1
|
Wang X, Wang J, Huang L, Huang G. Capsiate Improves Glucose Metabolism by Improving Insulin Sensitivity in Diabetic Retinopathy Mice. Curr Eye Res 2024:1-8. [PMID: 39431723 DOI: 10.1080/02713683.2024.2412296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Capsiate (cap) is a metabolite that affects a number of biological processes, and diabetic retinopathy (DR) is now known to be the primary cause of end-stage eye illness. METHODS In order to examine the effects of the cap intervention on body weight, nutritional intake, changes in body weight composition, glucose metabolism levels, retinopathy, and oxidative stress levels, we proposed using a mouse model of diabetic retinopathy caused by STZ. RESULTS Our findings demonstrated that, in addition to increasing lean body mass and lowering fat body mass content, cap intervention significantly improved body weight and dietary consumption in STZ mice. Additionally, our results on glucose metabolism revealed that cap had a significant impact on insulin resistance and the stabilization of OGTT levels. In conclusion, we examined the levels of oxidative stress and retinopathy. We discovered that the cap intervention greatly reduced the levels of MDA and significantly improved the levels of VEGF and retinopathy. In contrast, the STZ group's levels of SOD, CAT, and GSH were significantly higher. CONCLUSIONS According to our research, the Cap intervention improved the damage caused by diabetic retinopathy by reversing the levels of oxidative stress and the disrupted state of glucose metabolism, which in turn decreased the levels of VEGF.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Ophthalmology, Anhui Medical University Affiliated Lu'an People's Hospital, Lu'an City, Fujian Province, China
| | - Jingwen Wang
- Department of Nutrition, Quanzhou Medical College, Quanzhou City, Fujian Province, China
| | - Lijuan Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Guangqian Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
2
|
Ngcobo NN, Sibiya NH. The role of high mobility group box-1 on the development of diabetes complications: A plausible pharmacological target. Diab Vasc Dis Res 2024; 21:14791641241271949. [PMID: 39271468 PMCID: PMC11406611 DOI: 10.1177/14791641241271949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Diabetes mellitus has emerged as a pressing global concern, with a notable increase in recent years. Despite advancements in treatment, existing medications struggle to halt the progression of diabetes and its associated complications. Increasing evidence underscores inflammation as a significant driver in the onset of diabetes mellitus. Therefore, perspectives on new therapies must consider shifting focus from metabolic stress to inflammation. High mobility group box (HMGB-1), a nuclear protein regulating gene expression, gained attention as an endogenous danger signal capable of sparking inflammatory responses upon release into the extracellular environment in the late 1990s. PURPOSE Given the parallels between inflammatory responses and type 2 diabetes (T2D) development, this review paper explores HMGB-1's potential involvement in onset and progression of diabetes complications. Specifically, we will review and update the understanding of HMGB-1 and its inflammatory pathways in insulin resistance, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. CONCLUSIONS HMGB-1 and its receptors i.e. receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs) present promising targets for antidiabetic interventions. Ongoing and future projects in this realm hold promise for innovative approaches targeting HMGB-1-mediated inflammation to ameliorate diabetes and its complications.
Collapse
Affiliation(s)
- Nokwanda N Ngcobo
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo H Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
3
|
Liu C, Su W, Jiang X, Lv Y, Kong F, Chen Q, Zhang Q, Zhang H, Liu Y, Li X, Xu X, Chen Y, Qu D. A Sustainable Retinal Drug Co-Delivery for Boosting Therapeutic Efficacy in wAMD: Unveiling Multifaceted Evidence and Synergistic Mechanisms. Adv Healthc Mater 2024; 13:e2303659. [PMID: 38386849 DOI: 10.1002/adhm.202303659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Sustainable retinal codelivery poses significant challenges technically, although it is imperative for synergistic treatment of wet age-related macular degeneration (wAMD). Here, a microemulsion-doped hydrogel (Bor/PT-M@TRG) is engineered as an intravitreal depot composing of temperature-responsive hydrogel (TRG) and borneol-decorated paeoniflorin (PF) & tetramethylpyrazine (TMP)-coloaded microemulsions (Bor/PT-M). Bor/PT-M@TRG, functioning as the "ammunition depot", resides in the vitreous and continuously releases Bor/PT-M as the therapeutic "bullet", enabling deep penetration into the retina for 21 days. A single intravitreal injection of Bor/PT-M@TRG yields substantial reductions in choroidal neovascularization (CNV, a hallmark feature of wAMD) progression and mitigates oxidative stress-induced damage in vivo. Combinational PF&TMP regulates the "reactive oxygen species/nuclear factor erythroid-2-related factor 2/heme oxygenase-1" pathway and blocks the "hypoxia inducible factor-1α/vascular endothelial growth factor" signaling in retina, synergistically cutting off the loop of CNV formation. Utilizing fluorescence resonance energy transfer and liquid chromatography-mass spectrometry techniques, they present compelling multifaceted evidence of sustainable retinal codelivery spanning formulations, ARPE-19 cells, in vivo eye balls, and ex vivo section/retina-choroid complex cell levels. Such codelivery approach is elucidated as the key driving force behind the exceptional therapeutic outcomes of Bor/PT-M@TRG. These findings highlight the significance of sustainable retinal drug codelivery and rational combination for effective treatment of wAMD.
Collapse
Affiliation(s)
- Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Wenting Su
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Xi Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Yanli Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Fei Kong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Qin Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, P. R. China
| | - Qun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Xinrong Xu
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, P. R. China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| |
Collapse
|
4
|
Tolentino MJ, Tolentino AJ, Tolentino EM, Krishnan A, Genead MA. Sialic Acid Mimetic Microglial Sialic Acid-Binding Immunoglobulin-like Lectin Agonism: Potential to Restore Retinal Homeostasis and Regain Visual Function in Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2023; 16:1735. [PMID: 38139861 PMCID: PMC10747662 DOI: 10.3390/ph16121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Age-related macular degeneration (AMD), a leading cause of visual loss and dysfunction worldwide, is a disease initiated by genetic polymorphisms that impair the negative regulation of complement. Proteomic investigation points to altered glycosylation and loss of Siglec-mediated glyco-immune checkpoint parainflammatory and inflammatory homeostasis as the main determinant for the vision impairing complications of macular degeneration. The effect of altered glycosylation on microglial maintained retinal para-inflammatory homeostasis and eventual recruitment and polarization of peripheral blood monocyte-derived macrophages (PBMDMs) into the retina can explain the phenotypic variability seen in this clinically heterogenous disease. Restoring glyco-immune checkpoint control with a sialic acid mimetic agonist targeting microglial/macrophage Siglecs to regain retinal para-inflammatory and inflammatory homeostasis is a promising therapeutic that could halt the progression of and improve visual function in all stages of macular degeneration.
Collapse
Affiliation(s)
- Michael J. Tolentino
- Department of Ophthalmology, University of Central Florida College of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | - Andrew J. Tolentino
- Department of Biology, University of California Berkeley, Berkeley, CA 94720, USA;
| | | | - Anitha Krishnan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | | |
Collapse
|
5
|
Nita M, Grzybowski A. Antioxidative Role of Heterophagy, Autophagy, and Mitophagy in the Retina and Their Association with the Age-Related Macular Degeneration (AMD) Etiopathogenesis. Antioxidants (Basel) 2023; 12:1368. [PMID: 37507908 PMCID: PMC10376332 DOI: 10.3390/antiox12071368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD), an oxidative stress-linked neurodegenerative disease, leads to irreversible damage of the central retina and severe visual impairment. Advanced age and the long-standing influence of oxidative stress and oxidative cellular damage play crucial roles in AMD etiopathogenesis. Many authors emphasize the role of heterophagy, autophagy, and mitophagy in maintaining homeostasis in the retina. Relevantly modifying the activity of both macroautophagy and mitophagy pathways represents one of the new therapeutic strategies in AMD. Our review provides an overview of the antioxidative roles of heterophagy, autophagy, and mitophagy and presents associations between dysregulations of these molecular mechanisms and AMD etiopathogenesis. The authors performed an extensive analysis of the literature, employing PubMed and Google Scholar, complying with the 2013-2023 period, and using the following keywords: age-related macular degeneration, RPE cells, reactive oxygen species, oxidative stress, heterophagy, autophagy, and mitophagy. Heterophagy, autophagy, and mitophagy play antioxidative roles in the retina; however, they become sluggish and dysregulated with age and contribute to AMD development and progression. In the retina, antioxidative roles also play in RPE cells, NFE2L2 and PGC-1α proteins, NFE2L2/PGC-1α/ARE signaling cascade, Nrf2 factor, p62/SQSTM1/Keap1-Nrf2/ARE pathway, circulating miRNAs, and Yttrium oxide nanoparticles performed experimentally in animal studies.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed", 40-231 Katowice, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland
| |
Collapse
|
6
|
Zeng L, Li X, Pan W, Tang Y, Lin D, Wang M, Cai W, Zhu R, Wan J, Huang L, Xu H, Yang Z. Intraocular complement activation is related to retinal vascular and neuronal degeneration in myopic retinopathy. Front Cell Neurosci 2023; 17:1187400. [PMID: 37448698 PMCID: PMC10336352 DOI: 10.3389/fncel.2023.1187400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Purpose To investigate the relationship between the intraocular levels of complement proteins and myopia-related retinal neuronal and vascular degeneration. Methods Aqueous humour from 147 myopic patients, including 60 low-myopia and 87 high-myopia were collected during Implantable Collamer Lens implantation surgery. All participants received comprehensive ophthalmic examinations, including logMAR best corrected visual acuity, axial length measurement, fundus photography and ocular B-scan ultrasonography. The myopic eyes were further classified into simple myopia (SM, n = 78), myopic posterior staphyloma (PS, n = 39) and PS with myopic chorioretinal atrophy (PS + CA, n = 30). Retinal thickness and vascular density in the macula (6 mm × 6 mm) and optic nerve head (4.5 mm × 4.5 mm) were measured using Optical Coherence Tomography (OCT) and OCT angiography (OCTA). The levels of complement proteins including C1q, C3, C3b/iC3b, C4, CFB, CFH, C2, C4b, C5, C5a, CFD, MBL and CFI in the aqueous humour were measured using the Luminex Multiplexing system. The real-time RT-PCR was conducted to examine the expression of complement genes (C1q, C2, C3, C4, CFI and CFD) in the guinea pig model of long-term form deprivation-induced myopic retinal degeneration. Results OCTA showed that retinal neuronal thickness and vascular density in superficial and deep layers of the macular zone as well as vascular density in the optic nerve head were progressively decreased from SM to PS and PS + CA (p < 0.05). The aqueous humour levels of C1q, C3, C3b/iC3b, C4, CFB, CFH, C2, C4b, C5 and CFI were significantly higher in high-myopic eyes compared to those in low-myopic eyes. Further subgroup analysis revealed the highest levels of complement components/fragments in the PS + CA group. The intraocular levels of complement factors particularly C3b/iC3b and C4 were negatively correlated with macular zone deep layer retinal thickness and vascular density and optic nerve head vascular density. The expression of C2, C3 and C4 genes was significantly higher in guinea pig eyes with myopic retinal degeneration compared to control eyes. Conclusions The intraocular classical pathway and alternative pathway of the complement system are partially activated in pathological myopia. Their activation is related to the degeneration of retinal neurons and the vasculature in the macula and the vasculature in the optic nerve head.
Collapse
Affiliation(s)
- Ling Zeng
- Aier School of Ophthalmology, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
| | - Xiaoning Li
- Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier School of Optometry and Vision Science, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wei Pan
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
| | - Yao Tang
- Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
| | - Ding Lin
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Min Wang
- Shanghai Aier Eye Hospital, Shanghai, China
| | - Wang Cai
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Ruiling Zhu
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Jianbo Wan
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | | | - Heping Xu
- Aier School of Ophthalmology, Central South University, Changsha, China
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Zhikuan Yang
- Aier School of Ophthalmology, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
| |
Collapse
|
7
|
Li W, Chen L, Gu Z, Chen Z, Li H, Cheng Z, Li H, Zou L. Co-delivery of microRNA-150 and quercetin by lipid nanoparticles (LNPs) for the targeted treatment of age-related macular degeneration (AMD). J Control Release 2023; 355:358-370. [PMID: 36738972 DOI: 10.1016/j.jconrel.2023.01.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/06/2023]
Abstract
Age-related macular degeneration (AMD) is characterized by choroidal neovascularization (CNV), which leads to severe vision loss in middle-aged and elderly patients. Current treatments for CNV show weak, transient efficacy, and they can cause several adverse effects. A potential new treatment is to use microRNA-150 (mR150), which regulates physiological and pathological angiogenesis by modulating the expression of CXCR4 at the post-transcriptional level. Here, we developed solid lipid nanoparticles that we modified with an Asp-Gly-Arg peptide to target endothelial cells during abnormal angiogenesis, then we co-loaded them with mR150 and the anti-angiogenic drug quercetin. The resulting nanoparticles had an average size around 200 nm and showed strong ability to target the fundus and inhibit CNV for up to two weeks in a mouse model without causing retinal toxicity. They significantly enhanced the uptake of mR150 in vitro compared to free mR150 or nanoparticles without peptide. Our study suggests that co-administration of mR150 and quercetin has potential for treating age-related macular degeneration and that nanoparticles modified with Asp-Gly-Arg peptide are an effective platform for the co-delivery of small-molecule and nucleic acid drugs via intravitreal injection.
Collapse
Affiliation(s)
- Wei Li
- School of Basic Medicine, Institute for Advanced Study, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, People's Republic of China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zhoujiang Chen
- School of Basic Medicine, Institute for Advanced Study, Chengdu University, Chengdu 610106, People's Republic of China
| | - Hong Li
- Affiliated Hospital & Clnical Medical College of Chengdu University, Chengdu 610081, People's Republic of China
| | - Zhongxia Cheng
- Affiliated Hospital & Clnical Medical College of Chengdu University, Chengdu 610081, People's Republic of China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China.
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China.
| |
Collapse
|
8
|
Hytti M, Ruuth J, Kanerva I, Bhattarai N, Pedersen ML, Nielsen CU, Kauppinen A. Phloretin inhibits glucose transport and reduces inflammation in human retinal pigment epithelial cells. Mol Cell Biochem 2023; 478:215-227. [PMID: 35771396 PMCID: PMC9836970 DOI: 10.1007/s11010-022-04504-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/15/2022] [Indexed: 01/24/2023]
Abstract
During age-related macular degeneration (AMD), chronic inflammatory processes, possibly fueled by high glucose levels, cause a breakdown of the retinal pigment epithelium (RPE), leading to vision loss. Phloretin, a natural dihydroxychalcone found in apples, targets several anti-inflammatory signaling pathways and effectively inhibits transporter-mediated glucose uptake. It could potentially prevent inflammation and cell death of RPE cells through either direct regulation of inflammatory signaling pathways or through amelioration of high glucose levels. To test this hypothesis, ARPE-19 cells were incubated with or without phloretin for 1 h before exposure to lipopolysaccharide (LPS). Cell viability and the release of pro-inflammatory cytokines interleukin 6 (IL-6), IL-8 and vascular endothelial growth factor (VEGF) were measured. Glucose uptake was studied using isotope uptake studies. The nuclear levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were determined alongside the phosphorylation levels of mitogen-activated protein kinases. Phloretin pretreatment reduced the LPS-induced release of IL-6 and IL-8 as well as VEGF. Phloretin increased intracellular levels of reactive oxygen species and nuclear translocation of Nrf2. It also inhibited glucose uptake into ARPE-19 cells and the phosphorylation of Jun-activated kinase (JNK). Subsequent studies revealed that Nrf2, but not the inhibition of glucose uptake or JNK phosphorylation, was the main pathway of phloretin's anti-inflammatory activities. Phloretin was robustly anti-inflammatory in RPE cells and reduced IL-8 secretion via activation of Nrf2 but the evaluation of its potential in the treatment or prevention of AMD requires further studies.
Collapse
Affiliation(s)
- Maria Hytti
- School of Pharmacy, Department of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Johanna Ruuth
- School of Pharmacy, Department of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland ,School of Medicine, Department of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Iiris Kanerva
- School of Pharmacy, Department of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Niina Bhattarai
- School of Pharmacy, Department of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Maria L. Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Carsten U. Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Anu Kauppinen
- School of Pharmacy, Department of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| |
Collapse
|
9
|
Yang K, Cao F, Wang W, Tian Z, Yang L. The relationship between HMGB1 and autophagy in the pathogenesis of diabetes and its complications. Front Endocrinol (Lausanne) 2023; 14:1141516. [PMID: 37065747 PMCID: PMC10090453 DOI: 10.3389/fendo.2023.1141516] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels and has become the third leading threat to human health after cancer and cardiovascular disease. Recent studies have shown that autophagy is closely associated with diabetes. Under normal physiological conditions, autophagy promotes cellular homeostasis, reduces damage to healthy tissues and has bidirectional effects on regulating diabetes. However, under pathological conditions, unregulated autophagy activation leads to cell death and may contribute to the progression of diabetes. Therefore, restoring normal autophagy may be a key strategy to treat diabetes. High-mobility group box 1 protein (HMGB1) is a chromatin protein that is mainly present in the nucleus and can be actively secreted or passively released from necrotic, apoptotic, and inflammatory cells. HMGB1 can induce autophagy by activating various pathways. Studies have shown that HMGB1 plays an important role in insulin resistance and diabetes. In this review, we will introduce the biological and structural characteristics of HMGB1 and summarize the existing knowledge on the relationship between HMGB1, autophagy, diabetes, and diabetic complications. We will also summarize potential therapeutic strategies that may be useful for the prevention and treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Kun Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Cao
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture, Haidian District Shuangyushu Community Health Service Center, Beijing, China
| | - Weili Wang
- Institute of Basic Research in Clinical Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lu Yang, ; Zhenyu Tian,
| | - Lu Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Yang, ; Zhenyu Tian,
| |
Collapse
|
10
|
Liang KH, Chen CH, Tsai HR, Chang CY, Chen TL, Hsu WC. Association Between Oral Metformin Use and the Development of Age-Related Macular Degeneration in Diabetic Patients: A Systematic Review and Meta-Analysis. Invest Ophthalmol Vis Sci 2022; 63:10. [PMID: 36484633 DOI: 10.1167/iovs.63.13.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Metformin is a biguanide derivative that is commonly used for the treatment of diabetes mellitus (DM). It demonstrates antioxidative, anti-inflammatory, and antiangiogenic activity within the ocular tissue and thus may be implicated in the treatment of age-related macular degeneration (AMD). However, epidemiological studies have shown conflicting results. Methods The Ovid MEDLINE/Embase, Cochrane Library, and Web of Science databases were systematically searched from inception through August 3, 2022. Studies reporting the association between metformin use and odds of AMD were enrolled. Adjusted odds ratios (ORs) of AMD were extracted and pooled with random-effects model meta-analysis. Subgroup analyses based on AMD subtypes, ethnicity, study design, sex, and confirmation of AMD diagnosis were conducted. Results A total of 9 observational studies with 1,446,284 participants were included in the analysis. The meta-analysis showed that metformin use was associated with a significant reduction in the odds of AMD (pooled ORs = 0.81, 95% confidence interval [CI] = 0.70-0.93). Subgroup analyses revealed that metformin use was not significantly associated with dry or wet AMD. Black (pooled ORs = 0.61, 95% CI = 0.58-0.64) and Hispanic populations (pooled ORs = 0.85, 95% CI = 0.81-0.89) demonstrated significantly lower odds of AMD. Conclusions This systematic review and meta-analysis found that patients with DM with metformin usage were at lower odds of developing AMD. Future prospective clinical trials are needed to confirm this association.
Collapse
Affiliation(s)
- Kai-Hsiang Liang
- Department of Medical Education, Medical Administration Office, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chih-Hao Chen
- Department of Otolaryngology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Hou-Ren Tsai
- Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Yu Chang
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Tai-Li Chen
- Department of Dermatology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Wei-Cherng Hsu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Ophthalmology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
11
|
Jin X, Liu J, Wang W, Li J, Liu G, Qiu R, Yang M, Liu M, Yang L, Du X, Lei B. Identification of Age-associated Proteins and Functional Alterations in Human Retinal Pigment Epithelium. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:633-647. [PMID: 35752290 PMCID: PMC9880895 DOI: 10.1016/j.gpb.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/15/2022] [Accepted: 06/13/2022] [Indexed: 01/31/2023]
Abstract
Retinal pigment epithelium (RPE) has essential functions, such as nourishing and supporting the neural retina, and is of vital importance in the pathogenesis of age-related retinal degeneration. However, the exact molecular changes of RPE during aging remain poorly understood. Here, we isolated human primary RPE (hRPE) cells from 18 eye donors distributed over a wide age range (10-67 years old). A quantitative proteomic analysis was performed to analyze changes in their intracellular and secreted proteins. Age-group related subtypes and age-associated proteins were revealed and potential age-associated mechanisms were validated in ARPE-19 and hRPE cells. The results of proteomic data analysis and verifications suggest that RNF123- and RNF149-related protein ubiquitination plays an important role in protecting hRPE cells from oxidative damage during aging. In older hRPE cells, apoptotic signaling-related pathways were up-regulated, and endoplasmic reticulum organization was down-regulated both in the intracellular and secreted proteomes. Our work paints a detailed molecular picture of hRPE cells during the aging process and provides new insights into the molecular characteristics of RPE during aging and under other related clinical retinal conditions.
Collapse
Affiliation(s)
- Xiuxiu Jin
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China,School of Medicine, Henan Provincial People’s Hospital, Henan University, Zhengzhou 450003, China
| | - Jingyang Liu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Weiping Wang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Jiangfeng Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guangming Liu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ruiqi Qiu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Mingzhu Yang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Meng Liu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Yang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Du
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China,Corresponding author.
| |
Collapse
|
12
|
Ouyang H, Du A, Zhou L, Zhang T, Lu B, Wang Z, Ji L. Chlorogenic acid improves diabetic retinopathy by alleviating blood-retinal-barrier dysfunction via inducing Nrf2 activation. Phytother Res 2022; 36:1386-1401. [PMID: 35133045 DOI: 10.1002/ptr.7401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 12/29/2022]
Abstract
As one of the major diabetic microvascular complications, diabetic retinopathy (DR) is mainly initiated by the blood-retinal barrier (BRB) dysfunction. Chlorogenic acid (CGA) is a natural polyphenolic compound in Lonicerae Japonicae Flos, which traditionally has the beneficial function for eyes and is commonly included in many anti-diabetic formulas. In this study, the potential protective mechanism of CGA against DR was investigated. Streptozotocin (STZ) was used to induce diabetes in mice. CGA attenuated BRB dysfunction and reversed endothelial-mesenchymal transition (EndoMT) and epithelial-mesenchymal transition (EMT) in retinas in vivo. CGA inhibited microglia activation and reduced tumor necrosis factor (TNF)α release both in vivo and in vitro. CGA promoted nuclear factor erythroid 2-related factor 2 (Nrf2) activation and prevented EndoMT/EMT in TNFα-treated human retinal endothelial cells (HRECs) or retinal pigment epithelial APRE19 cells. CGA alleviated endothelial/epithelial barrier oxidative injury in HRECs or APRE19 cells stimulated with TNFα, but this effect was disappeared in cells co-incubated with Nrf2 inhibitor. Additionally, the CGA-supplied alleviation on BRB damage and EndoMT/EMT was markedly weakened in retinas from STZ-treated Nrf2 knock-out mice. All results suggest that CGA improves DR through attenuating BRB injury by reducing microglia-initiated inflammation and preventing TNFα-induced EndoMT/EMT and oxidative injury via inducing Nrf2 activation.
Collapse
Affiliation(s)
- Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Du
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingyu Zhou
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Li Y, Zhou L, Zhang M, Li R, Di G, Liu H, Wu X. Micelles based on polyvinylpyrrolidone VA64: A potential nanoplatform for the ocular delivery of apocynin. Int J Pharm 2022; 615:121451. [PMID: 35051535 DOI: 10.1016/j.ijpharm.2022.121451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
Abstract
Purpose of this work was to determine the feasibility of a nano-ophthalmic solution consisting of the nanocarrier polyvinylpyrrolidone VA64 (VA64) and encapsulated apocynin (APO) as treatment for ocular inflammatory diseases. Results showed the solution, termed APO-VA64 ophthalmic solution, could be fabricated via a simple process. This solution was clear, colorless, and possessed valuable characteristics, such as small micelle size (14.12 ± 1.24 nm), narrow micelle size distribution, and high APO encapsulation efficiency. Encapsulated APO was also found to have high aqueous solubility and in vitro release and antioxidant activities. APO-VA64 ophthalmic solution showed good ocular tolerance and demonstrated improved corneal permeation ability in mouse eyes. In an in vivo mice model, topically administered APO-VA64 ophthalmic solution was found to be significantly more effective against benzalkonium chloride-induced ocular damage than APO, VA64, and a mix of APO and VA64. Blockage of high mobility group box 1 signaling and its related proinflammatory cytokines were involved in this therapeutic effect. In conclusion, these in vitro and in vivo findings demonstrate that VA64 micelles are a potential nanoplatform for ocular drug delivery, and that the nanoformulation APO-VA64 ophthalmic solution may be a promising candidate for the efficacious treatment of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Yaru Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Lei Zhou
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Mengmeng Zhang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Runzhi Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Guohu Di
- 3Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hongyun Liu
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China.
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
14
|
Hyttinen J, Blasiak J, Tavi P, Kaarniranta K. Therapeutic potential of PGC-1α in age-related macular degeneration (AMD) - the involvement of mitochondrial quality control, autophagy, and antioxidant response. Expert Opin Ther Targets 2021; 25:773-785. [PMID: 34637373 DOI: 10.1080/14728222.2021.1991913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is the leading, cause of sight loss in the elderly in the Western world. Most patients remain still without any treatment options. The targeting of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a transcription co-factor, is a putative therapy against AMD. AREAS COVERED The characteristics of AMD and their possible connection with PGC-1α as well as the transcriptional and post-transcriptional control of PGC-1α are discussed. The PGC-1α-driven control of mitochondrial functions, and its involvement in autophagy and antioxidant responses are also examined. Therapeutic possibilities via drugs and epigenetic approaches to enhance PGC-1α expression are discussed. Authors conducted a search of literature mainly from the recent decade from the PubMed database. EXPERT OPINION Therapy options in AMD could include PGC-1α activation or stabilization. This could be achieved by a direct elevation of PGC-1α activity, a stabilization or modification of its upstream activators and inhibitors by chemical compounds, like 5-Aminoimidazole-4-carboxamide riboside, metformin, and resveratrol. Furthermore, manipulations with epigenetic modifiers of PGC-1α expression, including miRNAs, e.g. miR-204, are considered. A therapy aimed at PGC-1α up-regulation may be possible in other disorders besides AMD, if they are associated with disturbances in the mitochondria-antioxidant response-autophagy axis.
Collapse
Affiliation(s)
- Juha Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Sciences, University of Lodz, Lodz, Poland
| | - Pasi Tavi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
15
|
Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, Salminen A, Sinha D, Ferrington D. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog Retin Eye Res 2020; 79:100858. [PMID: 32298788 PMCID: PMC7650008 DOI: 10.1016/j.preteyeres.2020.100858] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is considered to be a key factor in age-related macular degeneration (AMD) pathology. RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. The ubiquitin-proteasome and the lysosomal/autophagy pathways are the two major proteolytic systems to remove damaged proteins and organelles. There is increasing evidence that proteostasis is disturbed in RPE as evidenced by lysosomal lipofuscin and extracellular drusen accumulation in AMD. Nuclear factor-erythroid 2-related factor-2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) are master transcription factors in the regulation of antioxidant enzymes, clearance systems, and biogenesis of mitochondria. The precise cause of RPE degeneration and the onset and progression of AMD are not fully understood. However, mitochondria dysfunction, increased reactive oxygen species (ROS) production, and mitochondrial DNA (mtDNA) damage are observed together with increased protein aggregation and inflammation in AMD. In contrast, functional mitochondria prevent RPE cells damage and suppress inflammation. Here, we will discuss the role of mitochondria in RPE degeneration and AMD pathology focused on mtDNA damage and repair, autophagy/mitophagy signaling, and regulation of inflammation. Mitochondria are putative therapeutic targets to prevent or treat AMD.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland and Tays Eye Centre, Tampere University Hospital, P.O.Box 2000, 33521 Tampere, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Szabolcs Felszeghy
- Department of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA, 90033, USA
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Debasish Sinha
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, PA 15224, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA
| | - Deborah Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Nita M, Grzybowski A. Interplay between reactive oxygen species and autophagy in the course of age-related macular degeneration. EXCLI JOURNAL 2020; 19:1353-1371. [PMID: 33192217 PMCID: PMC7658465 DOI: 10.17179/excli2020-2915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Pathological biomolecules such as lipofuscin, methylglyoxal-modified proteins (the major precursors of advanced glycationend products), misfolding protein deposits and dysfunctional mitochondria are source of oxidative stress and act as strong autophagic stimulators in age-related macular degeneration. Disturbed autophagy accelerates progression of the disease, since it leads to retinal cells' death and activates inflammation by the interplay with the NLRP3 inflammasome complex. Vascular dysfunction and hypoxia, as well as circulating autoantibodies against autophagy regulators (anti-S100A9, anti-ANXA5, and anti-HSPA8, A9 and B4) compromise an autophagy-mediated mechanism as well. Metformin, the autophagic stimulator, may act as a senostatic drug to inhibit the senescent phenotype in the age-related macular degeneration. PGC-1α , Sirt1 and AMPK represent new therapeutic targets for interventions in this disease.
Collapse
Affiliation(s)
- Malgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed" Katowice, Poland
| | - Andrzej Grzybowski
- Department of Ophthalmolgy, Medical Faculty, University of Warmia and Mazury, Olsztyn, Poland.,Institute for Research in Ophthalmology, Poznań, Poland
| |
Collapse
|
17
|
Compromised Barrier Function in Human Induced Pluripotent Stem-Cell-Derived Retinal Pigment Epithelial Cells from Type 2 Diabetic Patients. Int J Mol Sci 2019; 20:ijms20153773. [PMID: 31375001 PMCID: PMC6696227 DOI: 10.3390/ijms20153773] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
In diabetic patients, high blood glucose induces alterations in retinal function and can lead to visual impairment due to diabetic retinopathy. In immortalized retinal pigment epithelial (RPE) cultures, high glucose concentrations are shown to lead to impairment in epithelial barrier properties. For the first time, the induced pluripotent stem-cell-derived retinal pigment epithelium (hiPSC-RPE) cell lines derived from type 2 diabetics and healthy control patients were utilized to assess the effects of glucose concentration on the cellular functionality. We show that both type 2 diabetic and healthy control hiPSC-RPE lines differentiate and mature well, both in high and normal glucose concentrations, express RPE specific genes, secrete pigment epithelium derived factor, and form a polarized cell layer. Here, type 2 diabetic hiPSC-RPE cells had a decreased barrier function compared to controls. Added insulin increased the epithelial cell layer tightness in normal glucose concentrations, and the effect was more evident in type 2 diabetics than in healthy control hiPSC-RPE cells. In addition, the preliminary functionality assessments showed that type 2 diabetic hiPSC-RPE cells had attenuated autophagy detected via ubiquitin-binding protein p62/Sequestosome-1 (p62/SQSTM1) accumulation, and lowered pro- matrix metalloproteinase 2 (proMMP2) as well as increased pro-MMP9 secretion. These results suggest that the cellular ability to tolerate stress is possibly decreased in type 2 diabetic RPE cells.
Collapse
|
18
|
Sun HJQ, Xue DD, Lu BZ, Li Y, Sheng LX, Zhu Z, Zhou YW, Zhang JX, Lin GJ, Lin SZ, Yan GM, Chen YP, Yin W. A Novel Synthetic Steroid of 2β,3α,5α-Trihydroxy-androst-6-one Alleviates the Loss of Rat Retinal Ganglion Cells Caused by Acute Intraocular Hypertension via Inhibiting the Inflammatory Activation of Microglia. Molecules 2019; 24:molecules24020252. [PMID: 30641903 PMCID: PMC6358879 DOI: 10.3390/molecules24020252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 01/28/2023] Open
Abstract
Neuroinflammation has been well recognized as a key pathological event in acute glaucoma. The medical therapy of acute glaucoma mainly focuses on lowering intraocular pressure (IOP), while there are still scarce anti-inflammatory agents in the clinical treatment of acute glaucoma. Here we reported that β,3α,5α-trihydroxy-androst-6-one (sterone), a novel synthetic polyhydric steroid, blocked neuroinflammation mediated by microglia/macrophages and alleviated the loss of retinal ganglion cells (RGCs) caused by acute intraocular hypertension (AIH). The results showed that sterone significantly inhibited the morphological changes, the up-regulation of inflammatory biomarker ionized calcium-binding adapter molecule 1 (Iba-1), and the mRNA increase of proinflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) induced by lipopolysaccharide (LPS) in BV2 microglia and RAW264.7 macrophages. Moreover, immunofluorescence and western blotting analysis revealed that sterone markedly abrogated the nuclear translocation and phosphorylation of nuclear factor-κB (NF-κB) p65 subunit. Furthermore, sterone significantly suppressed the inflammatory microglial activation and RGCs’ reduction caused by retinal ischemia/reperfusion (I/R) injury in a rat AIH model. These results suggest sterone may be a potential candidate in the treatment of acute glaucoma caused by microglial activation-mediated neuroinflammatory injury.
Collapse
Affiliation(s)
- Hong-Jia-Qi Sun
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Dong-Dong Xue
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Bing-Zheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Long-Xiang Sheng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Zhu Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yu-Wei Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jing-Xia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University City, Guangzhou 510006, China.
| | - Gan-Jian Lin
- Guangzhou Cellprotek Pharmaceutical Co. Ltd., G Building F/4, 3 Lanyue Road, Science City, Guangzhou 510663, China.
| | - Sui-Zhen Lin
- Guangzhou Cellprotek Pharmaceutical Co. Ltd., G Building F/4, 3 Lanyue Road, Science City, Guangzhou 510663, China.
| | - Guang-Mei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yu-Pin Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|