low-Her2 normal cells. A subpanel of variants, representative of different Her2-binding affinities (2 strong, 2 moderate and 3 weak), were further screened via high-content imaging for internalization efficacies in high versus low-Her2 cells. Finally, these antibodies were evaluated in ADC cytotoxicity screening assays (using DM1 and MMAE secondary antibodies) and as antibody-drug conjugates (DM1 and PNU159682). Our results identified specific but weak Her2-binding variants as optimal candidates for developing DM1 and PNU ADCs since they exhibited high potencies (low to sub-nM) in high-Her2 SKOV3 cells and low toxicities in low-Her2 cells. The 2 strong-affinity variants were highly potent in SKOV3 cells but also showed significant toxicities in low-Her2 cells and therefore are predicted to be toxic in normal tissues. Our findings show that pharmacological profiling of an antibody library in multiple binding and functional assays allows for selection of optimal ADCs.
Collapse
Affiliation(s)
- John C. Zwaagstra
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
- * E-mail: (JZ); (MJ)
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Stevo Radinovic
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Yuneivy Cepero-Donates
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Alma Robert
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | | | | | - Maria Luz. Jaramillo
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
- * E-mail: (JZ); (MJ)
| |
Collapse
|
8
|
Xu J, He M, Hou X, Wang Y, Shou C, Cai X, Yuan Z, Yin Y, Lan M, Lou K, Zhao Y, Yang Y, Chen X, Gao F. Safe and Efficacious Diphtheria Toxin-Based Treatment for Melanoma: Combination of a Light-On Gene-Expression System and Nanotechnology. Mol Pharm 2019; 17:301-315. [PMID: 31765570 DOI: 10.1021/acs.molpharmaceut.9b01038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The controversy surrounding the use of diphtheria toxin (DT) as a therapeutic agent against tumor cells arises mainly from its unexpected harmfulness to healthy tissues. We encoded the cytotoxic fragment A of DT (DTA) as an objective gene in the Light-On gene-expression system to construct plasmids pGAVPO (pG) and pU5-DTA (pDTA). Meanwhile, a cRGD-modified ternary complex comprising plasmids, chitosan, and liposome (pG&pDTA@cRGD-CL) was prepared as a nanocarrier to ensure transfection efficiency. Benefiting from spatiotemporal control of this light-switchable transgene system and the superior tumor targeting of the carrier, toxins were designed to be expressed selectively in illuminated lesions. In vitro studies suggested that pG&pDTA@cRGD-CL exerted arrest of the S phase in B16F10 cells upon blue light irradiation and, ultimately, induced the apoptosis and necrosis of tumor cells. Such DTA-based treatment exerted enhanced antitumor activity in mice bearing B16F10 xenografts and displayed prolonged survival time with minimal side effects. Hence, we described novel DTA-based therapy combined with nanotechnology and the Light-On gene-expression system: such treatment could be a promising strategy against melanoma.
Collapse
Affiliation(s)
- Jiajun Xu
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Muye He
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Xinyu Hou
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Chenting Shou
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Xiaoran Cai
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Zeting Yuan
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China.,Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital , Shanghai University of Traditional Chinese Medicine , Shanghai 200062 , China
| | - Yu Yin
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China
| | - Kaiyan Lou
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design and Shanghai Key Laboratory of Chemical Biology , East China University of Science and Technology , Shanghai 200237 , China
| | - Yuzheng Zhao
- Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China.,Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology , East China University of Science and Technology , Shanghai 200237 , China.,Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science , East China University of Science and Technology , Shanghai 200237 , China
| | - Yi Yang
- Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China.,Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology , East China University of Science and Technology , Shanghai 200237 , China.,Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science , East China University of Science and Technology , Shanghai 200237 , China
| | - Xianjun Chen
- Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China.,Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology , East China University of Science and Technology , Shanghai 200237 , China.,Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science , East China University of Science and Technology , Shanghai 200237 , China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China.,Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China.,Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China.,Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
9
|
He Q, Liu Z, Liu Z, Lai Y, Zhou X, Weng J. TCR-like antibodies in cancer immunotherapy. J Hematol Oncol 2019; 12:99. [PMID: 31521180 PMCID: PMC6744646 DOI: 10.1186/s13045-019-0788-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy has been regarded as the most significant scientific breakthrough of 2013, and antibody therapy is at the core of this breakthrough. Despite significant success achieved in recent years, it is still difficult to target intracellular antigens of tumor cells with traditional antibodies, and novel therapeutic strategies are needed. T cell receptor (TCR)-like antibodies comprise a novel family of antibodies that can recognize peptide/MHC complexes on tumor cell surfaces. TCR-like antibodies can execute specific and significant anti-tumor immunity through several distinct molecular mechanisms, and the success of this type of antibody therapy in melanoma, leukemia, and breast, colon, and prostate tumor models has excited researchers in the immunotherapy field. Here, we summarize the generation strategy, function, and molecular mechanisms of TCR-like antibodies described in publications, focusing on the most significant discoveries.
Collapse
Affiliation(s)
- Qinghua He
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Zhaoyu Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Zhihua Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Yuxiong Lai
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Jinsheng Weng
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1414 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, Mantena SR, Enright BP, Liguori MJ, Van Vleet TR. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther 2019; 200:110-125. [DOI: 10.1016/j.pharmthera.2019.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
|
11
|
Liu W, Zhao W, Bai X, Jin S, Li Y, Qiu C, Pan L, Ding D, Xu Y, Zhou Z, Chen S. High antitumor activity of Sortase A-generated anti-CD20 antibody fragment drug conjugates. Eur J Pharm Sci 2019; 134:81-92. [DOI: 10.1016/j.ejps.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022]
|
12
|
Stewart AK, Krishnan AY, Singhal S, Boccia RV, Patel MR, Niesvizky R, Chanan-Khan AA, Ailawadhi S, Brumm J, Mundt KE, Hong K, McBride J, Shon-Nguyen Q, Xiao Y, Ramakrishnan V, Polson AG, Samineni D, Leipold D, Humke EW, McClellan JS, Berdeja JG. Phase I study of the anti-FcRH5 antibody-drug conjugate DFRF4539A in relapsed or refractory multiple myeloma. Blood Cancer J 2019; 9:17. [PMID: 30718503 PMCID: PMC6362066 DOI: 10.1038/s41408-019-0178-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
FcRH5 is a cell surface marker enriched on malignant plasma cells when compared to other hematologic malignancies and normal tissues. DFRF4539A is an anti-FcRH5 antibody-drug conjugated to monomethyl auristatin E (MMAE), a potent anti-mitotic agent. This phase I study assessed safety, tolerability, maximum tolerated dose (MTD), anti-tumor activity, and pharmacokinetics of DFRF4539A in patients with relapsed/refractory multiple myeloma. DFRF4539A was administered at 0.3-2.4 mg/kg every 3 weeks or 0.8-1.1 mg/kg weekly as a single-agent by intravenous infusion to 39 patients. Exposure of total antibody and antibody-conjugate-MMAE analytes was linear across the doses tested. There were 37 (95%) adverse events (AEs), 8 (21%) serious AEs, and 15 (39%) AEs ≥ grade 3. Anemia (n = 10, 26%) was the most common AE considered related to DFRF4539A. Two cases of grade 3 acute renal failure were attributed to DFRF4539A. There were no deaths; the MTD was not reached. DFRF4539A demonstrated limited activity in patients at the doses tested with 2 (5%) partial response, 1 (3%) minimal response, 18 (46%) stable disease, and 16 (41%) progressive disease. FcRH5 was confirmed to be expressed and occupied by antibody post-treatment and thus remains a valid myeloma target. Nevertheless, this MMAE-based antibody-drug-conjugate targeting FcRH5 was unsuccessful for myeloma.
Collapse
Affiliation(s)
- A Keith Stewart
- Division of Hematology-Oncology, Mayo Clinic, Phoenix, AZ, USA.
| | - Amrita Y Krishnan
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope Medical Center, Duarte, CA, USA
| | - Seema Singhal
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Ralph V Boccia
- Center for Cancer and Blood Disorders, Bethesda, MD, USA
| | - Manish R Patel
- Florida Cancer Specialists, Sarasota, FL, USA.,Sarah Cannon Research Institute, Nashville, TN, USA
| | - Ruben Niesvizky
- Multiple Myeloma Center, New York Presbyterian Hospital-Cornell Medical Center, New York, NY, USA
| | | | | | | | | | - Kyu Hong
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Reduction of non-specific toxicity of immunotoxin by intein mediated reconstitution on target cells. Int Immunopharmacol 2019; 66:288-295. [DOI: 10.1016/j.intimp.2018.11.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022]
|
14
|
Aubrey N, Allard-Vannier E, Martin C, Bryden F, Letast S, Colas C, Lakhrif Z, Collinet N, Dimier-Poisson I, Chourpa I, Viaud-Massuard MC, Joubert N. Site-Specific Conjugation of Auristatins onto Engineered scFv Using Second Generation Maleimide to Target HER2-positive Breast Cancer in Vitro. Bioconjug Chem 2018; 29:3516-3521. [DOI: 10.1021/acs.bioconjchem.8b00668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Aubrey
- ISP UMR 1282, INRA, Université de Tours, Team BioMAP, 31 avenue Monge, 37200 Tours, France
| | | | - Camille Martin
- GICC EA7501, Université de Tours, Team IMT, 31 avenue Monge, 37200 Tours, France
| | - Francesca Bryden
- GICC EA7501, Université de Tours, Team IMT, 31 avenue Monge, 37200 Tours, France
| | - Stéphanie Letast
- GICC EA7501, Université de Tours, Team IMT, 31 avenue Monge, 37200 Tours, France
| | - Cyril Colas
- ICOA UMR 7311, Université d’Orléans, CNRS, rue de Chartres, 45067 Orléans, France
- CBM UPR 4311, CNRS, Université d’Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Zineb Lakhrif
- ISP UMR 1282, INRA, Université de Tours, Team BioMAP, 31 avenue Monge, 37200 Tours, France
| | - Nils Collinet
- NMNS EA 6295, Université de Tours, 31 avenue Monge, 37200 Tours, France
| | | | - Igor Chourpa
- NMNS EA 6295, Université de Tours, 31 avenue Monge, 37200 Tours, France
| | | | - Nicolas Joubert
- GICC EA7501, Université de Tours, Team IMT, 31 avenue Monge, 37200 Tours, France
| |
Collapse
|
15
|
Agha Amiri S, Shahhosseini S, Zarei N, Khorasanizadeh D, Aminollahi E, Rezaie F, Zargari M, Azizi M, Khalaj V. A novel anti-CD22 scFv-apoptin fusion protein induces apoptosis in malignant B-cells. AMB Express 2017; 7:112. [PMID: 28582973 PMCID: PMC5457376 DOI: 10.1186/s13568-017-0410-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
CD22 marker is a highly internalizing antigen which is located on the surface of B-cells and is being used as a promising target for treatment of B cell malignancies. Monoclonal antibodies targeting CD22 have been introduced and some are currently under investigation in clinical trials. Building on the success of antibody drug conjugates, we developed a fusion protein consisting of a novel anti-CD22 scFv and apoptin and tested binding and therapeutic effects in lymphoma cells. The recombinant protein was expressed in E. coli and successfully purified and refolded. In vitro binding analysis by immunofluorescence and flow cytometry demonstrated that the recombinant protein specifically binds to CD22 positive Raji cells but not to CD22 negative Jurkat cells. The cytotoxic properties of scFv–apoptin were assessed by an MTT assay and Annexin V/PI flow cytometry analysis and showed that the recombinant protein induced apoptosis preferentially in Raji cells with no detectable effects in Jurkat cells. Our findings indicated that the recombinant anti-CD22 scFv–apoptin fusion protein could successfully cross the cell membrane and induce apoptosis with high specificity, make it as a promising molecule for immunotherapy of B-cell malignancies.
Collapse
|
16
|
Intravenous anti-MRSA phosphatiosomes mediate enhanced affinity to pulmonary surfactants for effective treatment of infectious pneumonia. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:215-225. [PMID: 29128664 DOI: 10.1016/j.nano.2017.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022]
Abstract
The aim of this study was to develop PEGylated phosphatidylcholine (PC)-rich nanovesicles (phosphatiosomes) carrying ciprofloxacin (CIPX) for lung targeting to eradicate extracellular and intracellular methicillin-resistant Staphylococcus aureus (MRSA). Soyaethyl morphonium ethosulfate (SME) was intercalated in the nanovesicle surface with the dual goals of achieving strengthened bactericidal activity of CIPX-loaded phosphatiosomes and delivery to the lungs. The isothermal titration calorimetry (ITC) results proved the strong association of SME phosphatiosomes with pulmonary surfactant. We demonstrated a superior anti-MRSA activity of SME phosphatiosomes compared to plain phosphatiosomes and to free CIPX. A synergistic effect of CIPX and SME nanocarriers was found in the biofilm eradication. SME phosphatiosomes were readily engulfed by the macrophages, restricting the intracellular MRSA count by 1-2 log units. SME phosphatiosomes efficiently accumulated in the lungs after intravenous injection. In a rat model of lung infection, the MRSA burden in the lungs could be decreased by 8-fold after SME nanosystem application.
Collapse
|
17
|
Recombinant Immunotoxin Therapy of Glioblastoma: Smart Design, Key Findings, and Specific Challenges. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7929286. [PMID: 28752098 PMCID: PMC5511670 DOI: 10.1155/2017/7929286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
Recombinant immunotoxins (RITs) refer to a group of recombinant protein-based therapeutics, which consists of two components: an antibody variable fragment or a specific ligand that allows RITs to bind specifically to target cells and an engineered toxin fragment that kills the target cells upon internalization. To date, over 1,000 RITs have been generated and significant success has been achieved in the therapy of hematological malignancies. However, the immunogenicity and off-target toxicities of RITs remain as significant barriers for their application to solid tumor therapy. A group of RITs have also been generated for the treatment of glioblastoma multiforme, and some have demonstrated evidence of tumor response and an acceptable profile of toxicity and safety in early clinical trials. Different from other solid tumors, how to efficiently deliver the RITs to intracranial tumors is more critical and needs to be solved urgently. In this article, we first review the design and expression of RITs, then summarize the key findings in the preclinical and clinical development of RIT therapy of glioblastoma multiforme, and lastly discuss the specific issues that still remain to forward RIT therapy to clinical practice.
Collapse
|
18
|
Howard D, Garcia-Parra J, Healey GD, Amakiri C, Margarit L, Francis LW, Gonzalez D, Conlan RS. Antibody-drug conjugates and other nanomedicines: the frontier of gynaecological cancer treatment. Interface Focus 2016; 6:20160054. [PMID: 27920893 PMCID: PMC5071815 DOI: 10.1098/rsfs.2016.0054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gynaecological cancers: malignancies of the cervix, uterus, ovaries, vagina and vulva, are responsible for over 1.1 million new cancer cases and almost half a million deaths annually. Ovarian cancer in particular is difficult to treat due to often being diagnosed at a late stage, and the incidence of uterine and vulvar malignancies are both on the rise. The field of nanomedicine is beginning to introduce drugs into the clinic for oncological applications exemplified by the liposomal drugs, Doxil and Myocet, the nanoparticle, Abraxane and antibody-drug conjugates (ADCs), Kadcyla and Adcetris. With many more agents currently undergoing clinical trials, the field of nanomedicine promises to have a significant impact on cancer therapy. This review considers the state of the art for nanomedicines currently on the market and those being clinically evaluated for the treatment of gynaecological cancers. In particular, it focuses on ADCs and presents a methodology for their rational design and evaluation.
Collapse
Affiliation(s)
- David Howard
- Swansea University Medical School, Swansea SA2 8PP, UK
| | | | | | | | - Lavinia Margarit
- Abertawe Bro Morannwg University Health Board, Obstetrics & Gynecology Department Princess of Wales Hospital, Bridgend, CF31 1RQ, UK
| | | | | | | |
Collapse
|
19
|
Stagg NJ, Shen BQ, Brunstein F, Li C, Kamath AV, Zhong F, Schutten M, Fine BM. Peripheral neuropathy with microtubule inhibitor containing antibody drug conjugates: Challenges and perspectives in translatability from nonclinical toxicology studies to the clinic. Regul Toxicol Pharmacol 2016; 82:1-13. [PMID: 27773754 DOI: 10.1016/j.yrtph.2016.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/18/2022]
Abstract
Antibody drug conjugates (ADC) consist of potent cytotoxic drugs conjugated to antibodies via chemical linkers, which enables specific targeting of tumor cells while reducing systemic exposure to the cytotoxic drug and improving the therapeutic window. The valine citrulline monomethyl auristatin E (vcMMAE, conventional linker-drug) ADC platform has shown promising clinical activity in several cancers, but peripheral neuropathy (PN) is a frequent adverse event leading to treatment discontinuation and dose reduction. This was not predicted based on nonclinical toxicology studies in monkeys or rats treated with vcMMAE ADCs. We evaluated four hypotheses for the lack of translatability of PN with vcMMAE ADCs: 1) species differences in exposure; 2) insensitivity of animal models; 3) species differences in target biology and other vcMMAE ADC properties in peripheral nerves and 4) increased susceptibility of patient population. The result of this hypothesis-based approach identified opportunities to improve the predictivity of PN in our animal models by increasing duration of exposure and adding an expanded neurohistopathology assessment of peripheral nerves. The utility of a predictive animal model would be to provide possible mitigation strategies in the clinic with vcMMAE ADCs and help to screen the next generation microtubule inhibitor (MTI) ADCs for reduced PN.
Collapse
Affiliation(s)
- Nicola J Stagg
- Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Ben-Quan Shen
- Department of Preclinical & Translational Pharmacokinetics & Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Flavia Brunstein
- Drug Safety, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Chunze Li
- Clinical Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Amrita V Kamath
- Department of Preclinical & Translational Pharmacokinetics & Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Fiona Zhong
- Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Melissa Schutten
- Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bernard M Fine
- Clinical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
20
|
Pye H, Butt MA, Reinert HW, Maruani A, Nunes JPM, Marklew JS, Qurashi M, Funnell L, May A, Stamati I, Hamoudi R, Baker JR, Smith MEB, Caddick S, Deonarain MP, Yahioglu G, Chudasama V, Lovat LB. A HER2 selective theranostic agent for surgical resection guidance and photodynamic therapy. Photochem Photobiol Sci 2016; 15:1227-1238. [PMID: 27501936 DOI: 10.1039/c6pp00139d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In many cancers early intervention involves surgical resection of small localised tumour masses. Inadequate resection leads to recurrence whereas overzealous treatment can lead to organ damage. This work describes production of a HER2 targeting antibody Fab fragment dual conjugated to achieve both real time near-infrared fluorescent imaging and photodynamic therapy. The use of fluorescence emission from a NIR-dye could be used to guide resection of tumour bulk, for example during endoscopic diagnosis for oesophago-gastric adenocarcinoma, this would then be followed by activation of the photodynamic therapeutic agent to destroy untreated localised areas of cancer infiltration and tumour infiltrated lymph nodes. This theranostic agent was prepared from the Fab fragment of trastuzumab initially by functional disulfide re-bridging and site-specific click reaction of a NIR-dye. This was followed by further reaction with a novel pre-activated form of the photosensitiser chlorin e6 with the exposed fragments' lysine residues. Specific binding of the theranostic agent was observed in vitro with a HER2 positive cell line and cellular near-infrared fluorescence was observed with flow cytometry. Specific photo-activity of the conjugates when exposed to laser light was observed with HER2 positive but not HER2 negative cell lines in vitro, this selectivity was not seen with the unconjugated drug. This theranostic agent demonstrates that two different photo-active functions can be coupled to the same antibody fragment with little interference to their independent activities.
Collapse
Affiliation(s)
- H Pye
- Department for Tissue & Energy, Division of Surgery & Interventional Science, University College London, Cruciform Building, Gower Street, London, WC1E 6AE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Spiess K, Jakobsen MH, Kledal TN, Rosenkilde MM. The future of antiviral immunotoxins. J Leukoc Biol 2016; 99:911-25. [PMID: 26729815 DOI: 10.1189/jlb.2mr1015-468r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/03/2015] [Indexed: 01/06/2023] Open
Abstract
There is a constant need for new therapeutic interventions in a wide range of infectious diseases. Over the past few years, the immunotoxins have entered the stage as promising antiviral treatments. Immunotoxins have been extensively explored in cancer treatment and have achieved FDA approval in several cases. Indeed, the design of new anticancer immunotoxins is a rapidly developing field. However, at present, several immunotoxins have been developed targeting a variety of different viruses with high specificity and efficacy. Rather than blocking a viral or cellular pathway needed for virus replication and dissemination, immunotoxins exert their effect by killing and eradicating the pool of infected cells. By targeting a virus-encoded target molecule, it is possible to obtain superior selectivity and drastically limit the side effects, which is an immunotoxin-related challenge that has hindered the success of immunotoxins in cancer treatment. Therefore, it seems beneficial to use immunotoxins for the treatment of virus infections. One recent example showed that targeting of virus-encoded 7 transmembrane (7TM) receptors by immunotoxins could be a future strategy for designing ultraspecific antiviral treatment, ensuring efficient internalization and hence efficient eradication of the pool of infected cells, both in vitro and in vivo. In this review, we provide an overview of the mechanisms of action of immunotoxins and highlight the advantages of immunotoxins as future anti-viral therapies.
Collapse
Affiliation(s)
- Katja Spiess
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Denmark; and
| | - Mette Høy Jakobsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Denmark; and
| | - Thomas N Kledal
- Section for Virology, Veterinary Institute, The Danish Technical University, Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Denmark; and
| |
Collapse
|
22
|
Tobin PH, Richards DH, Callender RA, Wilson CJ. Protein engineering: a new frontier for biological therapeutics. Curr Drug Metab 2015; 15:743-56. [PMID: 25495737 DOI: 10.2174/1389200216666141208151524] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/27/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Protein engineering holds the potential to transform the metabolic drug landscape through the development of smart, stimulusresponsive drug systems. Protein therapeutics are a rapidly expanding segment of Food and Drug Administration approved drugs that will improve clinical outcomes over the long run. Engineering of protein therapeutics is still in its infancy, but recent general advances in protein engineering capabilities are being leveraged to yield improved control over both pharmacokinetics and pharmacodynamics. Stimulus- responsive protein therapeutics are drugs which have been designed to be metabolized under targeted conditions. Protein engineering is being utilized to develop tailored smart therapeutics with biochemical logic. This review focuses on applications of targeted drug neutralization, stimulus-responsive engineered protein prodrugs, and emerging multicomponent smart drug systems (e.g., antibody-drug conjugates, responsive engineered zymogens, prospective biochemical logic smart drug systems, drug buffers, and network medicine applications).
Collapse
Affiliation(s)
| | | | | | - Corey J Wilson
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.
| |
Collapse
|
23
|
Passive targeting of phosphatiosomes increases rolipram delivery to the lungs for treatment of acute lung injury: An animal study. J Control Release 2015; 213:69-78. [PMID: 26164036 DOI: 10.1016/j.jconrel.2015.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 02/07/2023]
Abstract
A novel nanovesicle carrier, phosphatiosomes, was developed to enhance the targeting efficiency of phosphodiesterase 4 (PDE4) inhibitor to the lungs for treating acute lung injury (ALI) by intravenous administration. Phosphatiosomes were the basis of a niosomal system containing phosphatidylcholine (PC) and distearoylphosphatidylethanolamine polyethylene glycol (DSPE-PEG). Rolipram was used as the model drug loaded in the phosphatiosomes. Bioimaging, biodistribution, activated neutrophil inhibition, and ALI treatment were performed to evaluate the feasibility of phosphatiosomes as the lung-targeting carriers. An encapsulation percentage of >90% was achieved for rolipram-loaded nanovesicles. The vesicle size and zeta potential of the phosphatiosomes were 154 nm and -34 mV, respectively. Real-time imaging in rats showed a delayed and lower uptake of phosphatiosomes by the liver and spleen. Ex vivo bioimaging demonstrated a high accumulation of phosphatiosomes in the lungs. In vivo biodistribution exhibited increased lung accumulation and reduced brain penetration of rolipram in phosphatiosomes relative to the control solution. Phosphatiosomes improved the lungs/brain ratio of the drug by more than 7-fold. Interaction with pulmonary lipoprotein surfactants and the subsequent aggregation may be the mechanisms for facilitating lung targeting by phosphatiosomes. Rolipram could continue to inhibit active neutrophils after inclusion in the nanovesicles by suppressing O2(-) generation and elevating cAMP. Phosphatiosomes significantly alleviated ALI in mice as revealed by examining their pulmonary appearance, edema, myeloperoxidase (MPO) activity, and histopathology. This study highlights the potential of nanovesicles to deliver the drug for targeting the lungs and attenuating nervous system side effects.
Collapse
|
24
|
Lee RS, Lin CH, Aljuffali IA, Hu KY, Fang JY. Passive targeting of thermosensitive diblock copolymer micelles to the lungs: synthesis and characterization of poly(N-isopropylacrylamide)-block-poly(ε-caprolactone). J Nanobiotechnology 2015; 13:42. [PMID: 26084491 PMCID: PMC4472254 DOI: 10.1186/s12951-015-0103-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/08/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Amphiphilic poly(N-isopropylacrylamide)-block-poly(ε-caprolactone) (PNiPAAm-b-PCL) copolymers were synthesized by ring-opening polymerization to form thermosensitive micelles as nanocarriers for bioimaging and carboplatin delivery. RESULTS The critical micelle concentration increased from 1.8 to 3.5 mg/l following the decrease of the PNiPAAm chain length. The copolymers revealed a lower critical solution temperature (LCST) between 33 and 40°C. The copolymers self-assembled to form spherical particles of 146-199 nm in diameter. Carboplatin in micelles exhibited a slower release at 37°C relative to that at 25°C due to the gel layer formation on the micellar shell above the LCST. The micelles containing dye or carboplatin were intravenously injected into the rats for in vivo bioimaging and drug biodistribution. The bioimaging profiles showed a significant accumulation of micelles in the lungs. The micelles could minimize the reticuloendothelial system (RES) recognition of the dye. In vivo biodistribution demonstrated an improved pulmonary accumulation of carboplatin from 2.5 to 3.4 μg/mg by the micelles as compared to the control solution. Carboplatin accumulation in the heart and kidneys was reduced after encapsulation by the micelles. CONCLUSION This study supports the potential of PNiPAAm-b-PCL micelles to passively target the lungs and attenuate RES uptake and possible side effects.
Collapse
Affiliation(s)
- Ren-Shen Lee
- The Center of General Education, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Kai-Yin Hu
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan. .,Immunology Consortium, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan. .,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
25
|
Targeted killing of rhabdomyosarcoma cells by a MAP-based human cytolytic fusion protein. Cancer Lett 2015; 365:149-55. [PMID: 25888452 DOI: 10.1016/j.canlet.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 12/26/2022]
Abstract
The treatment of rhabdomyosarcoma (RMS) is challenging, and the prognosis remains especially poor for high-grade RMS with metastasis. The conventional treatment of RMS is based on multi-agent chemotherapy combined with resection and radiotherapy, which are often marked by low success rate. Alternative therapeutic options include the combination of standard treatments with immunotherapy. We generated a microtubule-associated protein (MAP)-based fully human cytolytic fusion protein (hCFP) targeting the fetal acetylcholine receptor, which is expressed on RMS cells. We were able to express and purify functional scFv35-MAP from Escherichia coli cells. Moreover, we found that scFv35-MAP is rapidly internalized by target cells after binding its receptor, and exhibits specific cytotoxicity toward FL-OH1 and RD cells in vitro. We also confirmed that scFv35-MAP induces apoptosis in FL-OH1 and RD cells. The in vivo potential of scFv35-MAP will need to be considered in further studies.
Collapse
|
26
|
Widdison W, Wilhelm S, Veale K, Costoplus J, Jones G, Audette C, Leece B, Bartle L, Kovtun Y, Chari R. Metabolites of antibody-maytansinoid conjugates: characteristics and in vitro potencies. Mol Pharm 2015; 12:1762-73. [PMID: 25826705 DOI: 10.1021/mp5007757] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several antibody-maytansinoid conjugates (AMCs) are in clinical trials for the treatment of various cancers. Each of these conjugates can be metabolized by tumor cells to give cytotoxic maytansinoid metabolites that can kill targeted cells. In preclinical studies in mice, the cytotoxic metabolites initially formed in vivo are further processed in the mouse liver to give several oxidized metabolic species. In this work, the primary AMC metabolites were synthesized and incubated with human liver microsomes (HLMs) to determine if human liver would likely give the same metabolites as those formed in mouse liver. The results of these HLM metabolism studies as well as the subsequent syntheses of the resulting HLM oxidation products are presented. Syntheses of the minor impurities formed during the conjugation of AMCs were also conducted to determine their cytotoxicities and to establish how these impurities would be metabolized by HLM.
Collapse
Affiliation(s)
- Wayne Widdison
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Sharon Wilhelm
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Karen Veale
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Juliet Costoplus
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Gregory Jones
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Charlene Audette
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Barbara Leece
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Laura Bartle
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Yelena Kovtun
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Ravi Chari
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| |
Collapse
|
27
|
Deonarain MP, Yahioglu G, Stamati I, Marklew J. Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discov 2015; 10:463-81. [PMID: 25797303 DOI: 10.1517/17460441.2015.1025049] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antibody drug conjugates now make up a significant fraction of biopharma's oncology pipeline due to great advances in the understanding of the three key components and how they should be optimised together. With this clinical success comes innovation to produce new enabling technologies that can deliver more effective antibody-drug conjugates (ADCs) with a larger therapeutic index. AREAS COVERED There are many reviews that discuss the various strategies for ADCs design but the last 5 years or so have witnessed the emergence of a number of different antibody formats compete with the standard whole immunoglobulin. Using published research, patent applications and conference disclosures, the authors review the many antibody and antibody-like formats, discussing innovations in protein engineering and how these new formats impact on the conjugation strategy and ultimately the performance. The alternative chemistries that are now available offer new linkages, stability profiles, drug:antibody ratio, pharmacokinetics and efficacy. The different sizes being considered promise to address issues, such as tumour penetration, circulatory half-life and side-effects. EXPERT OPINION ADCs are at the beginning of the next stage in their evolution and as these newer formats are developed and examined in the clinic, we will discover if the predicted features have a clinical benefit. From the commercial activity, it is envisaged that smaller or fragment-based ADCs will expand oncological applications.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, Herts, SG1 2FX , UK
| | | | | | | |
Collapse
|
28
|
Chan WL, Zhou A, Read RJ. Towards engineering hormone-binding globulins as drug delivery agents. PLoS One 2014; 9:e113402. [PMID: 25426859 PMCID: PMC4245140 DOI: 10.1371/journal.pone.0113402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/24/2014] [Indexed: 12/05/2022] Open
Abstract
The treatment of many diseases such as cancer requires the use of drugs that can cause severe side effects. Off-target toxicity can often be reduced simply by directing the drugs specifically to sites of diseases. Amidst increasingly sophisticated methods of targeted drug delivery, we observed that Nature has already evolved elegant means of sending biological molecules to where they are needed. One such example is corticosteroid binding globulin (CBG), the major carrier of the anti-inflammatory hormone, cortisol. Targeted release of cortisol is triggered by cleavage of CBG's reactive centre loop by elastase, a protease released by neutrophils in inflamed tissues. This work aimed to establish the feasibility of exploiting this mechanism to carry therapeutic agents to defined locations. The reactive centre loop of CBG was altered with site-directed mutagenesis to favour cleavage by other proteases, to alter the sites at which it would release its cargo. Mutagenesis succeeded in making CBG a substrate for either prostate specific antigen (PSA), a prostate-specific serine protease, or thrombin, a key protease in the blood coagulation cascade. PSA is conspicuously overproduced in prostatic hyperplasia and is, therefore, a good way of targeting hyperplastic prostate tissues. Thrombin is released during clotting and consequently is ideal for conferring specificity to thrombotic sites. Using fluorescence-based titration assays, we also showed that CBG can be engineered to bind a new compound, thyroxine-6-carboxyfluorescein, instead of its physiological ligand, cortisol, thereby demonstrating that it is possible to tailor the hormone binding site to deliver a therapeutic drug. In addition, we proved that the efficiency with which CBG releases bound ligand can be increased by introducing some well-placed mutations. This proof-of-concept study has raised the prospect of a novel means of targeted drug delivery, using the serpin conformational change to combat the problem of off-target effects in the treatment of diseases.
Collapse
Affiliation(s)
- Wee Lee Chan
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Aiwu Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China, Shanghai Jiao Tong University, School of Medicine, Shanghai, People's Republic of China
| | - Randy J. Read
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
29
|
Lim BN, Tye GJ, Choong YS, Ong EBB, Ismail A, Lim TS. Principles and application of antibody libraries for infectious diseases. Biotechnol Lett 2014; 36:2381-92. [PMID: 25214212 DOI: 10.1007/s10529-014-1635-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/11/2014] [Indexed: 02/01/2023]
Abstract
Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.
Collapse
Affiliation(s)
- Bee Nar Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia,
| | | | | | | | | | | |
Collapse
|
30
|
Feng Y, Zhu Z, Chen W, Prabakaran P, Lin K, Dimitrov DS. Conjugates of Small Molecule Drugs with Antibodies and Other Proteins. Biomedicines 2014; 2:1-13. [PMID: 28548057 PMCID: PMC5423484 DOI: 10.3390/biomedicines2010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 01/30/2023] Open
Abstract
Conjugates of small molecule drugs with antibodies (ADCs) and with other proteins (protein-drug conjugates, PDC) are used as a new class of targeted therapeutics combining the specificity of monoclonal antibodies (mAbs) and other proteins with potent cytotoxic activity of small molecule drugs for the treatment of cancer and other diseases. A(P)DCs have three major components, antibody (targeting protein), linker and payload, the cytotoxic drug. Recently, advances in identifying targets, selecting highly specific mAbs of preferred isotypes, optimizing linker technology and improving chemical methods for conjugation have led to the approval of two ADCs by Food and Drug Administration (FDA) and more than 30 ADCs in advanced clinical development. However, the complex and heterogeneous nature of A(P)DCs often cause poor solubility, instability, aggregation and eventually unwanted toxicity. This article reviews the main components of A(P)DCs, and discusses the choices for drugs, linkers and conjugation methods currently used. Future work will need to focus on developments and strategies for overcoming such major problems associated with the A(P)DCs.
Collapse
Affiliation(s)
- Yang Feng
- Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Zhongyu Zhu
- Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Weizao Chen
- Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Ponraj Prabakaran
- Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Kedan Lin
- Genentech., San Francisco, CA 94080, USA.
| | - Dimiter S Dimitrov
- Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
31
|
Bashandy MS, Alsaid MS, Arafa RK, Ghorab MM. Design, synthesis and molecular docking of novel N,N-dimethylbenzenesulfonamide derivatives as potential antiproliferative agents. J Enzyme Inhib Med Chem 2013; 29:619-27. [DOI: 10.3109/14756366.2013.833197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mahmoud S. Bashandy
- Department of Chemistry, Faculty of Science, Al-Azhar University
Nasr City, CairoEgypt
| | - Mansour S. Alsaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University
RiyadhKingdom of Saudi Arabia
| | - Reem K. Arafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University
CairoEgypt
| | - Mostafa M. Ghorab
- Department of Pharmacognosy, College of Pharmacy, King Saud University
RiyadhKingdom of Saudi Arabia
- Deprtment of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy
CairoEgypt
| |
Collapse
|
32
|
T-Cell Receptor-Like Antibodies: Targeting the Intracellular Proteome Therapeutic Potential and Clinical Applications. Antibodies (Basel) 2013. [DOI: 10.3390/antib2030517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
33
|
Ribosome-inactivating proteins: from toxins to useful proteins. Toxicon 2013; 67:12-6. [PMID: 23462379 DOI: 10.1016/j.toxicon.2013.02.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 01/22/2013] [Accepted: 02/07/2013] [Indexed: 01/08/2023]
Abstract
Ribosome-inactivating proteins (RIPs) either single-chain (type 1) or two-chain (type 2) are frequent in plants, often in multiple forms. They are RNA N-glycosidases, have antiviral, antifungal and insecticidal activity. Their expression in plants is increased under stressful conditions. They are investigated for practical applications in medicine and in agriculture. In medicine, RIPs have been linked to, or fused with, appropriate antibodies or other carriers to form "immunotoxins" or other conjugates specifically toxic to the cells target of the carrier, with the aim of eliminating malignant or other undesired cells. In agriculture, it has been observed that an enhanced expression of RIPs confers to plants an increased resistance to viruses, fungi, insects, and also to drought and salinity.
Collapse
|
34
|
Abstract
The discovery of naturally occurring, heavy-chain only antibodies in Camelidae, and their further development into small recombinant nanobodies, presents attractive alternatives in drug delivery and imaging. Easily expressed in microorganisms and amenable to engineering, nanobody derivatives are soluble, stable, versatile, and have unique refolding capacities, reduced aggregation tendencies, and high-target binding capabilities. This review outlines the current state of the art in nanobodies, focusing on their structural features and properties, production, technology, and the potential for modulating immune functions and for targeting tumors, toxins, and microbes.
Collapse
Affiliation(s)
- Christina G Siontorou
- Department of Industrial Management and Technology, University of Piraeus, Piraeus, Greece
| |
Collapse
|
35
|
|
36
|
Firer MA, Gellerman G. Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol 2012; 5:70. [PMID: 23140144 PMCID: PMC3508879 DOI: 10.1186/1756-8722-5-70] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/18/2012] [Indexed: 12/21/2022] Open
Abstract
Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients.
Collapse
Affiliation(s)
- Michael A Firer
- Department of Chemical Engineering and Biotechnology, Ariel University Center, Ariel, Israel.
| | | |
Collapse
|