1
|
Recent Advances in Nanomaterials for Asthma Treatment. Int J Mol Sci 2022; 23:ijms232214427. [PMID: 36430906 PMCID: PMC9696023 DOI: 10.3390/ijms232214427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease with complex mechanisms, and these patients often encounter difficulties in their treatment course due to the heterogeneity of the disease. Currently, clinical treatments for asthma are mainly based on glucocorticoid-based combination drug therapy; however, glucocorticoid resistance and multiple side effects, as well as the occurrence of poor drug delivery, require the development of more promising treatments. Nanotechnology is an emerging technology that has been extensively researched in the medical field. Several studies have shown that drug delivery systems could significantly improve the targeting, reduce toxicity and improve the bioavailability of drugs. The use of multiple nanoparticle delivery strategies could improve the therapeutic efficacy of drugs compared to traditional delivery methods. Herein, the authors presented the mechanisms of asthma development and current therapeutic methods. Furthermore, the design and synthesis of different types of nanomaterials and micromaterials for asthma therapy are reviewed, including polymetric nanomaterials, solid lipid nanomaterials, cell membranes-based nanomaterials, and metal nanomaterials. Finally, the challenges and future perspectives of these nanomaterials are discussed to provide guidance for further research directions and hopefully promote the clinical application of nanotherapeutics in asthma treatment.
Collapse
|
2
|
Magnetically Driven Muco-Inert Janus Nanovehicles for Enhanced Mucus Penetration and Cellular Uptake. Molecules 2022; 27:molecules27217291. [DOI: 10.3390/molecules27217291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
One of the main challenges of transmucosal drug delivery is that of enabling particles and molecules to move across the mucosal barrier of the mucosal epithelial surface. Inspired by nanovehicles and mucus-penetrating nanoparticles, a magnetically driven, mucus-inert Janus-type nanovehicle (Janus-MMSN-pCB) was fabricated by coating the zwitterionic polymer poly(carboxybetaine methacrylate) (pCB) on the mesoporous silica nanorod, which was grown on one side of superparamagnetic Fe3O4 nanoparticle using the sol–gel method. X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and Fourier infrared spectroscopy were used to characterize the structure and morphology of the nanovehicles, proving the success of each synthesis step. The in vitro cell viability assessment of these composites using Calu-3 cell lines indicates that the nanovehicles are biocompatible in nature. Furthermore, the multiparticle tracking, Transwell® system, and cell imaging experimental results demonstrate that both the modification of pCB and the application of a magnetic field effectively accelerated the diffusion of the nanovehicles in the mucus and improved the endocytosis through Calu-3. The favorable cell uptake performance of Janus-MMSN-pCB in mucus systems with/without magnetic driving proves its potential role in the diagnosis, treatment, and imaging of mucosal-related diseases.
Collapse
|
3
|
Puri V, Kaur VP, Singh A, Singh C. Recent advances on drug delivery applications of mucopenetrative/mucoadhesive particles: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Zandanel C, Ponchel G, Noiray M, Vauthier C. Nanoparticles facing the gut barrier: Retention or mucosal absorption? Mechanisms and dependency to nanoparticle characteristics. Int J Pharm 2021; 609:121147. [PMID: 34600059 DOI: 10.1016/j.ijpharm.2021.121147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022]
Abstract
A better knowledge on influence of nanomedicine characteristics on their biological efficacy and safety is expected to accelerate their clinical translation. This work aimed understanding of the oral fate of polymer-based nanomedicines designed with different characteristics. The influence of nanoparticle characteristics (size, zeta potential, molecular architecture surface design) was explored on biological responses evaluating their retention and absorption by rat jejunum using the Ussing chamber experimental model. Thermodynamic aspects of interactions between nanoparticles and model mucins were elucidated by isothermal titration calorimetry. The retention on mucosa varied between nanoparticles from 18.5 to 97.3 % of the initial amount after a simulation considering the entire jejunum length. Different mechanisms were proposed which promoted mucosal association or oppositely precluded any interactions. Strikingly, mucosal retention was profoundly affected by the size and nature of interactions with the mucus which depended on the nature of the coating material, but not on the zeta potential. The nanoparticle absorption simulated along the whole length of the intestine was low (0.01 to almost 3% of the initial amounts). A saturable mechanism including an upper nanoparticle size limit was evidenced but, needs now to be further elucidated. This work showed that the molecular design and formulation of nanoparticles can guide mechanisms by which nanoparticles interact with the mucosa. The data could be useful to formulators to address different oral drug delivery challenges ranging from the simple increase of residence time and proximity to the absorptive epithelium and systemic delivery using the most absorbed nanoparticles.
Collapse
Affiliation(s)
- Christelle Zandanel
- Université Paris-Saclay, Institut Galien Paris-Saclay, UMR CNRS 8612, Chatenay Malabry F-92296, France
| | - Gilles Ponchel
- Université Paris-Saclay, Institut Galien Paris-Saclay, UMR CNRS 8612, Chatenay Malabry F-92296, France
| | - Magali Noiray
- Université Paris-Saclay, Institut Galien Paris-Saclay, UMR CNRS 8612, Chatenay Malabry F-92296, France
| | - Christine Vauthier
- Université Paris-Saclay, Institut Galien Paris-Saclay, UMR CNRS 8612, Chatenay Malabry F-92296, France.
| |
Collapse
|
5
|
Zierden HC, Josyula A, Shapiro RL, Hsueh H, Hanes J, Ensign LM. Avoiding a Sticky Situation: Bypassing the Mucus Barrier for Improved Local Drug Delivery. Trends Mol Med 2021; 27:436-450. [PMID: 33414070 PMCID: PMC8087626 DOI: 10.1016/j.molmed.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
The efficacy of drugs administered by traditional routes is limited by numerous biological barriers that preclude reaching the intended site of action. Further, full body systemic exposure leads to dose-limiting, off-target side effects. Topical formulations may provide more efficacious drug and nucleic acid delivery for diseases and conditions affecting mucosal tissues, but the mucus protecting our epithelial surfaces is a formidable barrier. Here, we describe recent advances in mucus-penetrating approaches for drug and nucleic acid delivery to the ocular surface, the female reproductive tract, the gastrointestinal tract, and the airways.
Collapse
Affiliation(s)
- Hannah C. Zierden
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Aditya Josyula
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Rachel L. Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Henry Hsueh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287,The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21287,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Laura M. Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287,The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21287,Departments Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287,Correspondence: (L.M. Ensign)
| |
Collapse
|
6
|
Advanced materials for drug delivery across mucosal barriers. Acta Biomater 2021; 119:13-29. [PMID: 33141051 DOI: 10.1016/j.actbio.2020.10.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Mucus is a viscoelastic gel that traps pathogens and other foreign particles to limit their penetration into the underlying epithelium. Dosage forms containing particle-based drug delivery systems are trapped in mucosal layers and will be removed by mucus turnover. Mucoadhesion avoids premature wash-off and prolongs the residence time of drugs on mucus. Moreover, mucus penetration is essential for molecules to access the underlying epithelial tissues. Various strategies have been investigated to achieve mucoadhesion and mucus penetration of drug carriers. Innovations in materials used for the construction of drug-carrier systems allowed the development of different mucoadhesion and mucus penetration delivery systems. Over the last decade, advances in the field of materials chemistry, with a focus on biocompatibility, have led to the expansion of the pool of materials available for drug delivery applications. The choice of materials in mucosal delivery is generally dependent on the intended therapeutic target and nature of the mucosa at the site of absorption. This review presents an up-to-date account of materials including synthesis, physical and chemical modifications of mucoadhesive materials, nanocarriers, viral mimics used for the construction of mucosal drug delivery systems.
Collapse
|
7
|
Sun B, Wang W, He Z, Zhang M, Kong F, Sain M. Biopolymer Substrates in Buccal Drug Delivery: Current Status and Future Trend. Curr Med Chem 2020; 27:1661-1669. [PMID: 30277141 DOI: 10.2174/0929867325666181001114750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/19/2018] [Accepted: 08/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND This paper provides a critical review of biopolymer-based substrates, especially the cellulose derivatives, for their application in buccal drug delivery. Drug delivery to the buccal mucous has the benefits of immobile muscle, abundant vascularization and rapid recovery, but not all the drugs can be administered through the buccal mucosa (e.g., macromolecular drugs), due to the low bioavailability caused by their large molecular size. This shortfall inspired the rapid development of drug-compounding technologies and the corresponding usage of biopolymer substrates. METHODS Cellulose derivatives have been extensively developed for drug manufacturing to facilitate its delivery. We engaged in structured research of cellulose-based drug compounding technologies. We summarized the characteristic cellulose derivatives which have been used as the biocompatible substrates in buccal delivery systems. The discussion of potential use of the rapidly-developed nanocellulose (NC) is also notable in this paper. RESULTS Seventy-eight papers were referenced in this perspective paper with the majority (sixty-five) published later than 2010. Forty-seven papers defined the buccal drug delivery systems and their substrates. Fifteen papers outlined the properties and applications of cellulose derivatives. Nanocellulose was introduced as a leading edge of nanomaterial with sixteen papers highlighted its adaptability in drug compounding for buccal delivery. CONCLUSION The findings of this perspective paper proposed the potential use of cellulose derivatives, the typical kind of biopolymers, in the buccal drug delivery system for promoting the bioavailability of macromolecular drugs. Nanocellulose (NC) in particular was proposed as an innovative bio-binder/carrier for the controlled-release of drugs in buccal system.
Collapse
Affiliation(s)
- Bo Sun
- Center for Biocomposites and Biomaterials Processing, Department of Mechanical and Industrial Engineering, University of Toronto, 33 Willcocks St., Toronto, M5S 3B3 ON, Canada.,Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, 300457 Tianjin, China.,Department of Chemical Engineering, University of New Brunswick, Fredericton, E3B 5A3 New Brunswick, Canada
| | - Weijun Wang
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, 300457 Tianjin, China
| | - Zhibin He
- Department of Chemical Engineering, University of New Brunswick, Fredericton, E3B 5A3 New Brunswick, Canada
| | - Min Zhang
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, 300457 Tianjin, China
| | - Fangong Kong
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 Shandong, China
| | - Mohini Sain
- Center for Biocomposites and Biomaterials Processing, Department of Mechanical and Industrial Engineering, University of Toronto, 33 Willcocks St., Toronto, M5S 3B3 ON, Canada
| |
Collapse
|
8
|
Noori MS, Bodle SJ, Showalter CA, Streator ES, Drozek DS, Burdick MM, Goetz DJ. Sticking to the Problem: Engineering Adhesion in Molecular Endoscopic Imaging. Cell Mol Bioeng 2020; 13:113-124. [PMID: 32175025 DOI: 10.1007/s12195-020-00609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers of the digestive tract cause nearly one quarter of the cancer deaths worldwide, and nearly half of these are due to cancers of the esophagus and colon. Early detection of cancer significantly increases the rate of survival, and thus it is critical that cancer within these organs is detected early. In this regard, endoscopy is routinely used to screen for transforming/cancerous (i.e. dysplastic to fully cancerous) tissue. Numerous studies have revealed that the biochemistry of the luminal surface of such tissue within the colon and esophagus becomes altered throughout disease progression. Molecular endoscopic imaging (MEI), an emerging technology, seeks to exploit these changes for the early detection of cancer. The general approach for MEI is as follows: the luminal surface of an organ is exposed to molecular ligands, or particulate probes bearing a ligand, cognate to biochemistry unique to pre-cancerous/cancerous tissue. After a wash, the tissue is imaged to determine the presence of the probes. Detection of the probes post-washing suggests pathologic tissue. In the current review we provide a succinct, but extensive, review of ligands and target moieties that could be, or are currently being investigated, as possible cognate chemistries for MEI. This is followed by a review of the biophysics that determines, in large part, the success of a particular MEI design. The work draws an analogy between MEI and the well-advanced field of cell adhesion and provides a road map for engineering MEI to achieve assays that yield highly selective recognition of transforming/cancerous tissue in situ.
Collapse
Affiliation(s)
- Mahboubeh S Noori
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA
| | - Sarah J Bodle
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA
| | - Christian A Showalter
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
| | - Evan S Streator
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA
| | - David S Drozek
- Department of Specialty Medicine, Ohio University, Athens, OH 45701 USA
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
9
|
Kan S, Hariyadi DM, Grainge C, Knight DA, Bartlett NW, Liang M. Airway epithelial-targeted nanoparticles for asthma therapy. Am J Physiol Lung Cell Mol Physiol 2020; 318:L500-L509. [PMID: 31913649 DOI: 10.1152/ajplung.00237.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Asthma is a common chronic inflammatory disease associated with intermittent airflow obstruction caused by airway inflammation, mucus overproduction, and bronchial hyperresponsiveness. Despite current treatment and management options, a large number of patients with asthma still have poorly controlled disease and are susceptible to acute exacerbations, usually caused by a respiratory virus infection. As a result, there remains a need for novel therapies to achieve better control and prevent/treat exacerbations. Nanoparticles (NPs), including extracellular vesicles (EV) and their synthetic counterparts, have been developed for drug delivery in respiratory diseases. In the case of asthma, where airway epithelium dysfunction, including dysregulated differentiation of epithelial cells, impaired barrier, and immune response, is a driver of disease, targeting airway epithelial cells with NPs may offer opportunities to repair or reverse these dysfunctions with therapeutic interventions. EVs possess multiple advantages for airway epithelial targeting, such as their natural intrinsic cell-targeting properties and low immunogenicity. Synthetic NPs can be coated with muco-inert polymers to overcome biological barriers such as mucus and the phagocytic response of immune cells. Targeting ligands could be also added to enhance targeting specificity to epithelial cells. The review presents current understanding and advances in NP-mediated drug delivery to airway epithelium for asthma therapy. Future perspectives in this therapeutic strategy will also be discussed, including the development of novel formulations and physiologically relevant preclinical models.
Collapse
Affiliation(s)
- Stanislav Kan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | | | - Christopher Grainge
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
10
|
O'Driscoll CM, Bernkop-Schnürch A, Friedl JD, Préat V, Jannin V. Oral delivery of non-viral nucleic acid-based therapeutics - do we have the guts for this? Eur J Pharm Sci 2019; 133:190-204. [PMID: 30946964 DOI: 10.1016/j.ejps.2019.03.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022]
Abstract
Gene therapy with RNA and pDNA-based drugs is limited by poor enzymatic stability and poor cellular permeation. The delivery of nucleic acids, in particular by the oral route, remains a major hurdle. This review will focus on the barriers to the oral delivery of nucleic acids and the strategies, in particular formulation strategies, which have been developed to overcome these barriers. Due to their very low oral bioavailability, the most obvious and most investigated biomedical applications for their oral delivery are related to the local treatment of inflammatory bowel diseases and colorectal cancers. Preclinical data but not yet clinical studies support the potential use of the oral route for the local delivery of formulated nucleic acid-based drugs.
Collapse
Affiliation(s)
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Julian D Friedl
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Véronique Préat
- Universite catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1.73.12, 1200 Brussels, Belgium.
| | - Vincent Jannin
- Gattefossé SAS, 36 chemin de Genas, 69804 Saint-Priest cedex, France.
| |
Collapse
|