1
|
Song BL, Wang JQ, Zhang GX, Yi NB, Zhang YJ, Zhou L, Guan YH, Zhang XH, Zheng WF, Qiao ZY, Wang H. A Coupling-Induced Assembly Strategy for Constructing Artificial Shell on Mitochondria in Living Cells. Angew Chem Int Ed Engl 2024; 63:e202411725. [PMID: 39045805 DOI: 10.1002/anie.202411725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
The strategy of in vivo self-assembly has been developed for improved enrichment and long-term retention of anticancer drug in tumor tissues. However, most self-assemblies with non-covalent bonding interactions are susceptible to complex physiological environments, leading to weak stability and loss of biological function. Here, we develop a coupling-induced assembly (CIA) strategy to generate covalently crosslinked nanofibers, which is applied for in situ constructing artificial shell on mitochondria. The oxidation-responsive peptide-porphyrin conjugate P1 is synthesized, which self-assemble into nanoparticles. Under the oxidative microenvironment of mitochondria, the coupling of thiols in P1 causes the formation of dimers, which is further ordered and stacked into crosslinked nanofibers. As a result, the artificial shell is constructed on the mitochondria efficiently through multivalent cooperative interactions due to the increased binding sites. Under ultrasound (US) irradiation, the porphyrin molecules in the shell produce a large amount of reactive oxygen species (ROS) that act on the adjacent mitochondrial membrane, exhibiting ~2-fold higher antitumor activity than nanoparticles in vitro and in vivo. Therefore, the mitochondria-targeted CIA strategy provides a novel perspective on improved sonodynamic therapy (SDT) and shows potential applications in antitumor therapies.
Collapse
Affiliation(s)
- Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jia-Qi Wang
- Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin, 150001, China
| | - Guang-Xu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ning-Bo Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ying-Jin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ying-Hua Guan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wen-Fu Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
2
|
Guerin N, Childs H, Zhou P, Donald BR. DexDesign: A new OSPREY-based algorithm for designing de novo D-peptide inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579944. [PMID: 38405797 PMCID: PMC10888900 DOI: 10.1101/2024.02.12.579944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
With over 270 unique occurrences in the human genome, peptide-recognizing PDZ domains play a central role in modulating polarization, signaling, and trafficking pathways. Mutations in PDZ domains lead to diseases such as cancer and cystic fibrosis, making PDZ domains attractive targets for therapeutic intervention. D-peptide inhibitors offer unique advantages as therapeutics, including increased metabolic stability and low immunogenicity. Here, we introduce DexDesign, a novel OSPREY-based algorithm for computationally designing de novo D-peptide inhibitors. DexDesign leverages three novel techniques that are broadly applicable to computational protein design: the Minimum Flexible Set, K*-based Mutational Scan, and Inverse Alanine Scan, which enable exponential reductions in the size of the peptide sequence search space. We apply these techniques and DexDesign to generate novel D-peptide inhibitors of two biomedically important PDZ domain targets: CAL and MAST2. We introduce a new framework for analyzing de novo peptides-evaluation along a replication/restitution axis-and apply it to the DexDesign-generated D-peptides. Notably, the peptides we generated are predicted to bind their targets tighter than their targets' endogenous ligands, validating the peptides' potential as lead therapeutic candidates. We provide an implementation of DexDesign in the free and open source computational protein design software OSPREY.
Collapse
|
3
|
Song N, Sun Z, Wang B, Liu X, Hu B, Chen N, Zhang S, Yu Z. Suicide gene delivery by morphology-adaptable enantiomeric peptide assemblies for combined ovarian cancer therapy. Acta Biomater 2024; 175:250-261. [PMID: 38122884 DOI: 10.1016/j.actbio.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Suicide gene therapy is a promising therapeutic model for ovarian cancer (OC), while suffering from poor gene delivery and limited therapeutic efficacy. To address this concern, here we reported the GSH-responsive morphology-transformable enantiomeric peptide assemblies as delivering vehicles for suicide genes and co-delivery of paclitaxel (PTX). Connecting a lipid-like amphiphile and a hydrophilic arginine segment through disulfide bonds led to the enantiomeric peptides. The enantiomeric peptide assemblies are able to simultaneously uptake plasmid DNA (pDNA) and PTX based on electrostatic and hydrophobic interactions. The resulting co-assemblies underwent GSH-responsive disulfide cleavage and thereby promoting their assembly from nanoparticles to nanofibers, leading to the co-release of pDNA and PTX. Cellular and animal studies confirmed the co-delivery of pDNA and PTX into OC cells and the cell apoptosis by the enantiomeric peptides. In addition, in vitro and in vivo experiments supported the advanced uptake and cytotoxicity for L-type peptide vehicles by OC cells, and their great potential for OC-imaging, growth-inhibition and apoptosis-induction compared to D-counterpart. Our results demonstrate that the GSH-responsive morphology-transformable chiral peptide assemblies accurately and simultaneously release suicide genes and chemodrugs at tumor sites, thus providing a new strategy for the development of delivering vehicles for suicide gene and establishment of new therapeutic models for ovarian cancer. STATEMENT OF SIGNIFICANCE: Appropriate delivery carriers are essential for the clinical translation of cancer gene therapy, including the emerging suicide gene therapy. By combining the advantages of morphological transformable vehicles with the chirality peptides towards their bioactivity, we developed the GSH-responsive morphology-transformable enantiomeric peptide assemblies as delivering vehicles for suicide genes and co-delivery of paclitaxel. The GSH-responsive assembly of the enantiomeric peptides allows for precise release of plasmid DNA and paclitaxel in cancer cells, and promotes the formation of nanofibrils that facilitate gene entering nuclei for transfection. The enantiomeric peptide-based vehicles show the chirality-dependent capability for inducing cell apoptosis and inhibiting tumor growth. Our findings demonstrate a new strategy for developing therapeutic models for ovarian cancer.
Collapse
Affiliation(s)
- Na Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China; Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, China
| | - Zhe Sun
- School of Life Sciences, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Bo Wang
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Liu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Binbin Hu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ninglin Chen
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China; The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410000, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zhilin Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
4
|
Guerin N, Childs H, Zhou P, Donald BR. DexDesign: an OSPREY-based algorithm for designing de novo D-peptide inhibitors. Protein Eng Des Sel 2024; 37:gzae007. [PMID: 38757573 PMCID: PMC11099876 DOI: 10.1093/protein/gzae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
With over 270 unique occurrences in the human genome, peptide-recognizing PDZ domains play a central role in modulating polarization, signaling, and trafficking pathways. Mutations in PDZ domains lead to diseases such as cancer and cystic fibrosis, making PDZ domains attractive targets for therapeutic intervention. D-peptide inhibitors offer unique advantages as therapeutics, including increased metabolic stability and low immunogenicity. Here, we introduce DexDesign, a novel OSPREY-based algorithm for computationally designing de novo D-peptide inhibitors. DexDesign leverages three novel techniques that are broadly applicable to computational protein design: the Minimum Flexible Set, K*-based Mutational Scan, and Inverse Alanine Scan. We apply these techniques and DexDesign to generate novel D-peptide inhibitors of two biomedically important PDZ domain targets: CAL and MAST2. We introduce a framework for analyzing de novo peptides-evaluation along a replication/restitution axis-and apply it to the DexDesign-generated D-peptides. Notably, the peptides we generated are predicted to bind their targets tighter than their targets' endogenous ligands, validating the peptides' potential as lead inhibitors. We also provide an implementation of DexDesign in the free and open source computational protein design software OSPREY.
Collapse
Affiliation(s)
- Nathan Guerin
- Department of Computer Science, Duke University, 308 Research Drive, Durham, NC 27708, United States
| | - Henry Childs
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, United States
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 22710, United States
| | - Bruce R Donald
- Department of Computer Science, Duke University, 308 Research Drive, Durham, NC 27708, United States
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, United States
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 22710, United States
- Department of Mathematics, Duke University, 120 Science Drive, Durham, NC 27708, United States
| |
Collapse
|
5
|
Guo RC, Wang N, Wang W, Zhang Z, Luo W, Wang Y, Du H, Xu Y, Li G, Yu Z. Artificial Peptide-Protein Necrosomes Promote Cell Death. Angew Chem Int Ed Engl 2023; 62:e202314578. [PMID: 37870078 DOI: 10.1002/anie.202314578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
The presence of disordered region or large interacting surface within proteins significantly challenges the development of targeted drugs, commonly known as the "undruggable" issue. Here, we report a heterogeneous peptide-protein assembling strategy to selectively phosphorylate proteins, thereby activating the necroptotic signaling pathway and promoting cell necroptosis. Inspired by the structures of natural necrosomes formed by receptor interacting protein kinases (RIPK) 1 and 3, the kinase-biomimetic peptides are rationally designed by incorporating natural or D -amino acids, or connecting D -amino acids in a retro-inverso (DRI) manner, leading to one RIPK3-biomimetic peptide PR3 and three RIPK1-biomimetic peptides. Individual peptides undergo self-assembly into nanofibrils, whereas mixing RIPK1-biomimetic peptides with PR3 accelerates and enhances assembly of PR3. In particular, RIPK1-biomimetic peptide DRI-PR1 exhibits reliable binding affinity with protein RIPK3, resulting in specific cytotoxicity to colon cancer cells that overexpress RIPK3. Mechanistic studies reveal the increased phosphorylation of RIPK3 induced by RIPK1-biomimetic peptides, elucidating the activation of the necroptotic signaling pathway responsible for cell death without an obvious increase in secretion of inflammatory cytokines. Our findings highlight the potential of peptide-protein hybrid aggregation as a promising approach to address the "undruggable" issue and provide alternative strategies for overcoming cancer resistance in the future.
Collapse
Affiliation(s)
- Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ning Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weishu Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wendi Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yushi Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haiqin Du
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Gongyu Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Ding Y, Liu G, Liu S, Li X, Xu K, Liu P, Cai K. A Multifunction Hydrogel-Coating Engineered Implant for Rescuing Biofilm Infection and Boosting Osseointegration by Macrophage-Related Immunomodulation. Adv Healthc Mater 2023; 12:e2300722. [PMID: 37140383 DOI: 10.1002/adhm.202300722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Indexed: 05/05/2023]
Abstract
Innovative methodologies combined with scavenging reactive oxygen species (ROS), alleviating oxidative stress damage and promoting macrophage polarization to M2 phenotype may be ideal for remodeling implant-infected bone tissue. Herein, a functionalization strategy for doping Tannic acid-d-tyrosine nanoparticles with photothermal profile into the hydrogel coating composed of konjac gum and gelatin on the surface of titanium (Ti) substrate is accurately constructed. The prepared hydrogel coating exhibits excellent properties of eliminating biofilm and killing planktonic bacteria, which is based on increasing susceptibility to bacteria by the photothermal effect, biofilm-dissipation effect of D-tyrosine, as well as the bactericidal effect of tannic acid. In addition, the modified Ti substrate has effectively alleviated proinflammatory responses by scavenging intracellular excessive ROS and guiding macrophages polarization toward M2. More interesting, conditioned medium from macrophage indicates that paracrine is conducive to osteogenic proliferation and differentiation of mesenchymal stem cells. Results from rat model of femur infection in vivo demonstrate that the modified Ti implant significantly eliminates the residual bacteria, relieves inflammation, mediates macrophage polarization, and accelerates osseointegration. Altogether, this study exhibits a new perspective for the development of advanced functional implant with great application potential in bone tissue regeneration and repair.
Collapse
Affiliation(s)
- Yao Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Shaopeng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
7
|
Ma G, Wang K, Pang X, Xu S, Gao Y, Liang Y, Yang J, Zhang X, Sun X, Dong J. Self-assembled nanomaterials for ferroptosis-based cancer theranostics. Biomater Sci 2023; 11:1962-1980. [PMID: 36727583 DOI: 10.1039/d2bm02000a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most ferroptosis nanomedicines based on organic or inorganic carriers have difficulties in further clinical translation due to their serious side effects and complicated preparation. Self-assembled nanomedicines can reduce the biological toxicity caused by additional chemical modifications and excipients, offering better biocompatibility and safety. Ferroptosis therapy is an iron-associated programmed cell death dependent on lipid peroxidation with efficient tumor selectivity and biosafety. Therefore, the application of self-assembled nanomedicines with good biosafety in the ferroptosis treatment of tumors has attracted extensive attention. In this review, recent advances in the field of ferroptosis-based self-assembled nanomaterials for cancer therapy are presented, with emphasis on how these nanomaterial components interact and their distinct mechanisms for inducing ferroptosis in tumor cells, including iron metabolism, amino acid metabolism and CoQ/FSP1, as well as their respective advantages and challenges. This review would therefore help the spectrum of advanced and novice researchers interested in this area to quickly zoom in on the essential information and glean some thought-provoking ideas to advance this subfield in cancer nanomedicine.
Collapse
Affiliation(s)
- Guiqi Ma
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271016, China.
| | - Kaiqi Wang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271016, China.
| | - Xinlong Pang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Shanbin Xu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yuan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yubo Liang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Jiaxin Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Xinyu Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Xiao Sun
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271016, China. .,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271016, China.
| |
Collapse
|
8
|
Discovery of endosomalytic cell-penetrating peptides based on bacterial membrane-targeting sequences. Bioorg Chem 2023; 134:106424. [PMID: 36868126 DOI: 10.1016/j.bioorg.2023.106424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Cell-penetrating peptides (CPPs) are prominent scaffolds for drug developments and related research, particularly the endocytic delivery of biomacromolecules. Effective cargo release from endosomes prior to lysosomal degradation is a crucial step, where the rational design and selection of CPPs remains a challenge and calls for deeper mechanistic understandings. Here, we have investigated a strategy of designing CPPs that selectively disrupt endosomal membranes based on bacterial membrane targeting sequences (MTSs). Six synthesized MTS peptides all exhibit cell-penetrating abilities, among which two d-peptides (d-EcMTS and d-TpMTS) are able to escape from endosomes and localize at ER after entering the cell. The utility of this strategy has been demonstrated by the intracellular delivery of green fluorescent protein (GFP). Together, these results suggest that the large pool of bacterial MTSs may be a rich source for the development of novel CPPs.
Collapse
|
9
|
Wu Y, Xia T, Ma X, Lei L, Du L, Xu X, Liu X, Shi Y, Li X, Lin D. Autocatalytic strategy for tunning drug release from peptide-drug supramolecular hydrogel. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
10
|
Wang Y, Wang D, Wu C, Wang B, He S, Wang H, Liang G, Zhang Y. MMP 9-instructed assembly of bFGF nanofibers in ischemic myocardium to promote heart repair. Theranostics 2022; 12:7237-7249. [PMID: 36438504 PMCID: PMC9691345 DOI: 10.7150/thno.77345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Background: The only effective treatment for myocardial infarction (MI) is the timely restoration of coronary blood flow in the infarcted area, but further reperfusion exacerbates myocardial injury and leads to distal coronary no-reflow, which affects patient prognosis. Angiogenesis could be an important therapeutic strategy for re-establishing the blood supply to save the ischemic myocardium after MI. Basic fibroblast growth factor (bFGF) has been shown to promote angiogenesis. However, direct intravenous administration of bFGF is not a viable option given its poor half-life in vivo. Methods: Herein, we developed a peptide Lys-Lys-Pro-Leu-Gly-Leu-Ala-Gly-Phe-Phe (K2) to encapsulate bFGF to form bFGF@K2 micelle and proposed an enzyme-instructed self-assembly (EISA) strategy to deliver and slowly release bFGF in the ischemic myocardium. Results: The bFGF@K2 micelle exerted a stronger cardioprotective effect than free bFGF in a rat model of myocardial ischemia-reperfusion (MI/R). In vitro results revealed that the bFGF@K2 micelle could be cleaved by matrix metallopeptidase 9 (MMP-9) to yield bFGF@Nanofiber through amphipathic changes. In vivo experiments indicated that intravenous administration of bFGF@K2 micelle could lead to their restructuring into bFGF@Nanofiber and long term retention of bFGF in the ischemic myocardium of rat due to high expression of MMP-9 and assembly-induced retention (AIR) effect, respectively. Twenty-eight days after MI/R model establishment, bFGF@K2 micelle treatment significantly reduced fibrosis and improved cardiac function of the rats. Conclusion: We predict that our strategy could be applied in clinic for MI treatment in the future.
Collapse
Affiliation(s)
- Yaguang Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Di Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Chao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Bin Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Shufang He
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Hua Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics School of Biological Sciences and Medical Engineering Southeast University, 2 Sipailou Road, Nanjing 210096, PR China
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| |
Collapse
|
11
|
Chen Y, Wang Z, Wang X, Su M, Xu F, Yang L, Jia L, Zhang Z. Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. Int J Nanomedicine 2022; 17:4227-4259. [PMID: 36134205 PMCID: PMC9482956 DOI: 10.2147/ijn.s377149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023] Open
Abstract
10-Hydroxycamptothecin (HCPT) is a natural plant alkaloid from Camptotheca that shows potent antitumor activity by targeting intracellular topoisomerase I. However, factors such as instability of the lactone ring and insolubility in water have limited the clinical application of this drug. In recent years, unprecedented advances in biomedical nanotechnology have facilitated the development of nano drug delivery systems. It has been found that nanomedicine can significantly improve the stability and water solubility of HCPT. NanoMedicines with different diagnostic and therapeutic functions have been developed to significantly improve the anticancer effect of HCPT. In this paper, we collected reports on HCPT nanomedicines against tumors in the past decade. Based on current research advances, we dissected the current status and limitations of HCPT nanomedicines development and looked forward to future research directions.
Collapse
Affiliation(s)
- Yukun Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhenzhi Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Xiaofan Wang
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Mingliang Su
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Fan Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lian Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| |
Collapse
|
12
|
Liu N, Wu S, Tian X, Li X. Fabrication of injectable hydrogels from an anticancer peptide for local therapeutic delivery and synergistic photothermal-chemotherapy. J Mater Chem B 2022; 10:5165-5173. [PMID: 35734944 DOI: 10.1039/d2tb00917j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The susceptibility of anticancer peptides to proteolytic degradation is often considered as a major weakness that limits systemic therapeutic applications. However, localized delivery of anticancer peptides via injectable hydrogels is expected to improve drug efficacy and reduce systemic toxicity. Herein, an injectable hydrogel with drug releasing properties, NIR responsiveness and pH sensitivity was developed from an anticancer peptide (KL), Fe3+ ions and protocatechualdehyde via dynamic and reversible interactions. Benefiting from the formation of Fe(III)-catechol complexes between Fe3+ ions and protocatechualdehyde within gel networks, the obtained hydrogel exhibited intrinsic NIR absorption properties for photothermal ablation of tumor cells, and remote light control of drug release. Besides, the pH-labile imine bonds between KL and protocatechualdehyde endowed the injectable gel with pH sensitivity for sustained release of KL under a mildly acidic environment, inducing membrane destabilization and facilitating the cell uptake of DOX for combinational chemotherapy. Both in vitro and in vivo experiments revealed that the injectable hydrogel exhibited a synergistic therapeutic effect on inhibiting tumor growth via combinational photothermal-chemotherapy. Therefore, this work provides a promising attempt to develop a therapeutic hydrogel from an anticancer peptide, which could work as a localized drug delivery platform for synergistic photothermal-chemotherapy.
Collapse
Affiliation(s)
- Na Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shunjie Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
13
|
Ghosh T, Wang S, Kashyap D, Jadhav RG, Rit T, Jha HC, Cousins BG, Das AK. Self-assembled benzoselenadiazole-capped tripeptide hydrogels with inherent in vitro anti-cancer and anti-inflammatory activity. Chem Commun (Camb) 2022; 58:7534-7537. [PMID: 35703336 DOI: 10.1039/d2cc01160c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled benzoselenadiazole (BSe)-capped tripeptide based nanofibrillar hydrogels have been developed with inherent anticancer and anti-inflammatory activity.
Collapse
Affiliation(s)
- Tapas Ghosh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Shu Wang
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Rohit G Jadhav
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Tanmay Rit
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Brian G Cousins
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
14
|
Zhou Y, Zou Y, Yang M, Mei S, Liu X, Han H, Zhang CD, Niu MM. Highly Potent, Selective, Biostable, and Cell-Permeable Cyclic d-Peptide for Dual-Targeting Therapy of Lung Cancer. J Am Chem Soc 2022; 144:7117-7128. [PMID: 35417174 DOI: 10.1021/jacs.1c12075] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of peptide drugs in cancer therapy is impeded by their poor biostability and weak cell permeability. Therefore, it is imperative to find biostable and cell-permeable peptide drugs for cancer treatment. Here, we identified a potent, selective, biostable, and cell-permeable cyclic d-peptide, NKTP-3, that targets NRP1 and KRASG12D using structure-based virtual screening. NKTP-3 exhibited strong biostability and cellular uptake ability. Importantly, it significantly inhibited the growth of A427 cells with the KRASG12D mutation. Moreover, NKTP-3 showed strong antitumor activity against A427 cell-derived xenograft and KRASG12D-driven primary lung cancer models without obvious toxicity. This study demonstrates that the dual NRP1/KRASG12D-targeting cyclic d-peptide NKTP-3 may be used as a potential chemotherapeutic agent for KRASG12D-driven lung cancer treatment.
Collapse
Affiliation(s)
- Yunjiang Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yunting Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mei Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuang Mei
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaohao Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huiyun Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chang-Dong Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
15
|
Bellotto O, Semeraro S, Bandiera A, Tramer F, Pavan N, Marchesan S. Polymer Conjugates of Antimicrobial Peptides (AMPs) with d-Amino Acids (d-aa): State of the Art and Future Opportunities. Pharmaceutics 2022; 14:pharmaceutics14020446. [PMID: 35214178 PMCID: PMC8879212 DOI: 10.3390/pharmaceutics14020446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, antimicrobial peptides (AMPs) have enjoyed a renaissance, as the world is currently facing an emergency in terms of severe infections that evade antibiotics’ treatment. This is due to the increasing emergence and spread of resistance mechanisms. Covalent conjugation with polymers is an interesting strategy to modulate the pharmacokinetic profile of AMPs and enhance their biocompatibility profile. It can also be an effective approach to develop active coatings for medical implants and devices, and to avoid biofilm formation on their surface. In this concise review, we focus on the last 5 years’ progress in this area, pertaining in particular to AMPs that contain d-amino acids, as well as their role, and the advantages that may arise from their introduction into AMPs.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (S.S.)
| | - Sabrina Semeraro
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (S.S.)
| | - Antonella Bandiera
- Life Sciences Department, University of Trieste, 34127 Trieste, Italy; (A.B.); (F.T.)
| | - Federica Tramer
- Life Sciences Department, University of Trieste, 34127 Trieste, Italy; (A.B.); (F.T.)
| | - Nicola Pavan
- Medical, Surgical and Health Sciences Department, University of Trieste, 34127 Trieste, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (S.S.)
- Correspondence:
| |
Collapse
|
16
|
Zhu X, Duan R, Chan SY, Han L, Liu H, Sun B. Structural and photoactive properties of self-assembled peptide-based nanostructures and their optical bioapplication in food analysis. J Adv Res 2022; 43:27-44. [PMID: 36585113 PMCID: PMC9811376 DOI: 10.1016/j.jare.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Food processing plays an important role in the modern industry because food quality and security directly affect human health, life safety, and social and economic development. Accurate, efficient, and sensitive detection technology is the basis for ensuring food quality and security. Optosensor-based technology with the advantage of fast and visual real-time detection can be used to detect pesticides, metal ions, antibiotics, and nutrients in food. As excellent optical centres, self-assembled peptide-based nanostructures possess attractive advantages, such as simple preparation methods, controllable morphology, tunable functionality, and inherent biocompatibility. AIM OF REVIEW Self-assembled peptide nanostructures with good fabrication yield, stability, dispersity in a complex sample matrix, biocompatibility, and environmental friendliness are ideal development goals in the future. Owing to its flexible and unique optical properties, some short peptide self-assemblies can possibly be used to achieve the purpose of rapid and sensitive detection of composition in food, agriculture, and the environment, expanding the understanding and application of peptide-based optics in analytical chemistry. KEY SCIENTIFIC CONCEPT OF REVIEW The self-assembly process of peptides is driven by noncovalent interactions, including hydrogen bonding, electrostatic interactions, hydrophobic interactions, and π-π stacking, which are the key factors for obtaining stable self-assembled peptide nanostructures with peptides serving as assembly units. Controllable morphology of self-assembled peptide nanostructures can be achieved through adjustment in the type, concentration, and pH of organic solvents and peptides. The highly ordered nanostructures formed by the self-assembly of peptides have been proven to be novel biological structures and can be used for the construction of optosensing platforms in biological or other systems. Optosensing platforms make use of signal changes, including optical signals and electrical signals caused by specific reactions between analytes and active substances, to determine the content or concentration of an analyte.
Collapse
Affiliation(s)
- Xuecheng Zhu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Ruixue Duan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Luxuan Han
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China,Corresponding author.
| | - Baoguo Sun
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
17
|
Zhang Y, Yu Y, Gao J. Supramolecular Nanomedicines of In-Situ Self-Assembling Peptides. Front Chem 2022; 10:815551. [PMID: 35186883 PMCID: PMC8854645 DOI: 10.3389/fchem.2022.815551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nanomedicines provide distinct clinical advantages over traditional monomolecular therapeutic and diagnostic agents. Supramolecular nanomedicines made from in-situ self-assembling peptides have emerged as a promising strategy in designing and fabricating nanomedicines. In-situ self-assambly (SA) allows the combination of nanomedicines approach with prodrug approach, which exhibited both advantages of these strategies while addressed the problems of both and thus receiving more and more research attention. In this review, we summarized recently designed supramolecular nanomedicines of in-situ SA peptides in the manner of applications and design principles, and the interaction between the materials and biological environments was also discussed.
Collapse
|
18
|
Yang Y, Zhao Q, Peng Z, Zhou Y, Niu MM, Chen L. A GSH/CB Dual-Controlled Self-Assembled Nanomedicine for High-Efficacy Doxorubicin-Resistant Breast Cancer Therapy. Front Pharmacol 2022; 12:811724. [PMID: 35095524 PMCID: PMC8795745 DOI: 10.3389/fphar.2021.811724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance is a major therapeutic obstacle in the treatment of breast cancer. Therefore, how to overcome chemoresistance is a problem to be solved. Here, a glutathione (GSH)/cathepsin B (CB) dual-controlled nanomedicine formed by cyclic disulfide-bridged peptide (cyclic-1a) as a potent anticancer agent is reported. Under the sequential treatment of GSH and CB, cyclic-1a can efficiently self-assemble into nanofibers. In vitro studies show that cyclic-1a promotes the apoptosis of MCF-7/DOX cells by inducing the cleavages of caspase-3 and PARP. In vivo studies confirm that cyclic-1a significantly inhibits the progression of MCF-7/DOX cells-derived xenograft in nude mice, with no obvious adverse reactions. This study provides a paradigm of GSH/CB dual-controlled nanomedicine for high-efficacy and low-toxic DOX-resistant breast cancer therapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China,*Correspondence: Yang Yang, ; Lin Chen,
| | - Quanfeng Zhao
- Department of Pharmacy, Southwest Hospital, First Affiliated Hospital to TMMU, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhe Peng
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yunjiang Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lin Chen
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China,Department of Pharmacology, Chongqing Medical University, Chongqing, China,*Correspondence: Yang Yang, ; Lin Chen,
| |
Collapse
|
19
|
Mehata AK, Muthu MS. Development of Supramolecules in the Field of Nanomedicines. PHARMACEUTICAL APPLICATIONS OF SUPRAMOLECULES 2022:211-239. [DOI: 10.1007/978-3-031-21900-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
20
|
The application progress of peptides in drug delivery systems in the past decade. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Zhao C, Chen H, Wang F, Zhang X. Amphiphilic self-assembly peptides: Rational strategies to design and delivery for drugs in biomedical applications. Colloids Surf B Biointerfaces 2021; 208:112040. [PMID: 34425532 DOI: 10.1016/j.colsurfb.2021.112040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023]
Abstract
Amphiphilic self-assembling peptides are widely used in tissue and cell engineering, antimicrobials, drug-delivery systems and other biomedical fields due to their good biocompatibility, functionality, flexibility of design and synthesis, and tremendous potential as delivery carriers for drugs. Currently, the design and study of amphipathic peptides by a bottom-up method to develop new biomedical materials have become a hot topic. However, defined rules have not been established for the design and development of self-assembled peptides. Therefore, the focus of this review is to summarize and provide several rational strategies for the design and study of amphiphilic self-assembly peptides. In addition, this paper also describes the types and general self-assembling mechanism of amphipathic peptides, and outlines their applications in the delivery of hydrophobic drugs, nucleic acid drugs, peptide drugs and vaccines. Amphiphilic self-assembled peptides are expected to exploit new functional materials for drug delivery and other applications.
Collapse
Affiliation(s)
- Chunqian Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Hongyuan Chen
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, People's Republic of China.
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
22
|
Zheng D, Liu J, Ding Y, Xie L, Zhang Y, Chen Y, Peng R, Cai M, Wang L, Wang H, Gao J, Yang Z. Tandem molecular self-assembly for selective lung cancer therapy with an increase in efficiency by two orders of magnitude. NANOSCALE 2021; 13:10891-10897. [PMID: 34125124 DOI: 10.1039/d1nr01174j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In situ self-assembly of prodrug molecules into nanomedicine can elevate the therapeutic efficacy of anticancer medications by enhancing the targeting and enrichment of anticancer drugs at tumor sites. However, the disassembly and biodegradation of nanomedicine after enrichment prevents the further improvement of the efficiency, and avoiding such disassembly and biodegradation remains a challenge. Herein, we rationally designed a tandem molecular self-assembling prodrug that could selectively improve the therapeutic efficacy of HCPT against lung cancer by two orders of magnitude. The tandem molecular self-assembly utilized an elevated level of alkaline phosphatase and reductase in lung cancer cells. The prodrug first self-assembled into nanofibers by alkaline phosphatase catalysis and was internalized more efficiently by lung cancer cells than free HCPT. The resulting nanofiber was next catalyzed by intracellular reductase to form a more hydrophobic nanofiber that prevented the disassembly and biodegradation, which further significantly improved the efficacy of HCPT against lung cancer both in vitro and in vivo.
Collapse
Affiliation(s)
- Debin Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Jingfei Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Yinghao Ding
- College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Limin Xie
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Yingying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Yaoxia Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Rong Peng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Miao Cai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Ling Wang
- College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, P. R. China.
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
23
|
Lin S, Sun H, Cornel EJ, Jiang JH, Zhu YQ, Fan Z, Du JZ. Denting Nanospheres with a Short Peptide. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2599-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Delfi M, Sartorius R, Ashrafizadeh M, Sharifi E, Zhang Y, De Berardinis P, Zarrabi A, Varma RS, Tay FR, Smith BR, Makvandi P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. NANO TODAY 2021; 38:101119. [PMID: 34267794 PMCID: PMC8276870 DOI: 10.1016/j.nantod.2021.101119] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Self-assembled peptides and proteins possess tremendous potential as targeted drug delivery systems and key applications of these well-defined nanostructures reside in anti-cancer therapy. Peptides and proteins can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions such as pH, temperature, ionic strength, as well as host and guest molecular interactions; their countless benefits include good biocompatibility and high loading capacity for hydrophobic and hydrophilic drugs. These self-assembled nanomaterials can be adorned with functional moieties to specifically target tumor cells. Stimuli-responsive features can also be incorporated with respect to the tumor microenvironment. This review sheds light on the growing interest in self-assembled peptides and proteins and their burgeoning applications in cancer treatment and immunotherapy.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, Naples 80126, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736, Hamadan, Iran
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
| | - Yapei Zhang
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA, 94305, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
25
|
|
26
|
Florio D, Di Natale C, Scognamiglio PL, Leone M, La Manna S, Di Somma S, Netti PA, Malfitano AM, Marasco D. Self-assembly of bio-inspired heterochiral peptides. Bioorg Chem 2021; 114:105047. [PMID: 34098256 DOI: 10.1016/j.bioorg.2021.105047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Peptide hydrogels, deriving from natural protein fragments, present unique advantages as compatibility and low cost of production that allow their wide application in different fields as wound healing, cell delivery and tissue regeneration. To engineer new biomaterials, the change of the chirality of single amino acids demonstrated a powerful approach to modulate the self-assembly mechanism. Recently we unveiled that a small stretch spanning residues 268-273 in the C-terminal domain (CTD) of Nucleophosmin 1 (NPM1) is an amyloid sequence. Herein, we performed a systematic D-scan of this sequence and analyzed the structural properties of obtained peptides. The conformational and kinetic features of self-aggregates and the morphologies of derived microstructures were investigated by means of different biophysical techniques, as well as the compatibility of hydrogels was evaluated in HeLa cells. All the investigated hexapeptides formed hydrogels even if they exhibited different conformational intermediates during aggregation, and they structural featured are finely tuned by introduced chiralities.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Pasqualina Liana Scognamiglio
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging - CNR, 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Sarah Di Somma
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Italy.
| |
Collapse
|
27
|
Zhou Y, Chen Y, Tan Y, Hu R, Niu M. An NRP1/MDM2-Targeted D-Peptide Supramolecular Nanomedicine for High-Efficacy and Low-Toxic Liver Cancer Therapy. Adv Healthc Mater 2021; 10:e2002197. [PMID: 33690977 DOI: 10.1002/adhm.202002197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/31/2021] [Indexed: 01/15/2023]
Abstract
Supramolecular nanomedicines based on self-assembly of D-peptides have been of great interest as potential candidates for cancer therapy. Neuropilin-1 (NRP1) and mouse double minute 2 (MDM2) have been considered as the anticancer targets because of their overexpression in cancers. However, NRP1/MDM2-targeted D-peptide supramolecular nanomedicines remain unreported. Here, a potent anticancer D-peptide supramolecular nanomedicine targeting NRP1 and MDM2, termed as NMTP-5, is identified by using structure-based virtual screening techniques. NMTP-5 exhibits good biostability and strong cellular uptake performance. Moreover, NMTP-5 displays strong anticancer activity to SK-Hep-1 cells in vitro and in vivo, with no apparent host toxicity. This work demonstrates that NMTP-5 can be used as a potential chemotherapeutic agent for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yunjiang Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Yaxin Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Yingying Tan
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Rong Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Miao‐Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
28
|
Mello LR, Aguiar RB, Yamada RY, Moraes JZ, Hamley IW, Alves WA, Reza M, Ruokolainen J, Silva ER. Amphipathic design dictates self-assembly, cytotoxicity and cell uptake of arginine-rich surfactant-like peptides. J Mater Chem B 2021; 8:2495-2507. [PMID: 32108843 DOI: 10.1039/c9tb02219h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilicity is the most critical parameter in the self-assembly of surfactant-like peptides (SLPs), regulating the way by which hydrophobic attraction holds peptides together. Its effects go beyond supramolecular assembly and may also trigger different cell responses of bioactive peptide-based nanostructures. Herein, we investigate the self-assembly and cellular effects of nanostructures based on isomeric SLPs composed by arginine (R) and phenylalanine (F). Two amphipathic designs were studied: a diblock construct F4R4 and its bolaamphiphile analog R2F4R2. A strong sequence-dependent polymorphism emerges with appearance of globules and vesicle-like assemblies, or flat nanotapes and cylindrical micelles. The diblock construct possesses good cell penetrating capabilities and effectiveness to kill SK-MEL-28 melanoma tumor cells, in contrast to reduced intracellular uptake and low cytotoxicity exhibited by the bolaamphiphilic form. Our findings demonstrate that amphipathic design is a relevant variable for self-assembling SLPs to modulate different cellular responses and may assist in optimizing the production of nanostructures based on arginine-enriched sequences in cell penetrating and antimicrobial peptides.
Collapse
Affiliation(s)
- Lucas R Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil.
| | - Rodrigo B Aguiar
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil.
| | - Renata Y Yamada
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil.
| | - Jane Z Moraes
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil.
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-580, Brazil
| | - Mehedi Reza
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Emerson R Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil.
| |
Collapse
|
29
|
Sharma A, Sharma P, Roy S. Elastin-inspired supramolecular hydrogels: a multifaceted extracellular matrix protein in biomedical engineering. SOFT MATTER 2021; 17:3266-3290. [PMID: 33730140 DOI: 10.1039/d0sm02202k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The phenomenal advancement in regenerative medicines has led to the development of bioinspired materials to fabricate a biomimetic artificial extracellular matrix (ECM) to support cellular survival, proliferation, and differentiation. Researchers have diligently developed protein polymers consisting of functional sequences of amino acids evolved in nature. Nowadays, certain repetitive bioinspired polymers are treated as an alternative to synthetic polymers due to their unique properties like biodegradability, easy scale-up, biocompatibility, and non-covalent molecular associations which imparts tunable supramolecular architecture to these materials. In this direction, elastin has been identified as a potential scaffold that renders extensibility and elasticity to the tissues. Elastin-like polypeptides (ELPs) are artificial repetitive polymers that exhibit lower critical solution temperature (LCST) behavior in a particular environment than synthetic polymers and hence have gained extensive interest in the fabrication of stimuli-responsive biomaterials. This review discusses in detail the unique structural aspects of the elastin and its soluble precursor, tropoelastin. Furthermore, the versatility of elastin-like peptides is discussed through numerous examples that bolster the significance of elastin in the field of regenerative medicines such as wound care, cardiac tissue engineering, ocular disorders, bone tissue regeneration, etc. Finally, the review highlights the importance of exploring short elastin-mimetic peptides to recapitulate the structural and functional aspects of elastin for advanced healthcare applications.
Collapse
Affiliation(s)
- Archita Sharma
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306, Punjab, India.
| | | | | |
Collapse
|
30
|
Chen J, Zhao Y, Yao Q, Gao Y. Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines. Biomed Mater 2021; 16:022011. [PMID: 33630754 DOI: 10.1088/1748-605x/abc2e9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptidic self-assembly provides a powerful method to build biomedical materials with integrated functions. In particular, pathological environment instructed peptidic supramolecular have gained great progress in treating various diseases. Typically, certain pathology related factors convert hydrophilic precursors to corresponding more hydrophobic motifs to assemble into supramolecular structures. Herein, we would like to review the recent progress of nanomedicines based on the development of instructed self-assembly against several specific disease models. Firstly we introduce the cancer instructed self-assembly. These assemblies have exhibited great inhibition efficacy, as well as enhanced imaging contrast, against cancer models both in vitro and in vivo. Then we discuss the infection instructed peptidic self-assembly. A number of different molecular designs have demonstrated the potential antibacterial application with satisfied efficiency for peptidic supramolecular assemblies. Further, we discuss the application of instructed peptidic self-assembly for other diseases including neurodegenerative disease and vaccine. The assemblies have succeeded in down-regulating abnormal Aβ aggregates and immunotherapy. In summary, the self-assembly precursors are typical two-component molecules with (1) a self-assembling motif and (2) a cleavable trigger responsive to the pathological environment. Upon cleavage, the self-assembly occurs selectively in pathological loci whose targeting capability is independent from active targeting. Bearing the novel targeting regime, we envision that the pathological conditions instructed peptidic self-assembly will lead a paradigm shift on biomedical materials.
Collapse
Affiliation(s)
- Jiali Chen
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan Zhao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qingxin Yao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan Gao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
31
|
Chen B, Dong X, Dong X, Wang Q, Wu M, Wu J, Lou X, Xia F, Wang W, Dai J, Wang S. Integration of Dual Targeting and Dual Therapeutic Modules Endows Self-Assembled Nanoparticles with Anti-Tumor Growth and Metastasis Functions. Int J Nanomedicine 2021; 16:1361-1376. [PMID: 33658777 PMCID: PMC7917335 DOI: 10.2147/ijn.s291285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/12/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECT High targeting and efficient cytotoxicity toward tumor cells endow NPs excellent anti-tumor activity. Herein, a peptide polymer possessing dual-targeting ability and double therapeutic activity was developed and named TGMF, which can form NPs through self-assembly. It is composed of four functional modules: 1) Active targeting peptide TMTP1 (T) deliver NPs to tumors specifically; 2) Therapeutic peptide GO-203 (G), which can significantly inhibit tumor growth by disrupting the redox balance in cells; 3) A passively targeted enzyme-responsive peptide PLGLGA (M), which can be cleaved specifically by metalloproteinase-2 (MMP-2) highly expressed in the tumor microenvironment (TME); and 4) Hexadecyl (F), which has strong hydrophobicity, can promote the self-assembly of TGMF NPs. METHODS Five modular peptide probes, namely, TGF, TMF, TGM, GMF, and TGMF were synthesized and self-assembled into NPs in solution. The characterization, enzyme reactivity, and cytotoxicity of NPs were evaluated in vitro, and the pharmacokinetics, bio-distribution, anti-tumor activity of NPs were investigated in vivo. In addition, transcriptome sequencing identified the intracellular signaling pathway-related genes involved in the anti-tumor effect of TGMF. RESULTS Upon enzyme cleavage, two types of nanostructure, NPs and nanofibers (NFs), were detected under TEM. Moreover, the cytotoxicity and anti-invasion activity of TGMF against tumor cells used were strongest among the five modular probes examined in vitro. TGMF increased reactive oxygen species (ROS) levels in cytoplasm and produced numerous NFs in extracellular interval and intracellular space. Transcriptome sequencing revealed that TGMF caused 446 genes' down-regulation and 270 genes' up-regulation in HeLa cells. In vivo, TGMF has a good anti-tumor effect, effectively prolonging the survival time of HeLa-tumor-bearing mice without systemic side effects. CONCLUSION Integration of multiple functional modules into NPs could be a promising strategy for the future of nanomedicine design towards tumor treatment.
Collapse
Affiliation(s)
- Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiaoqi Dong
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Quan Wang
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jun Wu
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
32
|
Deng Y, Zhan W, Liang G. Intracellular Self-Assembly of Peptide Conjugates for Tumor Imaging and Therapy. Adv Healthc Mater 2021; 10:e2001211. [PMID: 32902191 DOI: 10.1002/adhm.202001211] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Intracellular self-assembly (ISA) is a versatile and powerful strategy for in situ constructing sophisticated and functional supramolecular nanostructures, which has been widely applied in biomedicine and biomedical engineering. Among the common building blocks for ISA, peptides have attracted increasingly attention due to their intrinsic bioactivity, biocompatibility, and biodegradability. Particularly, by conjugating functional motifs (e.g., probes or drugs) to peptides to yield the peptide conjugates, the latter show enhanced stability and efficiency, and probably new functions. In recent years, employing ISA of peptide conjugates for tumor imaging and treatment has achieved great progresses. Therefore, the recent progress of ISA of peptide conjugates is summarized in this progress report. Moreover, several examples of ISA of peptide conjugates for other important imaging or therapeutic applications are also introduced. Finally, a brief perspective on remaining challenges and potential directions for future research in this area is presented.
Collapse
Affiliation(s)
- Yu Deng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing Jiangsu 210096 China
| | - Wenjun Zhan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing Jiangsu 210096 China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing Jiangsu 210096 China
| |
Collapse
|
33
|
Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. SOFT MATTER 2020; 16:10065-10095. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this review, we have focused on the design and development of low molecular weight self-assembling peptide-based materials for various applications including cell proliferation, tissue engineering, antibacterial, antifungal, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting. The first part of the review describes about stimuli and various noncovalent interactions, which are the key components of various self-assembly processes for the construction of organized structures. Subsequently, the chemical functionalization of the peptides has been discussed, which is required for the designing of self-assembling peptide-based soft materials. Various low molecular weight self-assembling peptides have been discussed to explain the important structural features for the construction of defined functional nanostructures. Finally, we have discussed various examples of low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting applications.
Collapse
Affiliation(s)
- Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
34
|
Wang M, Wang A, Li J, Li Q, Bai S. Thermolysin-triggered short peptides self-assembly in confined space and application in cell culturing. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
36
|
He C, Wu S, Liu D, Chi C, Zhang W, Ma M, Lai L, Dong S. Glycopeptide Self-Assembly Modulated by Glycan Stereochemistry through Glycan–Aromatic Interactions. J Am Chem Soc 2020; 142:17015-17023. [DOI: 10.1021/jacs.0c06360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Shang Y, Ma C, Zhang J, Wang Z, Ren C, Luo X, Peng R, Liu J, Mao J, Shi Y, Fan G. Bifunctional supramolecular nanofiber inhibits atherosclerosis by enhancing plaque stability and anti-inflammation in apoE -/- mice. Theranostics 2020; 10:10231-10244. [PMID: 32929345 PMCID: PMC7481406 DOI: 10.7150/thno.48410] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023] Open
Abstract
Background and Purpose: Atherosclerosis is vascular disease of chronic inflammation and lipid disorder, which is a major cause of coronary heart disease. Foam cell formation is key progress during the atherosclerosis development. Insulin-like growth factor (IGF)-1 is a growth hormone that plays a crucial role in growth, metabolism, and homeostasis. Previous studies have demonstrated that increase in circulating IGF-1 can reduce atherosclerotic burden. However, active IGF-1 is characterized with poor tissue retention and is at a very low level in circulation system. Therefore, supplementation of exogenous IGF-1 to restore the physiological level is a promising approach to inhibit atherosclerosis. In this study, we develop a self-assembling, anti-inflammatory drug-modified peptide derived from IGF-1 to mimic IGF-1 bioactivity and simultaneously with an anti-inflammatory property for the treatment of atherosclerosis. Methods: ApoE-/- mice were subcutaneously (s.c.) injected with the different hydrogels or natural IGF-1 protein solution per week and simultaneously fed a high-fat diet for 16 weeks. Atherosclerotic lesion formation and stability were assessed after treatment. Moreover, peritoneal macrophage and serum samples were collected to determine lipid profile and inflammatory cytokines. Concurrently, we determined the effect of bifunctional supramolecular nanofibers/hydrogel on cholesterol efflux, foam cell formation, phenotypic transformation of VSMC to macrophage-like cells, and macrophage polarization in vitro or in vivo. Results: Bifunctional supramolecular nanofibers/hydrogel for the treatment of atherosclerosis was formed by a short peptide consisting of a tetrapeptide SSSR from C-region of growth factor IGF-1, an anti-inflammatory drug naproxen (Npx), and a powerful self-assembling D-peptide DFDF. The resulting hydrogel of Npx-DFDFGSSSR (Hydrogel 1, H1) possessed both the anti-inflammatory and IGF-1 mimicking properties, and it efficiently promoted the expression of ABCA1 and ABCG1, thereby significantly reducing cholesterol accumulation in macrophages and preventing foam cell formation. Moreover, H1 markedly inhibited the transformation of vascular smooth muscle cells (VSMCs) into macrophage-like cells which also contributed to foam cell formation. In addition, H1 significantly reduced the inflammatory response in vitro and in vivo. Most importantly, the IGF-1 mimetic peptide showed comparable performance to IGF-1 in vivo and inhibited atherosclerosis by markedly reducing lesion area and enhancing plaque stability. Conclusions: Our study provides a novel supramolecular nanomaterial to inhibit pathological progress of atherosclerosis through regulating cholesterol efflux and inflammation, which may contribute to the development of a promising nanomedicine for the treatment of atherosclerosis in the clinic.
Collapse
|
38
|
Feng JP, Zhu R, Jiang F, Xie J, Gao C, Li M, Jin H, Fu D. Melittin-encapsulating peptide hydrogels for enhanced delivery of impermeable anticancer peptides. Biomater Sci 2020; 8:4559-4569. [PMID: 32672773 DOI: 10.1039/c9bm02080b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Anticancer peptides (ACPs) have gained significant attention in the past few years. Most ACPs only act toward intracellular targets. However, their low membrane penetrability often limits their anticancer efficacy. Here we developed a novel melittin-RADA28 (MR) hydrogel, composed of RADA28 and melittin, through a peptide fusion method in order to promote the membrane permeability of tumor cells with the membrane-disrupting ability of melittin. As a proof of concept, we loaded the MR hydrogel with a therapeutic peptide, KLA (KLAKLAKKLAKLAK), to show the enhanced delivery efficiency of the hydrogel. Our results demonstrated that the formed melittin-RADA28-KLA peptide (MRP) hydrogel has a nanofiber structure, sustained release profile, and attenuated hemolysis effects. Compared with free KLA, the MRP hydrogel markedly increased the cellular accumulation of KLA, produced the highest ratio of the depolarized mitochondrial membrane, and decreased cell viability in vitro. Following peritumoral injection, the MRP hydrogel treatment suppressed CT26 tumor growth by more than 85%, compared to controls. In summary, we provide a facile and efficient strategy to enhance the delivery of impermeable peptides to improve their therapeutic efficiency.
Collapse
Affiliation(s)
- Jue-Ping Feng
- Department of Oncology, Wuhan Fourth Hospital; PuAi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China.
| | - Ru Zhu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fagang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Xie
- Department of Oncology, Wuhan Fourth Hospital; PuAi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China.
| | - Chang Gao
- Department of Oncology, Wuhan Fourth Hospital; PuAi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China.
| | - Min Li
- Department of Oncology, Wuhan Fourth Hospital; PuAi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China.
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dehao Fu
- Department of Orthopaedics, West Campus, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430056, China.
| |
Collapse
|
39
|
Zhang Q, Zhang P, Jian S, Li J, Li F, Sun X, Li H, Zeng Y, Zeng Y, Liang S, Chen P, Liu Z. Drug-Bearing Peptide-Based Nanospheres for the Inhibition of Metastasis and Growth of Cancer. Mol Pharm 2020; 17:3165-3176. [DOI: 10.1021/acs.molpharmaceut.0c00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Peng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Shandong Jian
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Jinting Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Fengjiao Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Xiaoliang Sun
- The National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha Hunan 410081, China
| | - Hongrui Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Yang Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Youlin Zeng
- The National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha Hunan 410081, China
| | - Songping Liang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| |
Collapse
|
40
|
Wang H, Shang Y, Chen X, Wang Z, Zhu D, Liu Y, Zhang C, Chen P, Wu J, Wu L, Kong D, Yang Z, Li Z, Chen X. Delivery of MSCs with a Hybrid β-Sheet Peptide Hydrogel Consisting IGF-1C Domain and D-Form Peptide for Acute Kidney Injury Therapy. Int J Nanomedicine 2020; 15:4311-4324. [PMID: 32606679 PMCID: PMC7306577 DOI: 10.2147/ijn.s254635] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose By providing a stem cell microenvironment with particular bioactive constituents in vivo, synthetic biomaterials have been progressively successful in stem cell-based tissue regeneration by enhancing the engraftment and survival of transplanted cells. Designs with bioactive motifs to influence cell behavior and with D-form amino acids to modulate scaffold stability may be critical for the development and optimization of self-assembling biomimetic hydrogel scaffolds for stem cell therapy. Materials and Methods In this study, we linked naphthalene (Nap) covalently to a short D-form peptide (Nap-DFDFG) and the C domain of insulin-like growth factor-1 (IGF-1C) as a functional hydrogel-based scaffolds, and we hypothesized that this hydrogel could enhance the therapeutic efficiency of human placenta-derived mesenchymal stem cells (hP-MSCs) in a murine acute kidney injury (AKI) model. Results The self-assembling peptide was constrained into a classical β-sheet structure and showed hydrogel properties. Our results revealed that this hydrogel exhibited increased affinity for IGF-1 receptor. Furthermore, cotransplantation of the β-IGF-1C hydrogel and hP-MSCs contributed to endogenous regeneration post-injury and boosted angiogenesis in a murine AKI model, leading to recovery of renal function. Conclusion This hydrogel could provide a favorable niche for hP-MSCs and thereby rescue renal function in an AKI model by promoting cell survival and angiogenesis. In conclusion, by covalently linking the desired functional groups to D-form peptides to create functional hydrogels, self-assembling β-sheet peptide hydrogels may serve as a promising platform for tissue-engineering and stem cell therapy. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/ZIksZ7GICP4
Collapse
Affiliation(s)
- Hongfeng Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100039, People's Republic of China
| | - Yuna Shang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaoniao Chen
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100039, People's Republic of China
| | - Zhongyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Dashuai Zhu
- Department of Pathophysiology, Nankai University School of Medicine, Tianjin, 300071, People's Republic of China
| | - Yue Liu
- Department of Pathophysiology, Nankai University School of Medicine, Tianjin, 300071, People's Republic of China
| | - Chuyue Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100039, People's Republic of China
| | - Pu Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100039, People's Republic of China
| | - Jie Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100039, People's Republic of China
| | - Lingling Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100039, People's Republic of China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Zongjin Li
- Department of Pathophysiology, Nankai University School of Medicine, Tianjin, 300071, People's Republic of China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100039, People's Republic of China
| |
Collapse
|
41
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
42
|
Restu WK, Yamamoto S, Nishida Y, Ienaga H, Aoi T, Maruyama T. Hydrogel formation by short D-peptide for cell-culture scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110746. [PMID: 32279773 DOI: 10.1016/j.msec.2020.110746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/27/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022]
Abstract
The present study reports that a short oligopeptide D-P1, consisting of only five D-amino acids, self-assembled into entangled nanofibers to form a hydrogel that functioned as a scaffold for cell cultures. D-P1 (Ac-D-Phe-D-Phe-D-Phe-Gly-D-Lys) gelated aqueous buffer solution and water at a minimum gelation concentration of 0.5 wt%. The circular dichroism (CD) measurements demonstrated the formation of a β-sheet structure in the self-assembly of D-P1. We investigated the gelation properties and CD spectra of both the D- and L-forms of the oligopeptide, and found only a minimal difference between them. The D-P1 hydrogel was resistant to a protease, whereas the L-P1 hydrogel was rapidly degraded. Both oligopeptides exhibited nontoxic properties to human cancer cells and embryoid bodies (EBs) derived from human-induced pluripotent stem cells. Additionally, we succeeded in forming spheroids of HeLa cells on the D-P1 hydrogel, which indicates the potential of this hydrogel for 3-dimensional cell culture.
Collapse
Affiliation(s)
- Witta Kartika Restu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan Puspiptek Serpong, Tangerang Selatan, Banten 15314, Indonesia
| | - Shota Yamamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Yuki Nishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Hirotoshi Ienaga
- Department of iPS cell Applications, Graduate School of Medicine, Kobe University, 7-5-1 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan
| | - Takashi Aoi
- Department of iPS cell Applications, Graduate School of Medicine, Kobe University, 7-5-1 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
43
|
Yang C, Tu K, Gao H, Zhang L, Sun Y, Yang T, Kong L, Ouyang D, Zhang Z. The novel platinum(IV) prodrug with self-assembly property and structure-transformable character against triple-negative breast cancer. Biomaterials 2020; 232:119751. [DOI: 10.1016/j.biomaterials.2019.119751] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/17/2019] [Accepted: 12/29/2019] [Indexed: 01/17/2023]
|
44
|
Soltani S, Khanian N, Choong TSY, Rashid U. Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: characterization and potential applications. NEW J CHEM 2020. [DOI: 10.1039/d0nj01071e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The advancements of nanotechnology, particularly nanomaterials science, have produced a broad range of nanomaterials including nanofibers, nanorods, nanowires and etc., which have been technically and practically examined over various applications.
Collapse
Affiliation(s)
- Soroush Soltani
- Department of Chemical and Environmental Engineering
- Universiti Putra Malaysia
- Malaysia
| | | | | | - Umer Rashid
- Institute of Advanced Technology
- Universiti Putra Malaysia
- Malaysia
| |
Collapse
|
45
|
Morris J, Kozlowski P, Wang G. Synthesis and Characterization of Hybrid Glycolipids as Functional Organogelators and Hydrogelators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14639-14650. [PMID: 31575116 DOI: 10.1021/acs.langmuir.9b02347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbohydrate-based low-molecular-weight gelators are useful and versatile compounds for the preparation of soft materials. Using N-acetyl-d-glucosamine as the starting material, we synthesized and characterized 15 glycolipids containing an amide with different ester functional groups. These include aliphatic derivatives with varying chain lengths and aromatic derivatives. Most of the hybrid amide-esters have molecular weights less than 500 D. These glycolipids were found to be effective gelators for several organic solvents, water, and aqueous solutions. Two efficient hydrogelators were also obtained at low concentrations. A few representative gels were characterized using optical microscopy, atomic force microscopy, and rheology to obtain information on their morphology and gel stability. Three gelators were also used to encapsulate naproxen sodium and toluidine blue. The sustained release of the drug from the gel to the aqueous phase was monitored by UV-vis spectroscopy. These gelators have structural flexibility that can be stimuli responsive. The esters can be hydrolyzed and several gels were converted to solutions under basic conditions. These rationally designed gelators could be utilized as stimuli-responsive smart materials with controlled release properties.
Collapse
Affiliation(s)
- Joedian Morris
- Department of Chemistry and Biochemistry , Old Dominion University , Norfolk , Virginia 23529 , United States
| | - Paige Kozlowski
- Department of Chemistry and Biochemistry , Old Dominion University , Norfolk , Virginia 23529 , United States
| | - Guijun Wang
- Department of Chemistry and Biochemistry , Old Dominion University , Norfolk , Virginia 23529 , United States
| |
Collapse
|
46
|
Yao Q, Huang Z, Liu D, Chen J, Gao Y. Enzyme-Instructed Supramolecular Self-Assembly with Anticancer Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804814. [PMID: 30444545 DOI: 10.1002/adma.201804814] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Cancer remains one of the leading causes of death, which has continuously stimulated the development of numerous functional biomaterials with anticancer activities. Herein is reviewed one recent trend of biomaterials focusing on the advances in enzyme-instructed supramolecular self-assembly (EISA) with anticancer activity. EISA relies on enzymatic transformations to convert designed small-molecular precursors into corresponding amphiphilic residues that can form assemblies in living systems. EISA has shown some advantages in controlling cell fate from three aspects. 1) Based on the abnormal activity of specific enzymes, EISA can differentiate cancer cells from normal cells. In contrast to the classical ligand-receptor recognition, the targeting capability of EISA relies on dynamic control of the self-assembly process. 2) The interactions between EISA and cellular components directly disrupt cellular processes or pathways, resulting in cell death phenotypes. 3) EISA spatiotemporally controls the distribution of therapeutic agents, which boosts drug delivery efficiency. Therefore, with regard to the development of EISA, the aim is to provide a perspective on the future directions of research into EISA as anticancer theranostics.
Collapse
Affiliation(s)
- Qingxin Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhentao Huang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Dongdong Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jiali Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
47
|
Jeena MT, Jeong K, Go EM, Cho Y, Lee S, Jin S, Hwang SW, Jang JH, Kang CS, Bang WY, Lee E, Kwak SK, Kim S, Ryu JH. Heterochiral Assembly of Amphiphilic Peptides Inside the Mitochondria for Supramolecular Cancer Therapeutics. ACS NANO 2019; 13:11022-11033. [PMID: 31508938 DOI: 10.1021/acsnano.9b02522] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of peptides containing both l- and d-isomers often results in nanostructures with enhanced properties compared to their enantiomeric analogues, such as faster kinetics of formation, higher mechanical strength, and enzymatic stability. However, occurrence and consequences of the heterochiral assembly in the cellular microenvironment are unknown. In this study, we monitored heterochiral assembly of amphiphilic peptides inside the cell, specifically mitochondria of cancer cells, resulting in nanostructures with refined morphological and biological properties owing to the superior interaction between the backbones of opposite chirality. We have designed a mitochondria penetrating tripeptide containing a diphenyl alanine building unit, named as Mito-FF due to their mitochondria targeting ability. The short peptide amphiphile, Mito-FF co-assembled with its mirror pair, Mito-ff, induced superfibrils of around 100 nm in diameter and 0.5-1 μm in length, while enantiomers formed only narrow fibers of 10 nm in diameter. The co-administration of Mito-FF and Mito-ff in the cell induced drastic mitochondrial disruption both in vitro and in vivo. The experimental and theoretical analyses revealed that pyrene capping played a major role in inducing superfibril morphology upon the co-assembly of racemic peptides. This work shows the impact of chirality control over the peptide self-assembly inside the biological system, thus showing a potent strategy for fabricating promising peptide biomaterials by considering chirality as a design modality.
Collapse
Affiliation(s)
| | - Keunsoo Jeong
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | | | - Yuri Cho
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | - Seokyung Lee
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | | | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | - Joo Hee Jang
- Division of Applied RI , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | - Chi Soo Kang
- Division of Applied RI , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | - Woo-Young Bang
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | | | - Sehoon Kim
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | | |
Collapse
|
48
|
Abstract
Selectively targeting the cell nucleolus remains a challenge. Here, we report the first case in which d-peptides form membraneless molecular condensates with RNA for targeting cell nucleolus. A d-peptide derivative, enriched with lysine and hydrophobic residues, self-assembles to form nanoparticles, which enter cells through clathrin-dependent endocytosis and mainly accumulate at the cell nucleolus. A structural analogue of the d-peptide reveals that the particle morphology of the assemblies, which depends on the side chain modification, favors the cellular uptake. In contrast to those of the d-peptide, the assemblies of the corresponding l-enantiomer largely localize in cell lysosomes. Preliminary mechanism study suggests that the d-peptide nanoparticles interact with RNA to form membraneless condensates in the nucleolus, which further induces DNA damage and results in cell death. This work illustrates a new strategy for rationally designing supramolecular assemblies of d-peptides for targeting subcellular organelles.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| |
Collapse
|
49
|
Bastings JJ, van Eijk HM, Olde Damink SW, Rensen SS. d-amino Acids in Health and Disease: A Focus on Cancer. Nutrients 2019; 11:nu11092205. [PMID: 31547425 PMCID: PMC6770864 DOI: 10.3390/nu11092205] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
d-amino acids, the enantiomeric counterparts of l-amino acids, were long considered to be non-functional or not even present in living organisms. Nowadays, d-amino acids are acknowledged to play important roles in numerous physiological processes in the human body. The most commonly studied link between d-amino acids and human physiology concerns the contribution of d-serine and d-aspartate to neurotransmission. These d-amino acids and several others have also been implicated in regulating innate immunity and gut barrier function. Importantly, the presence of certain d-amino acids in the human body has been linked to several diseases including schizophrenia, amyotrophic lateral sclerosis, and age-related disorders such as cataract and atherosclerosis. Furthermore, increasing evidence supports a role for d-amino acids in the development, pathophysiology, and treatment of cancer. In this review, we aim to provide an overview of the various sources of d-amino acids, their metabolism, as well as their contribution to physiological processes and diseases in man, with a focus on cancer.
Collapse
Affiliation(s)
- Jacco J.A.J. Bastings
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Hans M. van Eijk
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
| | - Steven W. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Correspondence:
| |
Collapse
|
50
|
Gong Z, Liu X, Dong J, Zhang W, Jiang Y, Zhang J, Feng W, Chen K, Bai J. Transition from vesicles to nanofibres in the enzymatic self-assemblies of an amphiphilic peptide as an antitumour drug carrier. NANOSCALE 2019; 11:15479-15486. [PMID: 31237302 DOI: 10.1039/c9nr02874a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Amphiphilic peptides modified by molecular design can self-assemble into specific nanostructures with interesting applications in the fields of biomedicine and biotechnology. Lysyl oxidase (LO) is ubiquitous in human serum. However, enzymatic self-assembly of amphiphilic peptides remains a challenge for lipid-soluble drug delivery under the induction of LO. Here, we designed a positively charged amphiphilic peptide, A6K2, that could stably self-assemble to form nanovesicles. The lysine in the peptide molecule could be covalently cross-linked under enzyme catalysis, and the major transition was from random coil to β-sheet secondary structures, eventually leading to the destruction of the peptide nanovesicles. The lipid-soluble antitumour drug doxorubicin (DOX) as a model drug could be loaded into the hydrophobic core of the nanovesicles formed by the amphiphilic peptide A6K2, even though DOX was not covalently linked to the peptide monomer. The amount of DOX-encapsulated A6K2 nanovesicles in human hepatocellular carcinoma BEL-7402 cells was significantly higher than that in human liver L02 cells, indicating excellent selectivity. The amphiphilic peptide A6K2 inhibited tumour cell growth and had low cytotoxicity to mammalian cells, and it showed antibacterial activity against G+ and G- bacteria. These advantages make enzymatic self-assembling A6K2 nanovesicles of great interest in drug delivery for biomedical applications.
Collapse
Affiliation(s)
- Zhongying Gong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| | - Xiaoying Liu
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| | - Jinhua Dong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| | - Weifen Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261042, P. R. China
| | - Yuanfei Jiang
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| | - Jinhui Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| | - Weiguo Feng
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| | - Kun Chen
- School of Pharmacy, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| |
Collapse
|