1
|
Imaging Technologies for Cerebral Pharmacokinetic Studies: Progress and Perspectives. Biomedicines 2022; 10:biomedicines10102447. [PMID: 36289709 PMCID: PMC9598571 DOI: 10.3390/biomedicines10102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacokinetic assessment of drug disposition processes in vivo is critical in predicting pharmacodynamics and toxicology to reduce the risk of inappropriate drug development. The blood–brain barrier (BBB), a special physiological structure in brain tissue, hinders the entry of targeted drugs into the central nervous system (CNS), making the drug concentrations in target tissue correlate poorly with the blood drug concentrations. Additionally, once non-CNS drugs act directly on the fragile and important brain tissue, they may produce extra-therapeutic effects that may impair CNS function. Thus, an intracerebral pharmacokinetic study was developed to reflect the disposition and course of action of drugs following intracerebral absorption. Through an increasing understanding of the fine structure in the brain and the rapid development of analytical techniques, cerebral pharmacokinetic techniques have developed into non-invasive imaging techniques. Through non-invasive imaging techniques, molecules can be tracked and visualized in the entire BBB, visualizing how they enter the BBB, allowing quantitative tools to be combined with the imaging system to derive reliable pharmacokinetic profiles. The advent of imaging-based pharmacokinetic techniques in the brain has made the field of intracerebral pharmacokinetics more complete and reliable, paving the way for elucidating the dynamics of drug action in the brain and predicting its course. The paper reviews the development and application of imaging technologies for cerebral pharmacokinetic study, represented by optical imaging, radiographic autoradiography, radionuclide imaging and mass spectrometry imaging, and objectively evaluates the advantages and limitations of these methods for predicting the pharmacodynamic and toxic effects of drugs in brain tissues.
Collapse
|
2
|
Rana R, Vellanki RN, Wouters BG, Nitz M. Tellurophene-tagging of teniposide facilitates monitoring by mass cytometry. Chembiochem 2022; 23:e202200284. [PMID: 36040838 DOI: 10.1002/cbic.202200284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Target engagement and the biodistribution of exogenously administered small molecules is rarely homogenous. Methods to determine the biodistribution at the cellular level are limited by the ability to detect the small molecule and simultaneously identify the cell types or tissue structures with which it is associated. The highly multiplexed nature of mass cytometry could facilitate these studies provided a heavy isotope label was available in the molecule of interest. Here we show it is possible to append a tellurophene to a known chemotherapeutic, teniposide, to follow this molecule in vivo . A semi-synthetic approach offers an efficient route to the teniposide analogue which is found to have indistinguishable characteristics when compared with the parent teniposide in vitro . Using mass cytometry and imaging mass cytometry we find the teniposide analogue has significant non-specific binding to cells. In vivo the tellurium bearing teniposide produces the expected DNA damage in a PANC-1 xenograft model. The distribution of Te in the tissue is near the limits of detection and further work will be required to characterize the localization of this analogue with respect to cell type distributions.
Collapse
Affiliation(s)
- Rahul Rana
- University of Toronto - St George Campus: University of Toronto, Chemistry, CANADA
| | - Ravi N Vellanki
- University Health Network, Departments of Radiation Oncology and Medical Biophysics, CANADA
| | - Bradly G Wouters
- UHN: University Health Network, Departments of Radiation Oncology and Medical Biophysics, CANADA
| | - Mark Nitz
- University of Toronto, Chemistry, 80 St. George Street, M5S3H6, Toronto, CANADA
| |
Collapse
|
3
|
Gong S, Zhuo Y, Chen S, Hu X, Fan XX, Wu JL, Li N. Quantification of Osimertinib and Metabolite-Protein Modification Reveals Its High Potency and Long Duration of Effects on Target Organs. Chem Res Toxicol 2021; 34:2309-2318. [PMID: 34665607 DOI: 10.1021/acs.chemrestox.1c00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Covalent drugs are newly developed and proved to be successful therapies in past decades. However, the pharmacokinetics (PK) and pharmacodynamic (PD) studies of covalent drugs now ignore the drug and metabolite-protein modification. The low abundance of modified proteins also prevents its investigation. Herein, a simple, selective, and sensitive liquid chromatography-mass spectrometry (LC-MS)/MS quantitative method was established based on the mechanism of a drug and its metabolite-protein adducts using osimertinib as an example. Five metabolites with covalent modification potential were identified. The drug and its metabolite-cysteine adducts released from modified proteins by a mixed hydrolysis method were developed to characterize the level of the modified proteins. This turned the quantitative objects from proteins or peptides to small molecules, which increased the sensitivity and throughput of the quantitative approach. Accumulation of protein adducts formed by osimertinib and its metabolites in target organs was observed in vivo and long-lasting modifications were noted. These results interpreted the long duration of the covalent drugs' effect from the perspective of both parent and the metabolites. In addition, the established method could also be applied in blood testing as noninvasive monitoring. This newly developed approach showed great feasibility for PK and PD studies of covalent drugs.
Collapse
Affiliation(s)
- Shilin Gong
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Yue Zhuo
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shengshuang Chen
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Xiaolan Hu
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Xing-Xing Fan
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Jian-Lin Wu
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Na Li
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| |
Collapse
|
4
|
Lu G, Nishio N, van den Berg NS, Martin BA, Fakurnejad S, van Keulen S, Colevas AD, Thurber GM, Rosenthal EL. Co-administered antibody improves penetration of antibody-dye conjugate into human cancers with implications for antibody-drug conjugates. Nat Commun 2020; 11:5667. [PMID: 33168818 PMCID: PMC7652891 DOI: 10.1038/s41467-020-19498-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/13/2020] [Indexed: 02/03/2023] Open
Abstract
Poor tissue penetration remains a major challenge for antibody-based therapeutics of solid tumors, but proper dosing can improve the tissue penetration and thus therapeutic efficacy of these biologics. Due to dose-limiting toxicity of the small molecule payload, antibody-drug conjugates (ADCs) are administered at a much lower dose than their parent antibodies, which further reduces tissue penetration. We conducted an early-phase clinical trial (NCT02415881) and previously reported the safety of an antibody-dye conjugate (panitumumab-IRDye800CW) as primary outcome. Here, we report a retrospective exploratory analysis of the trial to evaluate whether co-administration of an unconjugated antibody could improve the intratumoral distribution of the antibody-dye conjugate in patients. By measuring the multiscale distribution of the antibody-dye conjugate, this study demonstrates improved microscopic antibody distribution without increasing uptake (toxicity) in healthy tissue when co-administered with the parent antibody, supporting further clinical investigation of the co-administration dosing strategy to improve the tumor penetration of ADCs.
Collapse
Affiliation(s)
- Guolan Lu
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - Naoki Nishio
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Nynke S van den Berg
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - Brock A Martin
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Shayan Fakurnejad
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - Stan van Keulen
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - Alexander D Colevas
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eben L Rosenthal
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Caballero-Villarraso J, Jiménez-Jiménez MJ, Escribano BM, Agüera E, Santamaría A, Túnez I. Implications of Vitamin D in Multiple Sclerosis and Other Neurodegenerative Processes: Bibliometric Analysis and Systematic Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:478-490. [PMID: 31269889 DOI: 10.2174/1871527318666190703102330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/03/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022]
Abstract
In recent years, numerous investigations focused on the pleiotropic actions of vitamin D have been carried out. These actions include the participation of this molecule in neurophysiological and neuropathological processes. As a consequence, abundant scientific literature on the role of this vitamin in neurodegenerative entities has emerged, even concerning clinical studies. To identify the level of scientific evidence concerning the relation between vitamin D and neurodegenerative diseases, from a quantitative and qualitative perspective. To describe, by means of a bibliometric analysis, the scientific production and its evolution through time in quantitative terms, regarding the implications of vitamin D in neurodegeneration. To analyse and present the degree of evidence in the aforementioned field of study, a systematic review of the literature focused on the most prevalent neurodegenerative diseases was carried out. We retrieved 848 articles in the bibliometric analysis, the majority of which were dated between the years 2010-2017. The most studied metabolite was the 25(OH)D3 and the most cited disease was multiple sclerosis. In the systematic review, we found studies about Alzheimer's and Parkinson's diseases and again, about multiple sclerosis prominently (in number and quality), with 12 randomised double-blind clinical trials. The research about vitamin D and its relations with neurodegenerative diseases shows a growing evolution over the last decade. More studies are needed to find correlations between the clinical severity of these diseases and the specific status of vitamin D and the genotypes related with them, which seems to be a future trend.
Collapse
Affiliation(s)
- Javier Caballero-Villarraso
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina y Enfermeria, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain; Red Temática de Investigacion Cooperativa en Envejecimiento y Fragilidad (RETICEF), Madrid, Spain.,Unidad de Gestion Clinica de Analisis Clinicos, Hospital Universitario Reina Sofia, Cordoba, Spain
| | - María J Jiménez-Jiménez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina y Enfermeria, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain; Red Temática de Investigacion Cooperativa en Envejecimiento y Fragilidad (RETICEF), Madrid, Spain
| | - Begoña M Escribano
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain; Red Temática de Investigacion Cooperativa en Envejecimiento y Fragilidad (RETICEF), Madrid, Spain.,Departamento de Biologia Celular, Fisiologia e Inmunologia, Facultad de Veterinaria, Universidad de Cordoba, Cordoba, Spain
| | - Eduardo Agüera
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain; Red Temática de Investigacion Cooperativa en Envejecimiento y Fragilidad (RETICEF), Madrid, Spain.,Unidad de Gestion Clinica de Neurologia, Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico, Mexico
| | - Isaac Túnez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina y Enfermeria, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain; Red Temática de Investigacion Cooperativa en Envejecimiento y Fragilidad (RETICEF), Madrid, Spain.,Red Española de Excelencia de Estimulación Cerebral (REDESTIM), Cordoba, Spain
| |
Collapse
|
6
|
McGowan JWD, Bidwell GL. The Use of Ex Vivo Whole-organ Imaging and Quantitative Tissue Histology to Determine the Bio-distribution of Fluorescently Labeled Molecules. J Vis Exp 2016. [PMID: 28060286 DOI: 10.3791/54987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Fluorescent labeling is a well-established process for examining the fate of labeled molecules under a variety of experimental conditions both in vitro and in vivo. Fluorescent probes are particularly useful in determining the bio-distribution of administered large molecules, where the addition of a small-molecule fluorescent label is unlikely to affect the kinetics or bio-distribution of the compound. A variety of methods exist to examine bio-distribution that vary significantly in the amount of effort required and whether the resulting measurements are fully quantitative, but using multiple methods in conjunction can provide a rapid and effective system for analyzing bio-distributions. Ex vivo whole-organ imaging is a method that can be used to quickly compare the relative concentrations of fluorescent molecules within tissues and between multiple types of tissues or treatment groups. Using an imaging platform designed for live-animal or whole-organ imaging, fluorescence within intact tissues can be determined without further processing, saving time and labor while providing an accurate picture of the overall bio-distribution. This process is ideal in experiments attempting to determine the tissue specificity of a compound or for the comparison of multiple different compounds. Quantitative tissue histology on the other hand requires extensive further processing of tissues in order to create a quantitative measure of the labeled compounds. To accurately assess bio-distribution, all tissues of interest must be sliced, scanned, and analyzed relative to standard curves in order to make comparisons between tissues or groups. Quantitative tissue histology is the gold standard for determining absolute compound concentrations within tissues. Here, we describe how both methods can be used together effectively to assess the ability of different administration methods and compound modifications to target and deliver fluorescently labeled molecules to the central nervous system1.
Collapse
Affiliation(s)
| | - Gene L Bidwell
- Department of Neurology, The University of Mississippi Medical Center;
| |
Collapse
|
7
|
Tartagni M, Cicinelli MV, Tartagni MV, Alrasheed H, Matteo M, Baldini D, De Salvia M, Loverro G, Montagnani M. Vitamin D Supplementation for Premenstrual Syndrome-Related Mood Disorders in Adolescents with Severe Hypovitaminosis D. J Pediatr Adolesc Gynecol 2016; 29:357-61. [PMID: 26724745 DOI: 10.1016/j.jpag.2015.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 11/24/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
Abstract
STUDY OBJECTIVE Premenstrual syndrome (PMS) might become severe enough to interfere with normal interpersonal relationships. This study was planned to assess whether administration of vitamin D (200,000 IU at first, followed by 25,000 IU every 2 weeks) for a 4-month period might lessen the appearance and the intensity of mood disorders associated with PMS in young girls with severe hypovitaminosis D. DESIGN, SETTING, PARTICIPANTS, INTERVENTIONS, AND MAIN OUTCOME MEASURES: One hundred fifty-eight young girls (15-21 years old) with PMS-related severe symptoms of the emotional and cognitive domains and low serum 25-hydroxycholecalciferol (25-OH-D) levels (≤10 ng/mL) were randomly assigned to two treatment groups and treated for 4 months with vitamin D (group 1; n = 80) or placebo (group 2; n = 78). Clinical and hormonal effects were compared between the two groups. RESULTS In patients from group 1, levels of vitamin D reached the normal range (35-60 ng/mL) after the first month and remained stable throughout the whole study. At the end of treatment, anxiety score decreased from 51 to 20 (P < .001 vs baseline); irritability score declined from 130 to 70 (P < .001 vs baseline). Crying easily and sadness decreased by a score of 41 and 51 to a score of 30 and 31, respectively (P < .001). For disturbed relationships, the score decreased from 150 to 70 (P < .001). Conversely, no appreciable changes were noted in symptom intensity from patients of group 2. The frequency of adverse events (nausea and constipation) was not different between participants of group 1 and group 2. CONCLUSION On the basis of the present findings, vitamin D therapy can be proposed as a safe, effective, and convenient method for improving the quality of life in young women with severe hypovitaminosis D and concomitant mood disorders associated with PMS.
Collapse
Affiliation(s)
- Massimo Tartagni
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Vittoria Cicinelli
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | | | - Hala Alrasheed
- Centro di Fecondazione Medicalmente Assistita MoMò Fertilife, Bisceglie, Italy
| | - Maria Matteo
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Domenico Baldini
- Centro di Fecondazione Medicalmente Assistita MoMò Fertilife, Bisceglie, Italy
| | - Maria De Salvia
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Loverro
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
8
|
Abstract
During the last decade, lateral and temporal localization of drug compounds and their metabolites have been demonstrated and dynamically developed using MS imaging. The pharmaceutical industry has recognized the potential of the technology that provides simultaneous distribution and quantitative data. In this review, we present the latest technological achievements and summarize applications of drug imaging focusing on studies about metabolites by MALDI-MS imaging. We also introduce potential areas with pharmaceutical applications that are currently under exploration, including pharmacological, toxicological characterizations and metabolic enzyme localization in comparison with drug and metabolite distribution.
Collapse
|
9
|
Tibbitts J, Canter D, Graff R, Smith A, Khawli LA. Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. MAbs 2015; 8:229-45. [PMID: 26636901 PMCID: PMC4966629 DOI: 10.1080/19420862.2015.1115937] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein therapeutics represent a diverse array of biologics including antibodies, fusion proteins, and therapeutic replacement enzymes. Since their inception, they have revolutionized the treatment of a wide range of diseases including respiratory, vascular, autoimmune, inflammatory, infectious, and neurodegenerative diseases, as well as cancer. While in vivo pharmacokinetic, pharmacodynamic, and efficacy studies are routinely carried out for protein therapeutics, studies that identify key factors governing their absorption, distribution, metabolism, and excretion (ADME) properties have not been fully investigated. Thorough characterization and in-depth study of their ADME properties are critical in order to support drug discovery and development processes for the production of safer and more effective biotherapeutics. In this review, we discuss the main factors affecting the ADME characteristics of these large macromolecular therapies. We also give an overview of the current tools, technologies, and approaches available to investigate key factors that influence the ADME of recombinant biotherapeutic drugs, and demonstrate how ADME studies will facilitate their future development.
Collapse
|
10
|
Shobo A, Bratkowska D, Baijnath S, Naiker S, Somboro AM, Bester LA, Singh SD, Naicker T, Kruger HG, Govender T. Tissue distribution of pretomanid in rat brain via mass spectrometry imaging. Xenobiotica 2015. [PMID: 26207565 DOI: 10.3109/00498254.2015.1067935] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) combines the sensitivity and selectivity of mass spectrometry with spatial analysis to provide a new dimension for histological analyses of the distribution of drugs in tissue. Pretomanid is a pro-drug belonging to a class of antibiotics known as nitroimidizoles, which have been proven to be active under hypoxic conditions and to the best of our knowledge there have been no studies investigating the distribution and localisation of this class of compounds in the brain using MALDI MSI. 2. Herein, we report on the distribution of pretomanid in the healthy rat brain after intraperitoneal administration (20 mg/kg) using MALDI MSI. Our findings showed that the drug localises in specific compartments of the rat brain viz. the corpus callosum, a dense network of neurons connecting left and right cerebral hemispheres. 3. This study proves that MALDI MSI technique has great potential for mapping the pretomanid distribution in uninfected tissue samples, without the need for molecular labelling.
Collapse
Affiliation(s)
- Adeola Shobo
- a School of Pharmacy and Pharmacology, University of KwaZulu-Natal , Durban , South Africa and
| | - Dominika Bratkowska
- a School of Pharmacy and Pharmacology, University of KwaZulu-Natal , Durban , South Africa and
| | - Sooraj Baijnath
- a School of Pharmacy and Pharmacology, University of KwaZulu-Natal , Durban , South Africa and
| | - Suhashni Naiker
- a School of Pharmacy and Pharmacology, University of KwaZulu-Natal , Durban , South Africa and
| | - Anou M Somboro
- a School of Pharmacy and Pharmacology, University of KwaZulu-Natal , Durban , South Africa and
| | - Linda A Bester
- b Biomedical Resource Unit , University of KwaZulu-Natal , Durban , South Africa
| | - Sanil D Singh
- b Biomedical Resource Unit , University of KwaZulu-Natal , Durban , South Africa
| | - Tricia Naicker
- a School of Pharmacy and Pharmacology, University of KwaZulu-Natal , Durban , South Africa and
| | - Hendrik G Kruger
- a School of Pharmacy and Pharmacology, University of KwaZulu-Natal , Durban , South Africa and
| | - Thavendran Govender
- a School of Pharmacy and Pharmacology, University of KwaZulu-Natal , Durban , South Africa and
| |
Collapse
|
11
|
Cobice DF, Goodwin RJA, Andren PE, Nilsson A, Mackay CL, Andrew R. Future technology insight: mass spectrometry imaging as a tool in drug research and development. Br J Pharmacol 2015; 172:3266-83. [PMID: 25766375 DOI: 10.1111/bph.13135] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 02/09/2015] [Accepted: 03/03/2015] [Indexed: 12/14/2022] Open
Abstract
In pharmaceutical research, understanding the biodistribution, accumulation and metabolism of drugs in tissue plays a key role during drug discovery and development. In particular, information regarding pharmacokinetics, pharmacodynamics and transport properties of compounds in tissues is crucial during early screening. Historically, the abundance and distribution of drugs have been assessed by well-established techniques such as quantitative whole-body autoradiography (WBA) or tissue homogenization with LC/MS analysis. However, WBA does not distinguish active drug from its metabolites and LC/MS, while highly sensitive, does not report spatial distribution. Mass spectrometry imaging (MSI) can discriminate drug and its metabolites and endogenous compounds, while simultaneously reporting their distribution. MSI data are influencing drug development and currently used in investigational studies in areas such as compound toxicity. In in vivo studies MSI results may soon be used to support new drug regulatory applications, although clinical trial MSI data will take longer to be validated for incorporation into submissions. We review the current and future applications of MSI, focussing on applications for drug discovery and development, with examples to highlight the impact of this promising technique in early drug screening. Recent sample preparation and analysis methods that enable effective MSI, including quantitative analysis of drugs from tissue sections will be summarized and key aspects of methodological protocols to increase the effectiveness of MSI analysis for previously undetectable targets addressed. These examples highlight how MSI has become a powerful tool in drug research and development and offers great potential in streamlining the drug discovery process.
Collapse
Affiliation(s)
- D F Cobice
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - R J A Goodwin
- Drug Metabolism and Distribution, Mass Spectrometry Imaging, AstraZeneca R&D, Macclesfield, UK
| | - P E Andren
- Biomolecular Imaging and Proteomics, National Center for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - A Nilsson
- Biomolecular Imaging and Proteomics, National Center for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - C L Mackay
- SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - R Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Intratumor heterogeneity and its impact on drug distribution and sensitivity. Clin Pharmacol Ther 2014; 96:224-38. [PMID: 24827540 DOI: 10.1038/clpt.2014.105] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/07/2014] [Indexed: 01/04/2023]
Abstract
We provide an overview of the available information on the distribution of chemotherapeutics in human tumors, highlighting the progress made to assess the heterogeneity of drug concentrations in relation to the complex neoplastic tissue using novel analytical methods, e.g., mass spectrometry imaging. The increase in interstitial fluid pressure due to abnormal vascularization and stiffness of tumor stroma explains the variable and heterogeneous drug concentrations. Therapeutic strategies to enhance tumor drug distribution, thus possibly increasing efficacy, are discussed.
Collapse
|
13
|
Gao Y, Shao J, Jiang Z, Chen J, Gu S, Yu S, Zheng K, Jia L. Drug enterohepatic circulation and disposition: constituents of systems pharmacokinetics. Drug Discov Today 2014; 19:326-40. [DOI: 10.1016/j.drudis.2013.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/30/2013] [Accepted: 11/22/2013] [Indexed: 01/06/2023]
|