1
|
Wu J, Fu X, Chen X, Shuai M, Liu M, Li J, Gao Y, Zhang J, Zhu YZ, Zhou N, Men K, Duan X. Efficient cancer immunogenetherapy by tumor cell lysate modified mRNA formulation. Biomaterials 2025; 324:123466. [PMID: 40489906 DOI: 10.1016/j.biomaterials.2025.123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/12/2025] [Accepted: 06/01/2025] [Indexed: 06/11/2025]
Abstract
mRNA-based gene therapy has an important role in cancer therapy. Intensive attention has been paid to investigate mRNA-delivery systems with high efficiency of delivery, but few studies have explored the immunotherapeutic capacity of the delivery vector. A tumor cell lysate represents an ideal resource for constructing advanced mRNA-delivery systems with immunostimulatory potential. However, the limited room of mRNA vectors and the complex composition of the cancer cell lysate are obstacles to their combined function. In this study, we present a novel tumor cell lysate-based mRNA delivery system, TLSV/IL-17A (tumor cell lysate vehicles carrying interleukin (IL)-17A-coded mRNA). TLSV demonstrates high mRNA delivery efficiency in both dendritic cells (DCs) and tumor cells. It triggers a robust anti-cancer immune response by specifically activating plasmacytoid dendritic cells (pDCs) and natural killer (NK) cells. By loading IL-17A mRNA, the TLSV/IL-17A effectively inhibits multiple colon cancer models. Our results demonstrate the therapeutic potential of TLSV system in tumor immunogenetherapy.
Collapse
Affiliation(s)
- Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xizi Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaohua Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ming Shuai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Mohan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingmei Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhun Zhu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine & (R & D Center) Laboratory for Drug Discovery from Natural Resource, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Na Zhou
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine & (R & D Center) Laboratory for Drug Discovery from Natural Resource, Macau University of Science and Technology, Macau SAR, 999078, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
2
|
Münick P, Strubel A, Balourdas DI, Funk JS, Mernberger M, Osterburg C, Dreier B, Schaefer JV, Tuppi M, Yüksel B, Schäfer B, Knapp S, Plückthun A, Stiewe T, Joerger AC, Dötsch V. DARPin-induced reactivation of p53 in HPV-positive cells. Nat Struct Mol Biol 2025; 32:790-801. [PMID: 39789211 DOI: 10.1038/s41594-024-01456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025]
Abstract
Infection of cells with high-risk strains of the human papillomavirus (HPV) causes cancer in various types of epithelial tissue. HPV infections are responsible for ~4.5% of all cancers worldwide. Tumorigenesis is based on the inactivation of key cellular control mechanisms by the viral proteins E6 and E7. The HPV E6 protein interacts with the cellular E3 ligase E6AP, and this complex binds to the p53 DNA-binding domain, which results in degradation of p53. Inhibition of this interaction has the potential to reactivate p53, thus preventing oncogenic transformation. Here we describe the characterization of a designed ankyrin repeat protein that binds to the same site as the HPV E6 protein, thereby displacing the E3 ligase and stabilizing p53. Interaction with the designed ankyrin repeat protein does not affect p53 DNA binding or the crucial MDM2 negative feedback loop but reactivates a p53-dependent transcriptional program in HeLa (HPV18-positive) and SiHa (HPV16-positive) cells, suggesting a potential therapeutic use.
Collapse
Affiliation(s)
- Philipp Münick
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Alexander Strubel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt, Germany
| | - Julianne S Funk
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Philipps-University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Philipps-University, Marburg, Germany
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marcel Tuppi
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Büşra Yüksel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Birgit Schäfer
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Philipps-University, Marburg, Germany
- Genomics Core Facility, Philipps-University, Marburg, Germany
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.
| |
Collapse
|
3
|
de Maria Aguiar Carvalho C, da Silva BB, Brianezi SFS, Sanfelice RC, Balogh DT, Assis L, Tim CR, Pavinatto A. Chitosan-based structures for skin repair: A literature review. Int J Biol Macromol 2025; 306:141426. [PMID: 40010450 DOI: 10.1016/j.ijbiomac.2025.141426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
The use of chitosan in technological and biomedical applications has gained significant relevance due to its functional properties. Among its biological activities, its hemostatic, analgesic, antibacterial and anti-inflammatory activities make this natural biopolymer one of the most promising in the development of structures for skin repair. Its application and effects can be optimized by exploring efficient structuring techniques. In this context, this review is based on scientific evidence reported in the last decade regarding the development and use of chitosan-based structures in the skin repair process to show the most common structuring methods, the main mechanisms of action of chitosan, and its potential applications in skin repair processes. Additionally, this article brings a compilation of scientific and commercial works on the use of chitosan-based structures, in addition to vitro and/or in vivo results.
Collapse
Affiliation(s)
| | - Bruno Batista da Silva
- Institute of Energy and Nuclear Research, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | | | | | - Debora Terezia Balogh
- São Carlos Institute of Physics, University of São Paulo, 13566-970 São Carlos, SP, Brazil
| | - Lívia Assis
- Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Carla Roberta Tim
- Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Adriana Pavinatto
- Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil; Luiz de Queiroz College of Agriculture, University of São Paulo, PO Box 9, Piracicaba, São Paulo 13418-970, Brazil.
| |
Collapse
|
4
|
Chen Q, Feng G, Shen Y, Li X, Pei Q, Wang H, Tian L, Cao Y, Wu J, Yang H, Mu L. An Anionic Cathelicidin Exerts Antimelanoma Effects in Mice by Promoting Pyroptosis. J Med Chem 2025; 68:8618-8633. [PMID: 40207383 DOI: 10.1021/acs.jmedchem.5c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
While cationic antimicrobial peptides (AMPs) are extensively studied for antitumor effects, anionic AMPs remain underexplored. Notably, no amphibian-derived anionic cathelicidins with antitumor activity have been reported. This study identifies Boma-CATH, a novel anionic cathelicidin (net charge-3) from Bombina maxima skin, which suppresses melanoma growth in mice and triggers pyroptosis-like morphological changes in A375 cells via the NLRP3/Caspase-1/GSDMD pathway. Further investigation revealed that ROS played a crucial role in promoting pyroptosis, as NAC (ROS scavenger) and Ac-YVAD-cmk (Caspase-1 inhibitor) reversed cell death and reduced LDH/IL-1β release in vitro and in vivo. GSDMD knockdown further validated its role. Additionally, Boma-CATH inhibited A375 cell proliferation, migration, and invasion, demonstrating dual antitumor mechanisms: pyroptosis induction and metastasis suppression. Importantly, Boma-CATH caused no adverse effects in mice, highlighting its therapeutic safety. These findings position Boma-CATH as a promising melanoma treatment and expand the mechanistic understanding of anionic AMPs in oncology.
Collapse
Affiliation(s)
- Qian Chen
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Guizhu Feng
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yan Shen
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiang Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiqi Pei
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hanying Wang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Li Tian
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yuanyuan Cao
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
5
|
Guyon L, Ladaycia A, Bosio A, Lemaire L, Franconi F, Lelièvre B, Lautram N, Pigeon P, Jaouen G, Passirani C, Lepeltier E. Self-assemblies of cell-penetrating peptides and ferrocifens: design and biological evaluation of an innovative platform for lung cancer treatment. NANOSCALE 2025; 17:9232-9244. [PMID: 40105246 DOI: 10.1039/d5nr00643k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chemotherapy, currently used for lung cancer treatment, often consists in a combination of drugs with a moderate efficacy and severe side effects. A major drawback of the classical inorganic drugs used is their hydrophobicity, leading to a very low blood availability and weak efficacy. To overcome this constraint, a nanoplatform was set up in order to vectorize a ferrocifen drug, an organometallic tamoxifen derivative known for its really potent in vitro activity, but as well for its poor water solubility. Two different ferrocifens were tested: P54 and P819. The covalent conjugation of a cell-penetrating peptide (CPP) to the ferrocifen was performed, leading to an amphiphilic prodrug, potentially able to self-assemble. The CPPs used in this study are polyarginines and RLW. Moreover, in order to bring stealth and mucopenetration properties, polyethylene glycol (PEG) was incorporated into the nanostructure. The co-nanoprecipitation of CPP-ferrocifen and PEG-ferrocifen was investigated to achieve self-assemblies. A comparison of the biological activities of different suspensions was performed in vitro on a healthy cell line and on two different lung cancer cell lines. The biological activity of P54 was increased by a factor of 9 with the Arg9-P54 suspension by increasing the cell internalization. Moreover, the P54-based-self-assemblies were chosen to test their in vivo activity on mice bearing lung tumors. The results showed that the intratracheal nebulization of Arg9-P54/PEG-P54 or Arg9-P54 suspensions slowed up significantly the evolution of lung cancer in mice: the suspension with PEG brought an additional comfort to the animal during the administration.
Collapse
Affiliation(s)
- Léna Guyon
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| | | | - Agnese Bosio
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| | - Laurent Lemaire
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
- Univ Angers, Univ Rennes, INRAE, Inserm, CNRS, PRISM, Biogenouest, F-49000 Angers, Rennes, France
| | - Florence Franconi
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
- Univ Angers, Univ Rennes, INRAE, Inserm, CNRS, PRISM, Biogenouest, F-49000 Angers, Rennes, France
| | - Bénédicte Lelièvre
- Centre régional de pharmacovigilance, Laboratoire de pharmacologie-toxicologie, CHU Angers, 4 rue Larrey, F-49100 Angers, France
| | - Nolwenn Lautram
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| | - Pascal Pigeon
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- PSL, Chimie ParisTech, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Gérard Jaouen
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- PSL, Chimie ParisTech, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Elise Lepeltier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
- Institut Universitaire de France (IUF), France
| |
Collapse
|
6
|
Maity B, Moorthy H, Govindaraju T. Tumor Microenvironment pH-Sensitive Peptidomimetics for Targeted Anticancer Drug Delivery. Biochemistry 2025; 64:1266-1275. [PMID: 40014813 DOI: 10.1021/acs.biochem.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Cell-penetrating peptides (CPPs) are known for their effective intracellular transport of bioactives such as therapeutic proteins, peptides, nucleic acid, and small molecule drugs. However, the excessive cationic charges that promote their membrane permeability result in nonselective delivery and cellular toxicity. In this study, we report a decamer cell-penetrating peptidomimetic, Hkd, designed to selectively deliver anticancer drugs into tumor cells in response to the acidic microenvironment. The pH-sensitive histidine (H) imidazole side chain undergoes protonation in acidic environments, facilitating membrane permeability. The rigid cyclic dipeptide (CDP) core (kd) of Hkd has multiple hydrogen bond donor and acceptor sites, enabling selective interaction-driven cellular uptake. Pharmacokinetic studies revealed the excellent serum stability of Hkd. Cellular uptake studies of Hkd showed improved uptake at a lower pH than physiological pH. Conjugation of Hkd to the anticancer drug camptothecin (Cpt) reduced nonselective drug transport to normal cells while effectively delivering the drug into cancerous cells at the tumor microenvironment pH and retaining the therapeutic potential of the drug. The systematic design of pH-sensitive peptidomimetics offers a viable method to overcome the challenges of stability and selectivity faced by traditional highly cationic CPPs, potentially expanding the application range of this delivery system.
Collapse
Affiliation(s)
- Biswanath Maity
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, Karnataka, India
| | - Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, Karnataka, India
| |
Collapse
|
7
|
Lim JX, Yong YK, Dewi FRP, Chan SY, Lim V. Nanoscale strategies: doxorubicin resistance challenges and enhancing cancer therapy with advanced nanotechnological approaches. Drug Deliv Transl Res 2025:10.1007/s13346-025-01790-3. [PMID: 39955406 DOI: 10.1007/s13346-025-01790-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Doxorubicin (DOX), an anthracycline, is widely used in cancer treatment by interfering RNA and DNA synthesis. Its broad antitumour spectrum makes it an effective therapy for a wide array of cancers. However, the prevailing drug-resistant cancer has proven to be a significant drawback to the success of the conventional chemotherapy regime and DOX has been identified as a major hurdle. Furthermore, the clinical application of DOX has been limited by rapid breakdown, increased toxicity, and decreased half-time life, highlighting an urgent need for more innovative delivery methods. Although advancements have been made, achieving a complete cure for cancer remains elusive. The development of nanoparticles offers a promising avenue for the precise delivery of DOX into the tumour microenvironment, aiming to increase the drug concentration at the target site while reducing side effects. Despite the good aspects of this technology, the classical nanoparticles struggle with issues such as premature drug leakage, low bioavailability, and insufficient penetration into tumours due to an inadequate enhanced permeability and retention (EPR) effect. Recent advancements have focused on creating stimuli-responsive nanoparticles and employing various chemosensitisers, including natural compounds and nucleic acids, fortifying the efficacy of DOX against resistant cancers. The efforts to refine nanoparticle targeting precision to improve DOX delivery are reviewed. This includes using receptor-mediated endocytosis systems to maximise the internalisation of drugs. The potential benefits and drawbacks of these novel techniques constitute significant areas of ongoing study, pointing to a promising path forward in addressing the challenges posed by drug-resistant cancers.
Collapse
Affiliation(s)
- Jian Xin Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
8
|
Yang X, Zhang J, Chen J, Xie Y, Hu T, Luo Q, Peng T, Luo H, Shi L, Wan J, Wang J, Yang X, Sheng J. Permeation enhancer decorated nanoparticles for oral delivery of insulin: manipulating the surface density of borneol and PEG for absorption barriers. Biomater Sci 2025; 13:743-757. [PMID: 39715336 DOI: 10.1039/d4bm01210k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Oral protein drugs' delivery faces challenges due to multiple absorption barriers for macromolecules. Co-administration with permeation enhancers and encapsulation in nano-carriers are two promising strategies to enhance their oral absorption. Herein, the poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are decorated with polyethylene glycol (PEG) and a traditional Chinese medicine-derived permeation enhancer borneol (BO) for oral insulin delivery. Compared with a physical mixture of BO and PEG-decorated PLGA NPs, PLGA-PEG-BO NPs significantly facilitate insulin permeation across intestinal epithelia through various transcytosis pathways. The relationship among the BO surface density, physico-chemical properties and multiple barriers penetration ability is further investigated. Increasing the BO density boosts penetration through the epithelial cell layer but reduces enzyme and mucus barrier penetration. When the surface PEG density is at 90% and BO density is at 10%, the NPs possess the strongest overall ability to overcome both the mucus layer barrier and epithelial cell barrier, as illustrated by the highest permeation efficiency through Caco-2/HT29-MTX cell co-cultural monolayers. In diabetic rodents, PLGA-PEG90%-BO10% NPs exhibit high intestinal safety and a substantial hypoglycemic effect, with insulin availability at 6.22 ± 2.30%, double that of orally delivered insulin PLGA-PEG NPs and far superior to a physical mixture with BO. This study reveals the importance of tailored absorption enhancer decoration for oral protein delivery.
Collapse
Affiliation(s)
- Xiaoyu Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, P. R. China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, P. R. China
| | - Jidong Zhang
- Department of Pharmacy, School Hospital, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
| | - Yunxuan Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tianci Hu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 201203 Shanghai, P. R. China.
| | - Qin Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 201203 Shanghai, P. R. China.
| | - Tianhao Peng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
| | - Han Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, 442000 Hubei, P. R. China
| | - Linlin Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, 471003 Luoyang, P. R. China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 201203 Shanghai, P. R. China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
| | - Jianyong Sheng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 201203 Shanghai, P. R. China.
| |
Collapse
|
9
|
Stengel D, Özdal ZD, Truszkowska M, Saleh A, Seybold A, Bernkop-Schnürch A. Limited cellular uptake of liposomes: Might thiolated phospholipids hold the key? Int J Pharm 2024; 667:124812. [PMID: 39424086 DOI: 10.1016/j.ijpharm.2024.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
AIM It was the aim of this study to evaluate the impact of surface thiolation on cellular uptake of liposomes. METHODS Liposomes were prepared via the thin lipid film method, incorporating cholesterol, dipalmitoylphosphatidylcholin (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol). The characterization of liposomes included size, polydispersity index, surface morphology, zeta potential and stability in simulated gastric and intestinal fluid. Hemocompatibility and cytotoxicity of liposomes were investigated. Cellular uptake studies were performed on Caco-2, HEK, HeLa and SW620 cells, involving both quantitative analysis through flow cytometry and qualitative evaluation via confocal microscopy. Additionally, we investigated the impact of an oxidizing agent on thiol-dependent uptake. RESULTS Non-thiolated and thiolated liposomes exhibited a size of 149 nm to 274 nm and a PDI between 0.3 and 0.45. Liposomes were stable in simulated intestinal and gastric fluid. Hemocompatibility studies and cytocompatibility studies of liposomes showed negligible toxic effects of liposomes. Cellular uptake of thiolated liposomes was 1.8-, 2.1-, 5.4- and 1.4-fold enhanced in comparison to non-thiolated liposomes on Caco-2, HEK, HELA and SW620 cells, respectively. The results were qualitatively verified by confocal microscopy. Thiol dependent uptake was influenced by oxidizing agents on HeLa cells. CONCLUSION Surface thiolation represents a promising approach to enhance cellular uptake of liposomes.
Collapse
Affiliation(s)
- Daniel Stengel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Zeliha Duygu Özdal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Martyna Truszkowska
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Ahmad Saleh
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Department of Pharmacy, Universitas Mandala Waluya, A.H.Nasution, Kendari, 93231, Southeast Sulawesi, Republic of Indonesia
| | - Anna Seybold
- Department of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
10
|
Saleh A, Stengel D, Truszkowska M, Blanco Massani M, Kali G, Bernkop-Schnürch A. Nanostructured lipid carriers decorated with polyphosphate coated linear and loop cell-penetrating peptides. Int J Pharm 2024; 667:124844. [PMID: 39461677 DOI: 10.1016/j.ijpharm.2024.124844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
AIM This study aimed to evaluate the cellular uptake of nanostructured lipid carriers (NLCs) decorated with polyphosphate coated linear and loop cell-penetrating peptides (CPPs). METHODS Linear-CPPs and loop-CPPs were synthesized via ring-opening polymerization and anchored on the surface NLCs, followed by coating with polyphosphate (PP). These nanocarriers (NCs) were characterized in terms of particle size, polydispersity index (PDI), and zeta potential. Cell viability and hemolysis, as well as enzyme-induced charge conversion via phosphate cleavage by free and membrane-bound intestinal alkaline phosphatase (IAP) were investigated. Cellular uptake studies by Caco-2 and HEK cells were quantitatively analyzed by flow cytometry and visualized by confocal microscopy. RESULTS A shift in charge from positive to negative was obtained for both linear- and loop-CPPs-NLCs by coating with PP. PP-linear-CPPs-NLCs and PP-loop-CPPs-NLCs exhibited a particle size < 270 nm and a PDI of approximately 0.3. They had a minor effect on cell viability and caused in a concentration of 0.1 % (m/v) around 10 % hemolysis within 24 h. IAP triggered the cleavage and release of monophosphate from the surface of NLCs causing charge conversion from -22.2 mV to + 5.3 mV (Δ27.5 mV) for PP-linear-CPPs-NLCs and from -19.2 mV to + 11.9 mV (Δ31.1 mV) for PP-loop-CPPs-NLCs. Inhibition of alkaline phosphatase activity on Caco-2 and HEK cells confirmed the involvement of this enzyme in charge conversion. PP-linear-CPPs-NLCs showed on Caco-2 cells a higher uptake than PP-loop-CPPs-NLCs, whereas on HEK cells uptake of both types of NLCs was on the same level. The results of cellular uptake were confirmed visually by confocal microscopy. CONCLUSION CPPs-NLCs coated with polyphosphate are a promising approach to overcome the polycationic dilemma and to enhance cellular uptake.
Collapse
Affiliation(s)
- Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82 6020, Innsbruck, Austria; Department of Pharmacy, Universitas Mandala Waluya, A.H.Nasution, Kendari 93231, Southeast Sulawesi, Indonesia
| | - Daniel Stengel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82 6020, Innsbruck, Austria
| | - Martyna Truszkowska
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82 6020, Innsbruck, Austria
| | - Mariana Blanco Massani
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82 6020, Innsbruck, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82 6020, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82 6020, Innsbruck, Austria.
| |
Collapse
|
11
|
Sun R, Wang Y, Sun Q, Su Y, Zhang J, Liu D, Huo R, Tian Y, Baldan M, Zhang S, Cui C. MMP-2 Responsive Gold Nanorods Loaded with HSP-70 siRNA for Enhanced Photothermal Tumor Therapy. Mol Pharm 2024; 21:5455-5468. [PMID: 39424288 PMCID: PMC11539064 DOI: 10.1021/acs.molpharmaceut.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 10/21/2024]
Abstract
Gold nanorods (Au NRs) are a valuable photothermal nanomaterial for tumor therapy. However, when treated with Au NRs for photothermal therapy, the expression of heat shock proteins in tumors will increase, which will induce heat resistance in tumor cells and reduce the photothermal therapeutic effect of Au NRs. By RNA interference, the expression of heat shock proteins would be effectively inhibited to improve the efficasy of tumor photothermal therapy. However, deep and noninvasive tissue penetration remains a great obstacle to applying siRNA successfully. Thus, the nanoplatform AGC/HSP-70 siRNA was designed for enhanced photothermal tumor therapy by RNA interference. In the AGC/HSP-70 siRNA complex, the Au-S bond modified the matrix metalloproteinase-2 (MMP-2)-sensitive peptide GPLGLAG on the surface of gold nanorods. Moreover, the natural basic polysaccharide (chitosan) was reacted with the peptide by an amide bond for delivering heat shock protein 70 silencing siRNA (HSP-70 siRNA). Modifying the MMP-2-sensitive linker could cause more Au NRs to accumulate in tumors to exert a photothermal effect and promote the penetration of HSP-70 siRNA and chitosan complexes into deep tumor tissues. In vitro experiments indicated that the enzymolysis of the MMP-2-sensitive linker for AGC/HSP-70 siRNA could promote the cellular uptake and perinuclear distribution of HSP-70 siRNA in tumor cells, which may be due to the smaller size and positive electricity of the complexes. All of these results ensured the efficient gene silencing effect of HSP-70 siRNA to enhance the photothermal therapeutic effect of Au NRs in tumor tissues, as demonstrated by the gene silencing and cellular apoptotic experiments. In vivo experiments further proved that the AGC/HSP-70 siRNA nanoplatform efficiently improved the photothermal effect of Au NRs. In summary, this work proved that AGC/HSP-70 siRNA is a promising drug delivery strategy for enhancing the photothermal therapy of tumors by regulating the photothermal sensitivity of deep tumor cells as well as retaining more Au NRs in tumor tissues, and also provides a novel strategy for tumor photothermal therapy.
Collapse
Affiliation(s)
- Ran Sun
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yaoqi Wang
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qi Sun
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yan Su
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Medical
Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National
Center for Children’s Health, Beijing 100045, China
| | - Jie Zhang
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Danni Liu
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ran Huo
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Tian
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Myagmarsuren Baldan
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Shuang Zhang
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Chunying Cui
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, China
- Beijing
Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Beijing Laboratory of Biomedical
Materials, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Liu X, Chen S, Huang J, Du Y, Luo Z, Zhang Y, Liu L, Chen Y. Synthetic polypeptides inhibit nucleic acid-induced inflammation in autoimmune diseases by disrupting multivalent TLR9 binding to LL37-DNA bundles. NATURE NANOTECHNOLOGY 2024; 19:1745-1756. [PMID: 39160338 DOI: 10.1038/s41565-024-01759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Complexes of extracellular nucleic acids (NAs) with endogenous proteins or peptides, such as LL37, break immune balance and cause autoimmune diseases, whereas NAs with arginine-enriched peptides do not. Inspired by this, we synthesize a polyarginine nanoparticle PEG-TK-NPArg, which effectively inhibits Toll-like receptor-9 (TLR9) activation, in contrast to LL37. To explore the discrepancy effect of PEG-TK-NPArg and LL37, we evaluate the periodic structure of PEG-TK-NPArg-NA and LL37-NA complexes using small-angle X-ray scattering. LL37-NA complexes have a larger inter-NA spacing that accommodates TLR9, while the inter-NA spacing in PEG-TK-NPArg-NA complexes mismatches with the cavity of TLR9, thus inhibiting an interaction with multiple TLR9s, limiting their clustering and damping immune induction. Subsequently, the inhibitory inflammation effect of PEG-TK-NPArg is proved in an animal model of rheumatoid arthritis. This work on how the scavenger-NA complexes inhibit the immune response may facilitate proof-of-concept research translating to clinical application.
Collapse
Affiliation(s)
- Xingliang Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- School of Engineering, Westlake University, Hangzhou, China
| | - Shi Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jing Huang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- School of Engineering, Westlake University, Hangzhou, China
| | - Yibo Du
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhi Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yue Zhang
- School of Engineering, Westlake University, Hangzhou, China.
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China.
- Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China.
- State Key Laboratory of Antiviral Drugs, Henan University, Zhengzhou, China.
| |
Collapse
|
13
|
Veider F, To D, Saleh A, Laffleur F, Kali G, Hense D, Strube OI, Bernkop-Schnürch A. Charge-converting nanocarriers: Phosphorylated polysaccharide coatings for overcoming intestinal barriers. Int J Biol Macromol 2024; 281:136308. [PMID: 39374725 DOI: 10.1016/j.ijbiomac.2024.136308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
For the design of charge-converting nanocarriers (NCs), cationic lipid-based NCs containing curcumin as model drug were coated with phosphorylated starch (NC-SP) and phosphorylated dextran (NC-DP). NCs showed a drug encapsulation efficiency of 94 % and had a mean size of 175 to 180 nm. The recorded zeta potential of the core NC (cNC) was +8.3 mV, whereas it reversed to -10.6 mV and -7.4 mV after decorating with SP and DP, respectively. Furthermore, a 3-fold higher amount of curcumin having been incorporated in these NCs remained stable within 2 h of UV exposure indicating a photoprotective effect of this delivery system. Charge-converting properties were confirmed by cleavage with intestinal alkaline phosphatase (IAP) and resulted in a zeta potential shift of Δ15.4 mV for NC-SP and Δ11.2 mV for NC-DP. NC-SP and NC-DP showed enhanced mucus permeating properties compared to cNC, that were additionally confirmed by an up to 2.2-fold improved cellular uptake on mucus secreting Caco-2/HT29-MTX cells. According to these results, NC-SP and NC-DP coatings hold promise as a viable and efficient strategy for charge-converting NCs.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Dennis To
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Dominik Hense
- Institute of Chemical Engineering, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Oliver I Strube
- Institute of Chemical Engineering, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
14
|
Blanco Massani M, To D, Meile S, Schmelcher M, Gintsburg D, Coraça-Huber DC, Seybold A, Loessner M, Bernkop-Schnürch A. Enzyme-responsive nanoparticles: enhancing the ability of endolysins to eradicate Staphylococcus aureus biofilm. J Mater Chem B 2024; 12:9199-9205. [PMID: 39263769 DOI: 10.1039/d4tb01122h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Stimuli-responsive nanomaterials show promise in eradicating Staphylococcus aureus biofilm from implants. Peptidoglycan hydrolases (PGHs) are cationic antimicrobials that can be bioengineered to improve the targeting of persisters and drug-resistant bacteria. However, these molecules can be degraded before reaching the target and/or present limited efficacy against biofilm. Therefore, there is an urgent need to improve their potency. Herein, PGH-polyphosphate nanoparticles (PGH-PP NPs) are formed by ionotropic gelation between cationic PGHs and anionic polyphosphate, with the aim of protecting PHGs and delivering them at the target site triggered by alkaline phosphatase (AP) from S. aureus biofilm. Optimized conditions for obtaining M23-PP NPs and GH15-PP NPs are presented. Size, zeta potential, and transmission electron microscopy imaging confirm the nanoscale size. The system demonstrates outstanding performance, as evidenced by a dramatic reduction in PGHs' minimum inhibitory concentration and minimum bactericidal concentration, together with protection against proteolytic effects, storage stability, and cytotoxicity towards the Caco-2 and HeLa cell lines. Time-kill experiments show the great potential of these negatively charged delivery systems in overcoming the staphylococcal biofilm barrier. Efficacy under conditions inhibiting AP proves the enzyme-triggered delivery of PGHs. The enzyme-responsive PGH-PP NPs significantly enhance the effectiveness of PGHs against bacteria residing in biofilm, offering a promising strategy for eradicating S. aureus biofilm.
Collapse
Affiliation(s)
- Mariana Blanco Massani
- Centre for Chemistry and Biomedicine (CCB), Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Dennis To
- Centre for Chemistry and Biomedicine (CCB), Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Susanne Meile
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - David Gintsburg
- Centre for Chemistry and Biomedicine (CCB), Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Débora C Coraça-Huber
- Biofilm Lab, Experimental Orthopedics, University Hospital for Orthopaedics and Traumatology, Medical University Innsbruck, Müllerstrasse 44, 1. Floor, 6020 Innsbruck, Austria
| | - Anna Seybold
- Department of Zoology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Martin Loessner
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Andreas Bernkop-Schnürch
- Centre for Chemistry and Biomedicine (CCB), Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
15
|
Zhao Y, Hou J, Guo L, Zhu S, Hou X, Cao S, Zhou M, Shi J, Li J, Liu K, Zhang H, Wang L, Fan C, Zhu Y. DNA-Engineered Degradable Invisibility Cloaking for Tumor-Targeting Nanoparticles. J Am Chem Soc 2024; 146:25253-25262. [PMID: 39196310 DOI: 10.1021/jacs.4c09479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Nanoparticle (NP) delivery systems have been actively exploited for cancer therapy and vaccine development. Nevertheless, the major obstacle to targeted delivery lies in the substantial liver sequestration of NPs. Here we report a DNA-engineered approach to circumvent liver phagocytosis for enhanced tumor-targeted delivery of nanoagents in vivo. We find that a monolayer of DNA molecules on the NP can preferentially adsorb a dysopsonin protein in the serum to induce functionally invisibility to livers; whereas the tumor-specific uptake is triggered by the subsequent degradation of the DNA shell in vivo. The degradation rate of DNA shells is readily tunable by the length of coated DNA molecules. This DNA-engineered invisibility cloaking (DEIC) is potentially generic as manifested in both Ag2S quantum dot- and nanoliposome-based tumor-targeted delivery in mice. Near-infrared-II imaging reveals a high tumor-to-liver ratio of up to ∼5.1, approximately 18-fold higher than those with conventional nanomaterials. This approach may provide a universal strategy for high-efficiency targeted delivery of theranostic agents in vivo.
Collapse
Affiliation(s)
- Yan Zhao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Junjun Hou
- Zhangjiang Laboratory, 100 Haike Rd, Shanghai 201210, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Shitai Zhu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaoling Hou
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | | | - Mo Zhou
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiye Shi
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- Zhangjiang Laboratory, 100 Haike Rd, Shanghai 201210, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Corner Stone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhu
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
16
|
Liu M, Sun Y, Zhou Y, Chen Y, Yu M, Li L, Yan L, Yuan Y, Chen J, Zhou K, Shan H, Peng X. A Novel Coacervate Embolic Agent for Tumor Chemoembolization. Adv Healthc Mater 2024; 13:e2304488. [PMID: 38588047 DOI: 10.1002/adhm.202304488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Indexed: 04/10/2024]
Abstract
Transcatheter arterial chemoembolization (TACE) has proven effective in blocking tumor-supplied arteries and delivering localized chemotherapeutic treatment to combat tumors. However, traditional embolic TACE agents exhibit certain limitations, including insufficient chemotherapeutic drug-loading and sustained-release capabilities, non-biodegradability, susceptibility to aggregation, and unstable mechanical properties. This study introduces a novel approach to address these shortcomings by utilizing a complex coacervate as a liquid embolic agent for tumor chemoembolization. By mixing oppositely charged quaternized chitosan (QCS) and gum arabic (GA), a QCS/GA polymer complex coacervate with shear-thinning property is obtained. Furthermore, the incorporation of the contrast agent Iohexol (I) and the chemotherapeutic doxorubicin (DOX) into the coacervate leads to the development of an X-ray-opaque QCS/GA/I/DOX coacervate embolic agent capable of carrying drugs. This innovative formulation effectively embolizes the renal arteries without recanalization. More importantly, the QCS/GA/I/DOX coacervate can successfully embolize the supplying arteries of the VX2 tumors in rabbit ear and liver. Coacervates can locally release DOX to enhance its therapeutic effects, resulting in excellent antitumor efficacy. This coacervate embolic agent exhibits substantial potential for tumor chemoembolization due to its shear-thinning performance, excellent drug-loading and sustained-release capabilities, good biocompatibility, thrombogenicity, biodegradability, safe and effective embolic performance, and user-friendly application.
Collapse
Affiliation(s)
- Menghui Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yang Sun
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yitong Zhou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yanlv Chen
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Meng Yu
- Department of Neonatology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Liujun Li
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Leye Yan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yajun Yuan
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jiayao Chen
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Kaixiang Zhou
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Xin Peng
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| |
Collapse
|
17
|
Hofmann S, Dombrowsky C, Happel D, Dessin C, Cermjani E, Cica M, Avrutina O, Sewald N, Neumann H, Kolmar H. Conditional Cell Penetration of Masked CPPs by an ADEPT-like Approach. ACS Chem Biol 2024; 19:1320-1329. [PMID: 38733564 DOI: 10.1021/acschembio.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The intracellular delivery of cargos via cell penetrating peptides (CPPs) holds significant promise as a drug delivery vehicle, but a major issue is their lack of cell type specificity, which can lead to detrimental off-target effects. We use an ADEPT-like concept to introduce conditional and selective activation of cellular uptake by using the lysine-rich, cationic, and amphiphilic L17E peptide as a model CPP. By masking the lysine residues of the L17E peptide with enzyme-cleavable acetyl protecting groups, the delivery of the covalently conjugated fluorophore TAMRA to HeLa cells was diminished. Recovery of cellular uptake could be achieved by deacetylation of the masked acetylated L17E peptide using the NAD-dependent sirtuin 2 (SirT2) deacetylase in vitro. Finally, trastuzumab-SirT2 and anti-B7H3-SirT2 antibody-enzyme conjugates were generated for the conditional and selective delivery of a cryptophycin cytotoxin by the L17E peptide. While the masked peptide still demonstrated some cytotoxicity, selective cell killing mediated by the antibody-enzyme conjugates was observed.
Collapse
Affiliation(s)
- Sarah Hofmann
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Carolin Dombrowsky
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Dominic Happel
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Cedric Dessin
- Department of Chemistry/Organic Chemistry, Bielefeld University, Centrum für Biotechnologie - CeBiTec, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Egzon Cermjani
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Matijas Cica
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Norbert Sewald
- Department of Chemistry/Organic Chemistry, Bielefeld University, Centrum für Biotechnologie - CeBiTec, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Heinz Neumann
- Department of Chemical Technology and Biotechnology, Darmstadt University of Applied Sciences, Stephanstraße 7, 64295 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| |
Collapse
|
18
|
Xiang K, Li Y, Cong H, Yu B, Shen Y. Peptide-based non-viral gene delivery: A comprehensive review of the advances and challenges. Int J Biol Macromol 2024; 266:131194. [PMID: 38554914 DOI: 10.1016/j.ijbiomac.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Gene therapy is the most effective treatment option for diseases, but its effectiveness is affected by the choice and design of gene carriers. The genes themselves have to pass through multiple barriers in order to enter the cell and therefore require additional vectors to carry them inside the cell. In gene therapy, peptides have unique properties and potential as gene carriers, which can effectively deliver genes into specific cells or tissues, protect genes from degradation, improve gene transfection efficiency, and enhance gene targeting and biological responsiveness. This paper reviews the research progress of peptides and their derivatives in the field of gene delivery recently, describes the obstacles encountered by foreign materials to enter the interior of the cell, and introduces the following classes of functional peptides that can carry materials into the interior of the cell, and assist in transmembrane translocation of carriers, thus breaking through endosomal traps to enable successful entry of genetic materials into the nucleus of the cell. The paper also discusses the combined application of peptide vectors with other vectors to enhance its transfection ability, explores current challenges encountered by peptide vectors, and looks forward to future developments in the field.
Collapse
Affiliation(s)
- Kai Xiang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
Summonte S, Sanchez Armengol E, Ricci F, Sandmeier M, Hock N, Güclü-Tuncyüz A, Bernkop-Schnürch A. Phosphatase-degradable nanoparticles providing sustained drug release. Int J Pharm 2024; 654:123983. [PMID: 38460768 DOI: 10.1016/j.ijpharm.2024.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
AIM The study aimed to develop enzyme-degradable nanoparticles comprising polyphosphates and metal cations providing sustained release of the antibacterial drug ethacridine (ETH). METHODS Calcium polyphosphate (Ca-PP), zinc polyphosphate (Zn-PP) and iron polyphosphate nanoparticles (Fe-PP NPs) were prepared by co-precipitation of sodium polyphosphate with cations and ETH. Developed nanocarriers were characterized regarding particle size, PDI, zeta potential, encapsulation efficiency and drug loading. Toxicological profile of nanocarriers was assessed via hemolysis assay and cell viability on human blood erythrocytes and HEK-293 cells, respectively. The enzymatic degradation of NPs was evaluated in presence of alkaline phosphatase (ALP) monitoring the release of monophosphate, shift in zeta potential and particle size as well as drug release. The antibacterial efficacy against Escherichia coli was determined via microdilution assay. RESULTS NPs were obtained in a size range between 300 - 480 nm displaying negative zeta potential values. Encapsulation efficiency was in the range of 83.73 %- 95.99 %. Hemolysis assay underlined sufficient compatibility of NPs with blood cells, whereas drug and NPs showed a concentration dependent effect on HEK-293 cells viability. Ca- and Zn-PP NPs exhibited remarkable changes in zeta potential, particle size, monophosphate and drug release upon incubation with ALP, compared to Fe-PP NPs showing only minor differences. The released ETH from Ca- and Zn-PP nanocarriers retained the antibacterial activity against E. coli, whereas no antibacterial effect was observed with Fe-PP NPs. CONCLUSION Polyphosphate nanoparticles cross-linked with divalent cations and ETH hold promise for sustained drug delivery triggered by ALP for parental administration.
Collapse
Affiliation(s)
- Simona Summonte
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Eva Sanchez Armengol
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Fabrizio Ricci
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Matthias Sandmeier
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Nathalie Hock
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Ayse Güclü-Tuncyüz
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
| |
Collapse
|
20
|
Hua T, Li S, Han B. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier. Expert Opin Drug Deliv 2024; 21:553-572. [PMID: 38720439 DOI: 10.1080/17425247.2024.2339335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.
Collapse
Affiliation(s)
- Tangsiyuan Hua
- School of Pharmacy, Changzhou Univesity, Changzhou, PR China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
21
|
Leer K, Reichel LS, Wilhelmi M, Brendel JC, Traeger A. Tailoring Gene Transfer Efficacy through the Arrangement of Cationic and Anionic Blocks in Triblock Copolymer Micelles. ACS Macro Lett 2024:158-165. [PMID: 38230657 PMCID: PMC10883036 DOI: 10.1021/acsmacrolett.3c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The arrangement of charged segments in triblock copolymer micelles affects the gene delivery potential of polymeric micelles and can increase the level of gene expression when an anionic segment is incorporated in the outer shell. Triblock copolymers were synthesized by RAFT polymerzation with narrow molar mass distributions and assembled into micelles with a hydrophobic core from poly(n-butyl acrylate). The ionic shell contained either (i) an anionic segment followed by a cationic segment (HAC micelles) or (ii) a cationic block followed by an anionic block (HCA micelles). The pH-responsive anionic block contained 2-carboxyethyl acrylamide (CEAm), while the cationic block comprised 3-guanidinopropyl acrylamide (GPAm). Increasing the molar content of CEAm in HAC and HCA micelles from 6 to 13 mol % improved cytocompatibility and the endosomal escape property, while the HCA micelle with the highest mol % of anionic charges in the outer shell exhibited the highest gene expression. It became evident that improved membrane interaction of the best performing HCA micelle contributed to achieving high gene expression.
Collapse
Affiliation(s)
- Katharina Leer
- Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Liên S Reichel
- Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Mara Wilhelmi
- Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
22
|
Veider F, Sanchez Armengol E, Bernkop-Schnürch A. Charge-Reversible Nanoparticles: Advanced Delivery Systems for Therapy and Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304713. [PMID: 37675812 DOI: 10.1002/smll.202304713] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/24/2023] [Indexed: 09/08/2023]
Abstract
The past two decades have witnessed a rapid progress in the development of surface charge-reversible nanoparticles (NPs) for drug delivery and diagnosis. These NPs are able to elegantly address the polycation dilemma. Converting their surface charge from negative/neutral to positive at the target site, they can substantially improve delivery of drugs and diagnostic agents. By specific stimuli like a shift in pH and redox potential, enzymes, or exogenous stimuli such as light or heat, charge reversal of NP surface can be achieved at the target site. The activated positive surface charge enhances the adhesion of NPs to target cells and facilitates cellular uptake, endosomal escape, and mitochondrial targeting. Because of these properties, the efficacy of incorporated drugs as well as the sensitivity of diagnostic agents can be essentially enhanced. Furthermore, charge-reversible NPs are shown to overcome the biofilm formed by pathogenic bacteria and to shuttle antibiotics directly to the cell membrane of these microorganisms. In this review, the up-to-date design of charge-reversible NPs and their emerging applications in drug delivery and diagnosis are highlighted.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| |
Collapse
|
23
|
Mehta P, Shende P. Evasion of opsonization of macromolecules using novel surface-modification and biological-camouflage-mediated techniques for next-generation drug delivery. Cell Biochem Funct 2023; 41:1031-1043. [PMID: 37933222 DOI: 10.1002/cbf.3880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Opsonization plays a pivotal role in hindering controlled drug release from nanoformulations due to macrophage-mediated nanoparticle destruction. While first and second-generation delivery systems, such as lipoplexes (50-150 nm) and quantum dots, hold immense potential in revolutionizing disease treatment through spatiotemporal controlled drug delivery, their therapeutic efficacy is restricted by the selective labeling of nanoparticles for uptake by reticuloendothelial system and mononuclear phagocyte system via various molecular forces, such as electrostatic, hydrophobic, and van der Waals bonds. This review article presents novel insights into surface-modification techniques utilizing macromolecule-mediated approaches, including PEGylation, di-block copolymerization, and multi-block polymerization. These techniques induce stealth properties by generating steric forces to repel micromolecular-opsonins, such as fibrinogen, thereby mitigating opsonization effects. Moreover, advanced biological methods, like cellular hitchhiking and dysopsonic protein adsorption, are highlighted for their potential to induce biological camouflage by adsorbing onto the nanoparticulate surface, leading to immune escape. These significant findings pave the way for the development of long-circulating next-generation nanoplatforms capable of delivering superior therapy to patients. Future integration of artificial intelligence-based algorithms, integrated with nanoparticle properties such as shape, size, and surface chemistry, can aid in elucidating nanoparticulate-surface morphology and predicting interactions with the immune system, providing valuable insights into the probable path of opsonization.
Collapse
Affiliation(s)
- Parth Mehta
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| | - Pravin Shende
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| |
Collapse
|
24
|
Yu H, Piao Y, Zhang Y, Xiang J, Shao S, Tang J, Zhou Z, Shen Y. Cell-Selective Binding Zwitterionic Polymeric Micelles Boost the Delivery Efficiency of Antibiotics. ACS NANO 2023; 17:22430-22443. [PMID: 37933869 DOI: 10.1021/acsnano.3c05181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Effective accumulation and penetration of antibiotics in the biofilm are critical issues for bacterial infection treatment. Red blood cells (RBCs) have been widely utilized to hitchhike nanocarriers for drug delivery. It is vital and challenging to find a nanocarrier with an appropriate affinity toward RBCs and bacteria for selective hitchhiking and release that determines the drug delivery efficiency and specificity. Herein, we report a zwitterionic polymer poly(2-(N-oxide-N,N-diethylamino)ethyl methacrylate) (OPDEA)-based micelle, which can hitchhike on RBCs in blood and preferentially release in the infection site. We found that OPDEA could bind to the RBCs cell membrane via phospholipid-related affinity and transfer to Gram-positive bacteria due to nearly an order of magnitude stronger interaction with the bacteria cell wall. The zwitterionic surface and cell-wall affinity of OPDEA-based micelles also promote their penetration in biofilm. The clarithromycin-loaded OPDEA micelles show efficient drug delivery into the infection site, resulting in excellent therapeutic performance in both peritonitis and pneumonia models by intravenous or spray administration. This simple RBC-selective hitchhiking and releasing antibiotic delivery system provides a promising strategy for the design of antibacterial nanomedicines.
Collapse
Affiliation(s)
- Huahai Yu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yifan Zhang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
25
|
Akkuş-Dağdeviren ZB, Arısoy S, Friedl JD, Fürst A, Saleh A, Bernkop-Schnürch A. Polyphosphate coated nanoparticles: Enzyme-activated charge-reversal gene delivery systems. Int J Pharm 2023; 646:123474. [PMID: 37793466 DOI: 10.1016/j.ijpharm.2023.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/31/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
AIM The current study aimed to develop enzyme-activated charge-reversal lipid nanoparticles (LNPs) as novel gene delivery systems. METHODS Palmitic acid was covalently bound to protamine being utilised as transfection promoter to anchor it on the surfaces of LNPs. Green fluorescent protein (GFP) encoding plasmid DNA (pDNA) was ion paired with various cationic counter ions to achieve high encapsulation in LNPs. Protamine-decorated LNPs were prepared by solvent injection method followed by coating with sodium tripolyphosphate (TPP) to generate a bio-inert anionic outer surface. Resulting LNPs were characterised regarding size, polydispersity, zeta potential and encapsulation efficiency. Enzyme-triggered charge-reversal of LNPs was investigated using isolated alkaline phosphatase (ALP) monitoring changes in zeta potential as well as monophosphate release. Furthermore, monophosphate release, cell viability and transfection efficiency were evaluated on a human alveolar epithelial (A549) cell line. RESULTS Protamine-decorated and TPP-coated (Prot-pDNA/DcChol-TPP) LNPs displayed a mean size of 298.8 ± 17.4 nm and a zeta potential of -13.70 ± 0.61 mV. High pDNA encapsulation was achieved with hydrophobic ion pairs of pDNA with 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride (DcChol). Zeta potential of Prot-pDNA/DcChol-TPP LNPs reversed to positive values with a total Δ26.8 mV shift upon incubation with ALP. Conformably, a notable amount of monophosphate was released upon incubation of Prot-pDNA/DcChol-TPP LNPs with isolated as well as cell-associated ALP. A549 cells well tolerated LNPs displaying more than 95 % viability. Compared with naked pDNA, unmodified LNPs and control LNPs, Prot-pDNA/DcChol-TPP LNPs showed a significantly increased transfection efficiency. CONCLUSION Prot-pDNA/DcChol-TPP LNPs can be regarded as promising gene delivery systems.
Collapse
Affiliation(s)
- Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Sema Arısoy
- Department of Pharmaceutical Technology, Selcuk University, Faculty of Pharmacy, Konya, Turkey
| | - Julian David Friedl
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmacy, Universitas Mandala Waluya, A.H. Nasution, Kendari 93231, Southeast Sulawesi, Republic of Indonesia
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
26
|
Sun H, Qi H, Hu W, Guan L, Xue J, Ai Y, Wang Y, Ding M, Liang Q. Single Nanovesicles Tracking Reveals Their Heterogeneous Extracellular Adsorptions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301888. [PMID: 37467296 DOI: 10.1002/smll.202301888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/07/2023] [Indexed: 07/21/2023]
Abstract
The vigorous nanomedicine offers significant possibilities for effective therapeutics of various diseases, and nanovesicles (NVs) represented by artificial liposomes and natural exosomes and cytomembranes especially show great potential. However, their complex interactions with cells, particularly the heterogeneous extracellular adsorptions, are difficult to analyze spatiotemporally due to the transient dynamics. In this study, by single NVs tracking, the extracellular NVs adsorptions are directly observed and their heterogeneous characteristics are revealed. Briefly, plenty of NVs adsorbed on HCT116 cells are tracked and classified, and it is discovered that they exhibit various diffusion properties from different extracellular regions: stable adsorptions on the rear surface and restricted adsorptions on the front protrusion. After the hydrolysis of hyaluronic acid in the extracellular matrix by hyaluronidase, the restricted adsorptions are further weakened and manifested as dissociative adsorptions, which demonstrated reduced total NVs adsorptions from a single-cell and single-particle perspective. Compared with traditional static analysis, the spatiotemporal tracking and heterogeneous results not only reveal the extracellular NVs-cell interactions but also inspire a wide variety of nanomedicine and their nano-investigations.
Collapse
Affiliation(s)
- Hua Sun
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huibo Qi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liandi Guan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jianfeng Xue
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Fürst A, Shahzadi I, Akkuş-Dağdeviren ZB, Schöpf AM, Gust R, Bernkop-Schnürch A. Zeta potential shifting nanoemulsions comprising single and gemini tyrosine-based surfactants. Eur J Pharm Sci 2023; 189:106538. [PMID: 37495057 DOI: 10.1016/j.ejps.2023.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
AIM This study aims to design and evaluate zeta potential shifting nanoemulsions comprising single and gemini type tyrosine-based surfactants for specific cleavage by tyrosine phosphatase. METHODS Tyrosine-based surfactants, either single 4-(2-amino-3-(dodecylamino)-3-oxopropyl)phenyl dihydrogen phosphate (AF1) or gemini 4-(2-amino-3-((1-(dodecylamino)-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)amino)-3-oxopropyl)phenyl dihydrogen phosphate (AF2) type were synthesized via amide bond formation of tyrosine with dodecylamine followed by phosphorylation. These surfactants were incorporated into nanoemulsions. Nanoemulsions were monitored by incubation with isolated tyrosine phosphatase as well as secreted tyrosine phosphatase of Escherichia coli in terms of phosphate release and zeta potential change. RESULTS Via isolated tyrosine phosphatase, and mediated by E. coli, phosphate groups of either single or gemini tyrosine-based surfactants could be cleaved by secreted tyrosine phosphatase. Nanoemulsions comprising a single tyrosine-based surfactant resulted in a charge shift from - 13.46 mV to - 4.41 mV employing isolated tyrosine phosphatase whilst nanoemulsions consisting of a gemini tyrosine-based surfactant showed a shift in zeta potential from - 15.92 mV to - 5.86 mV, respectively. CONCLUSION Nanoemulsions containing tyrosine-based surfactants represent promising zeta potential shifting nanocarrier systems targeting tyrosine phosphatase secreting bacteria.
Collapse
Affiliation(s)
- Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Anna Maria Schöpf
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Ronald Gust
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
28
|
Tyeb S, Verma V, Kumar N. Polysaccharide based transdermal patches for chronic wound healing: Recent advances and clinical perspective. Carbohydr Polym 2023; 316:121038. [PMID: 37321732 DOI: 10.1016/j.carbpol.2023.121038] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Polysaccharides form a major class of natural polymers with diverse applications in biomedical science and tissue engineering. One of the key thrust areas for polysaccharide materials is skin tissue engineering and regeneration, whose market is estimated to reach around 31 billion USD globally by 2030, with a compounded annual growth rate of 10.46 %. Out of this, chronic wound healing and management is a major concern, especially for underdeveloped and developing nations, mainly due to poor access to medical interventions for such societies. Polysaccharide materials have shown promising results and clinical potential in recent decades with regard to chronic wound healing. Their low cost, ease of fabrication, biodegradability, and ability to form hydrogels make them ideal candidates for managing and healing such difficult-to-heal wounds. The present review presents a summary of the recently explored polysaccharide-based transdermal patches for managing and healing chronic wounds. Their efficacy and potency of healing both as active and passive wound dressings are evaluated in several in-vitro and in-vivo models. Finally, their clinical performances and future challenges are summarized to draw a road map towards their role in advanced wound care.
Collapse
Affiliation(s)
- Suhela Tyeb
- Department of Materials Engineering, Indian Institute of Science Bangalore, Bengaluru 560012, India
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur 208016, India; National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nitesh Kumar
- Department of Materials Engineering, Indian Institute of Technology Jammu, Jammu 181221, India.
| |
Collapse
|
29
|
Li J, Pan G, Zyryanov GV, Peng Y, Zhang G, Ma L, Li S, Chen P, Wang Z. Positively Charged Semiconductor Conjugated Polymer Nanomaterials with Photothermal Activity for Antibacterial and Antibiofilm Activities In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40864-40876. [PMID: 37603418 DOI: 10.1021/acsami.3c00556] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Biofilm infections are associated with most human bacterial infections and are prone to bacterial multidrug resistance. There is an urgent need to develop an alternative approach to antibacterial and antibiofilm agents. Herein, two positively charged semiconductor conjugated polymer nanoparticles (SPPD and SPND) were prepared for additive antibacterial and antibiofilm activities with the aid of positive charge and photothermal therapy (PTT). The positive charge of SPPD and SPND was helpful in adhering to the surface of bacteria. With an 808 nm laser irradiation, the photothermal activity of SPPD and SPND could be effectively transferred to bacteria and biofilms. Under the additive effect of positive charge and PTT, the inhibition rate of Staphylococcus aureus (S. aureus) treated with SPPD and SPND (40 μg/mL) could reach more than 99.2%, and the antibacterial activities of SPPD and SPND against S. aureus biofilms were 93.5 and 95.8%. SPPD presented better biocompatibility than SPND and exhibited good antibiofilm properties in biofilm-infected mice. Overall, this additive treatment strategy of positive charge and PTT provided an optional approach to combat biofilms.
Collapse
Affiliation(s)
- Jiguang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Chemical Experimental Teaching Demonstration Center, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Guoyong Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Grigory V Zyryanov
- Russia Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Ural Federal University, Yekaterinburg 620219, Russia
| | - Yanghan Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peiyu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
30
|
Yin Z, Liu Y, Anniwaer A, You Y, Guo J, Tang Y, Fu L, Yi L, Huang C. Rational Designs of Biomaterials for Combating Oral Biofilm Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305633. [PMID: 37566788 DOI: 10.1002/adma.202305633] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Oral biofilms, which are also known as dental plaque, are the culprit of a wide range of oral diseases and systemic diseases, thus contributing to serious health risks. The manner of how to achieve good control of oral biofilms has been an increasing public concern. Novel antimicrobial biomaterials with highly controllable fabrication and functionalization have been proven to be promising candidates. However, previous reviews have generally emphasized the physicochemical properties, action mode, and application effectiveness of those biomaterials, whereas insufficient attention has been given to the design rationales tailored to different infection types and application scenarios. To offer guidance for better diversification and functionalization of anti-oral-biofilm biomaterials, this review details the up-to-date design rationales in three aspects: the core strategies in combating oral biofilm, as well as the biomaterials with advanced antibiofilm capacity and multiple functions based on the improvement or combination of the abovementioned antimicrobial strategies. Thereafter, insights on the existing challenges and future improvement of biomaterial-assisted oral biofilm treatments are proposed, hoping to provide a theoretical basis and reference for the subsequent design and application of antibiofilm biomaterials.
Collapse
Affiliation(s)
- Zhengrong Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaxi Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Annikaer Anniwaer
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yuan You
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingmei Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ying Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Renmin Hospital of Wuhan University, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430072, China
| | - Luyao Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
31
|
Zhao J, Qiu P, Wang Y, Wang Y, Zhou J, Zhang B, Zhang L, Gou D. Chitosan-based hydrogel wound dressing: From mechanism to applications, a review. Int J Biol Macromol 2023:125250. [PMID: 37307982 DOI: 10.1016/j.ijbiomac.2023.125250] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
As promising biomaterials, hydrogels are widely used in the medical engineering field, especially in wound repairing. Compared with traditional wound dressings, such as gauze and bandage, hydrogel could absorb and retain more water without dissolving or losing its three-dimensional structure, thus avoiding secondary injury and promoting wound healing. Chitosan and its derivatives have become hot research topics for hydrogel wound dressing production due to their unique molecular structure and diverse biological activities. In this review, the mechanism of wound healing was introduced systematically. The mechanism of action of chitosan in the first three stages of wound repair (hemostasis, antimicrobial properties and progranulation), the effect of chitosan deacetylation and the molecular weight on its performance are analyzed. Additionally, the recent progress in intelligent and drug-loaded chitosan-based hydrogels and the features and advantages of chitosan were discussed. Finally, the challenges and prospects for the future development of chitosan-based hydrogels were discussed.
Collapse
Affiliation(s)
- Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jianing Zhou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Baochun Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
32
|
Asad M, Rasul A, Abbas G, Shah MA, Nazir I. Self-emulsifying drug delivery systems: A versatile approach to enhance the oral delivery of BCS class III drug via hydrophobic ion pairing. PLoS One 2023; 18:e0286668. [PMID: 37294790 PMCID: PMC10256195 DOI: 10.1371/journal.pone.0286668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/20/2023] [Indexed: 06/11/2023] Open
Abstract
Biopharmaceutical classification systems (BCS) class III drugs belongs to a group of drugs with high solubility in gastrointestinal (GI) fluids and low membrane permeability result in significantly low bioavailability. Self-emulsifying drug delivery systems (SEDDS) considered a suitable candidate to enhance the bioavailability of poorly soluble drugs by improving their membrane permeability, however, incorporating hydrophilic drugs in to these carriers remained a great challenge. The aim of this study was to develop hydrophobic ion pairs (HIPs) of a model BCS class-III drug tobramycin (TOB) in order to incorporate into SEDDS and improve its bioavailability. HIPs of TOB were formulated using anionic surfactants sodium docusate (DOC) and sodium dodecanoate (DOD). The efficiency of HIPs was estimated by measuring the concentration of formed complexes in water, zeta potential determination and log P value evaluation. Solubility studies of HIPs of TOB with DOC were accomplished to screen the suitable excipients for SEDDS development. Consequently, HIPs of TOB with DOC were loaded into SEDDS and assessed the log DSEDDS/release medium and dissociation of these complexes at different intestinal pH over time. Moreover, cytotoxic potential of HIPs of TOB and HIPs loaded SEDDS formulations was evaluated. HIPs of TOB with DOC exhibited the maximum precipitation efficiency at a stoichiometric ratio of 1:5. Log P of HIPs of TOB improved up to 1500-fold compared to free TOB. Zeta potential of TOB was shifted from positive to negative during hydrophobic ion pairing (HIP). HIPs of TOB with DOC was loaded at a concentration of 1% (w/v) into SEDDS formulations. Log DSEDDS/release medium of loaded complexes in to oily droplets was above 2 and dissociated up to 20% at various pH within 4 h. Finding of this study suggested that improvement of the lipophilic character of BCS class-III drugs followed by incorporation into oily droplets can be deliberated as a promising tool to enhance the permeation across biological membranes.
Collapse
Affiliation(s)
- Muhammad Asad
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore campus, Lahore, Pakistan
| |
Collapse
|
33
|
Saleh A, Akkuş-Dağdeviren ZB, Haddadzadegan S, Wibel R, Bernkop-Schnürch A. Peptide Antibiotic-Polyphosphate Nanoparticles: A Promising Strategy to Overcome the Enzymatic and Mucus Barrier of the Intestine. Biomacromolecules 2023. [PMID: 37224061 DOI: 10.1021/acs.biomac.3c00083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The aim of this study was to develop peptide antibiotic-polyphosphate nanoparticles that are able to overcome the enzymatic and mucus barriers providing a targeted drug release directly on the intestinal epithelium. Polymyxin B-polyphosphate nanoparticles (PMB-PP NPs) were formed via ionic gelation between the cationic peptide and the anionic polyphosphate (PP). The resulting NPs were characterized by particle size, polydispersity index (PDI), zeta potential, and cytotoxicity on Caco-2 cells. The protective effect of these NPs for incorporated PMB was evaluated via enzymatic degradation studies with lipase. Moreover, mucus diffusion of NPs was investigated with porcine intestinal mucus. Isolated intestinal alkaline phosphatase (IAP) was employed to trigger the degradation of NPs and consequent drug release. PMB-PP NPs exhibited an average size of 197.13 ± 14.13 nm, a PDI of 0.36, a zeta potential of -11.1 ± 3.4 mV and a concentration and time-dependent toxicity. They provided entire protection toward enzymatic degradation and exhibited significantly (p < 0.05) higher mucus permeating properties than PMB. When incubated with isolated IAP for 4 h, monophosphate and PMB were constantly released from PMB-PP NPs and zeta potential raised up to -1.9 ± 0.61 mV. According to these findings, PMB-PP NPs are promising delivery systems to protect cationic peptide antibiotics against enzymatic degradation, to overcome the mucus barrier and to provide drug release directly at the epithelium.
Collapse
Affiliation(s)
- Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Department of Pharmacy, Universitas Mandala Waluya, A.H.Nasution, Kendari 93231, Southeast Sulawesi Republic of Indonesia
| | - Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Soheil Haddadzadegan
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Richard Wibel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
34
|
Akkuş-Dağdeviren ZB, Saleh A, Schöpf C, Truszkowska M, Bratschun-Khan D, Fürst A, Seybold A, Offterdinger M, Marx F, Bernkop-Schnürch A. Phosphatase-degradable nanoparticles: A game-changing approach for the delivery of antifungal proteins. J Colloid Interface Sci 2023; 646:290-300. [PMID: 37196502 DOI: 10.1016/j.jcis.2023.05.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
HYPOTHESIS Polyphosphate nanoparticles as phosphatase-degradable carriers for Penicillium chrysogenum antifungal protein (PAF) can enhance the antifungal activity of the protein against Candida albicans biofilm. EXPERIMENTS PAF-polyphosphate (PP) nanoparticles (PAF-PP NPs) were obtained through ionic gelation. The resulting NPs were characterized in terms of their particle size, size distribution and zeta potential. Cell viability and hemolysis studies were carried out in vitro on human foreskin fibroblasts (Hs 68 cells) and human erythrocytes, respectively. Enzymatic degradation of NPs was investigated by monitoring release of free monophosphates in the presence of isolated as well as C. albicans-derived phosphatases. In parallel, shift in zeta potential of PAF-PP NPs as a response to phosphatase stimuli was determined. Diffusion of PAF and PAF-PP NPs through C. albicans biofilm matrix was analysed by fluorescence correlation spectroscopy (FCS). Antifungal synergy was evaluated on C. albicans biofilm by determining the colony forming units (CFU). FINDINGS PAF-PP NPs were obtained with a mean size of 300.9 ± 4.6 nm and a zeta potential of -11.2 ± 2.8 mV. In vitro toxicity assessments revealed that PAF-PP NPs were highly tolerable by Hs 68 cells and human erythrocytes similar to PAF. Within 24 h, 21.9 ± 0.4 μM of monophosphate was released upon incubation of PAF-PP NPs having final PAF concentration of 156 μg/ml with isolated phosphatase (2 U/ml) leading to a shift in zeta potential up to -0.7 ± 0.3 mV. This monophosphate release from PAF-PP NPs was also observed in the presence of C. albicans-derived extracellular phosphatases. The diffusivity of PAF-PP NPs within 48 h old C. albicans biofilm matrix was similar to that of PAF. PAF-PP NPs enhanced antifungal activity of PAF against C. albicans biofilm decreasing the survival of the pathogen up to 7-fold in comparison to naked PAF. In conclusion, phosphatase-degradable PAF-PP NPs hold promise as nanocarriers to augment the antifungal activity of PAF and enable its efficient delivery to C. albicans cells for the potential treatment of Candida infections.
Collapse
Affiliation(s)
- Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmacy, Universitas Mandala Waluya, A.H.Nasution, Kendari 93231, Southeast Sulawesi, Indonesia
| | - Cristina Schöpf
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martyna Truszkowska
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Doris Bratschun-Khan
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Anna Seybold
- Department of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- Division of Neurobiochemistry, Biooptics, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
35
|
Deng J, Liu S, Li G, Zheng Y, Zhang W, Lin J, Yu F, Weng J, Liu P, Zeng H. pH-sensitive charge-conversion cinnamaldehyde polymeric prodrug micelles for effective targeted chemotherapy of osteosarcoma in vitro. Front Chem 2023; 11:1190596. [PMID: 37206197 PMCID: PMC10188981 DOI: 10.3389/fchem.2023.1190596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction: Chemotherapy is a common strategy for the treatment of osteosarcoma. However, its therapeutic efficacy is not ideal due to the low targeting, lowbioavailability, and high toxicity of chemotherapy drugs. Nanoparticles can improve the residence time of drugs at tumor sites through targeted delivery. This new technology can reduce the risk to patients and improve survival rates. To achieve this goal, we developed a pHsensitive charge-conversion polymeric micelle [mPEG-b-P(C7-co-CA) micelles] for osteosarcoma-targeted delivery of cinnamaldehyde (CA). Methods: First, an amphiphilic cinnamaldehyde polymeric prodrug [mPEG-b-P(C7-co-CA)] was synthesized through Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) polymerization and post-modification, and self-assembled into mPEG-b-P(C7-co-CA) micelles in an aqueous solution. The physical properties of mPEG-b-P(C7-co-CA) micelles, such as critical micelle concentration (CMC), size, appearance, and Zeta potential were characterized. The CA release curve of mPEG-b-P(C7-co-CA) micelles at pH 7.4, 6.5 and 4.0 was studied by dialysis method, then the targeting ability of mPEG-b-P(C7-co-CA) micelles to osteosarcoma 143B cells in acidic environment (pH 6.5) was explored by cellular uptakeassay. The antitumor effect of mPEG-b-P(C7-co-CA) micelles on 143B cells in vitro was studied by MTT method, and the level of reactive oxygen species (ROS) in 143B cells after mPEG-b-P(C7-co-CA) micelles treatment was detected. Finally, the effects of mPEG-b-P(C7-co-CA) micelles on the apoptosis of 143B cells were detected by flow cytometry and TUNEL assay. Results: An amphiphilic cinnamaldehyde polymeric prodrug [mPEG-b-P(C7-co-CA)] was successfully synthesized and self-assembled into spheric micelles with a diameter of 227 nm. The CMC value of mPEG-b-P(C7-co-CA) micelles was 25.2 mg/L, and it showed a pH dependent release behavior of CA. mPEG-b-P(C7-co-CA) micelles can achieve chargeconversion from a neutral to a positive charge with decreasing pHs. This charge-conversion property allows mPEG-b-P(C7-co-CA) micelles to achieve 143B cell targeting at pH 6.5. In addition, mPEG-b-P(C7-co-CA) micelles present high antitumor efficacy and intracellular ROS generation at pH 6.5 which can induce 143B cell apoptosis. Discussion: mPEG-b-P(C7-co-CA) micelles can achieve osteosarcoma targeting effectively and enhance the anti-osteosarcoma effect of cinnamaldehyde in vitro. This research provides a promising drug delivery system for clinical application and tumor treatment.
Collapse
Affiliation(s)
- Jiapeng Deng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Su Liu
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Li
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yien Zheng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weifei Zhang
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peng Liu
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Zeng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
36
|
Zhu D, Yan H, Zhou Y, Nack LM, Liu J, Parak WJ. Design of Disintegrable Nanoassemblies to Release Multiple Small-Sized Nanoparticles. Adv Drug Deliv Rev 2023; 197:114854. [PMID: 37119865 DOI: 10.1016/j.addr.2023.114854] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
The therapeutic and diagnostic effects of nanoparticles depend on the efficiency of their delivery to targeted tissues, such as tumors. The size of nanoparticles, among other characteristics, plays a crucial role in determining their tissue penetration and retention. Small nanoparticles may penetrate deeper into tumor parenchyma but are poorly retained, whereas large ones are distributed around tumor blood vessels. Thus, compared to smaller individual nanoparticles, assemblies of such nanoparticles due to their larger size are favorable for prolonged blood circulation and enhanced tumor accumulation. Upon reaching the targeted tissues, nanoassemblies may dissociate at the target region and release the smaller nanoparticles, which is beneficial for their distribution at the target site and ultimate clearance. The recent emerging strategy that combines small nanoparticles into larger, biodegradable nanoassemblies has been demonstrated by several groups. This review summarizes a variety of chemical and structural designs for constructing stimuli-responsive disintegrable nanoassemblies as well as their different disassembly routes. These nanoassemblies have been applied as demonstrators in the fields of cancer therapy, antibacterial infection, ischemic stroke recovery, bioimaging, and diagnostics. Finally, we summarize stimuli-responsive mechanisms and their corresponding nanomedicine designing strategies, and discuss potential challenges and barriers towards clinical translation.
Collapse
Affiliation(s)
- Dingcheng Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, 311121, China; Fachbereich Physik, Universität Hamburg, Hamburg, Germany.
| | - Huijie Yan
- Fachbereich Physik, Universität Hamburg, Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich Physik, Universität Hamburg, Hamburg, Germany
| | - Leroy M Nack
- Fachbereich Physik, Universität Hamburg, Hamburg, Germany
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, 311121, China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | | |
Collapse
|
37
|
Sheokand B, Vats M, Kumar A, Srivastava CM, Bahadur I, Pathak SR. Natural polymers used in the dressing materials for wound healing: Past, present and future. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220734] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
38
|
Fürst A, Kali G, Efiana NA, Akkuş-Dağdeviren ZB, Haddadzadegan S, Bernkop-Schnürch A. Thiolated cyclodextrins: A comparative study of their mucoadhesive properties. Int J Pharm 2023; 635:122719. [PMID: 36791998 DOI: 10.1016/j.ijpharm.2023.122719] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
AIM The aim of this study was the comparison of the mucoadhesive properties of nonionic, negatively, and positively charged thiolated cyclodextrins (CDs), including α-, β-, and γ-CDs of low and high degree of thiolation. METHODS Native α-, β-, and γ-CDs were thiolated with phosphorous pentasulfide in sulfolane (CD-SH) (i), via reductive amination with cysteamine after oxidative ring opening (CD-Cya) (ii), and via esterification with mercaptosuccinic acid (CD-MSA) (iii). These thiolated CDs were characterized via 1H NMR and Ellman's test. Cytotoxicity was determined via resazurin and hemolysis assay. Mucoadhesive properties were evaluated via rheological studies with freshly isolated porcine mucus, as well as residence time studies on porcine small intestinal mucosa. RESULTS The structure of thiolated CDs was confirmed via 1H NMR. The degree of thiolation was in the range of 594-1034 µmol/g for low and 1360-3379 µmol/g for high CD-SH, whereas thiolated CD-Cya and thiolated CD-MSA exhibited a degree of thiolation of 1142-3242 µmol/g and 243-1227 µmol/g, respectively. Just cationic CDs showed cytotoxicity. Nonionic highly thiolated α-CD-SH, α-CD-Cya, and α-CD-MSA exhibited with mucus 5.6-, 15.7- and 2.8-fold improved dynamic viscosity, while improvement was 7.7-, 6.1-, and 5.4-fold for the corresponding thiolated β-CDs and 12.3-, 15.4- and 17.8-fold for the corresponding thiolated γ-CDs compared with native CDs, respectively. A prolonged mucosal residence time following the rank order γ > β > α was observed for all thiolated CDs, whereby γ-CD-Cya, nonionic highly thiolated β-CD-SH and α-CD-Cya showed the highest mucoadhesive properties. CONCLUSION A high degree of thiolation and the introduction of cationic charges are mainly responsible for high mucoadhesive properties of CDs.
Collapse
Affiliation(s)
- Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nuri Ari Efiana
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Soheil Haddadzadegan
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
39
|
Wei Y, Li X, Lin J, Zhou Y, Yang J, Hou M, Wu F, Yan J, Ge C, Hu D, Yin L. Oral Delivery of siRNA Using Fluorinated, Small-Sized Nanocapsules toward Anti-Inflammation Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206821. [PMID: 36574636 DOI: 10.1002/adma.202206821] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Oral delivery of small interfering RNA (siRNA) provides a promising paradigm for treating diseases that require regular injections. However, the multiple gastrointestinal (GI) and systemic barriers often lead to inefficient oral absorption and low bioavailability of siRNA. Technologies that can overcome these barriers are still lacking, which hinders the clinical potential of orally delivered siRNA. Herein, small-sized, fluorinated nanocapsules (F-NCs) are developed to mediate efficient oral delivery of tumor necrosis factor α (TNF-α) siRNA for anti-inflammation treatment. The NCs possess a disulfide-cross-linked shell structure, thus featuring robust stability in the GI tract. Because of their small size (≈30 nm) and fluorocarbon-assisted repelling of mucin adsorption, the best-performing F3 -NCs show excellent mucus penetration and intestinal transport capabilities without impairing the intestinal tight junction, conferring the oral bioavailability of 20.4% in relative to intravenous injection. The disulfide cross-linker can be cleaved inside target cells, causing NCs dissociation and siRNA release to potentiate the TNF-α silencing efficiency. In murine models of acute and chronic inflammation, orally delivered F3 -NCs provoke efficient TNF-α silencing and pronounced anti-inflammatory efficacies. This study therefore provides a transformative strategy for oral siRNA delivery, and will render promising utilities for anti-inflammation treatment.
Collapse
Affiliation(s)
- Yuansong Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xudong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Juanhui Lin
- Department of Gastro Enterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215002, China
| | - Yang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jiandong Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Mengying Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Fan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jing Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chenglong Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Duanmin Hu
- Department of Gastro Enterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215002, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
40
|
Kumari N, Siddhanta K, Panja S, Joshi V, Jogdeo C, Kapoor E, Khan R, Kollala SS, Kumar B, Sil D, Singh AB, Murry DJ, Oupický D. Oral Delivery of Nucleic Acid Therapies for Local and Systemic Action. Pharm Res 2023; 40:107-122. [PMID: 36271204 PMCID: PMC9589866 DOI: 10.1007/s11095-022-03415-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023]
Abstract
Nucleic acid (NA) therapy has gained importance over the past decade due to its high degree of selectivity and minimal toxic effects over conventional drugs. Currently, intravenous (IV) or intramuscular (IM) formulations constitute majority of the marketed formulations containing nucleic acids. However, oral administration is traditionally preferred due to ease of administration as well as higher patient compliance. To leverage the benefits of oral delivery for NA therapy, the NA of interest must be delivered to the target site avoiding all degrading and inhibiting factors during its transition through the gastrointestinal tract. The oral route presents myriad of challenges to NA delivery, making formulation development challenging. Researchers in the last few decades have formulated various delivery systems to overcome such challenges and several reviews summarize and discuss these strategies in detail. However, there is a need to differentiate between the approaches based on target so that in future, delivery strategies can be developed according to the goal of the study and for efficient delivery to the desired site. The goal of this review is to summarize the mechanisms for target specific delivery, list and discuss the formulation strategies used for oral delivery of NA therapies and delineate the similarities and differences between local and systemic targeting oral delivery systems and current challenges.
Collapse
Affiliation(s)
- Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Vineet Joshi
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chinmay Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Rubayat Khan
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Sai Sundeep Kollala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA.
| |
Collapse
|
41
|
Akkuş-Dağdeviren ZB, Fürst A, David Friedl J, Tribus M, Bernkop-Schnürch A. Nanoarchitectonics of Layer-by-Layer (LbL) coated nanostructured lipid carriers (NLCs) for Enzyme-Triggered charge reversal. J Colloid Interface Sci 2023; 629:541-553. [PMID: 36088699 DOI: 10.1016/j.jcis.2022.08.190] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS Combined usage of Layer-by-Layer (LbL) coating and alkaline phosphatase (ALP) - responsive charge reversal strategies can improve the cellular internalisation of the colloidal drug delivery systems by also decreasing their cytotoxic effects. EXPERIMENTS Anionic core NLCs were formed by combining the melt emulsification method and ultrasonication. The resulting core NLCs were coated sequentially first with protamine (Prot NLCs) and then with sodium tripolyphosphate (TPP) or sodium polyphosphate (Graham's salt, PP) generating TPP or PP NLCs, respectively. The developed NLCs were characterised regarding their size and zeta potential. Enzyme-induced charge reversal of the TPP and PP NLCs was evaluated by zeta potential measurements upon their incubation with alkaline phosphatase (ALP). In parallel, time-dependent phosphate release was monitored in the presence of isolated as well as cell-associated ALP. Morphological evaluations were performed by scanning electron microscopy (SEM) studies. Moreover, cell viability and cellular uptake studies were carried out in vitro on Caco-2 cells. FINDINGS The core NLCs were obtained with a mean size of 272.27 ± 5.23 nm and a zeta potential of -25.70 ± 0.26 mV. Upon coating with protamine, the zeta potential raised to positive values with a total change up to Δ29.3 mV also displaying an increase in particle size. The second layer coating with TPP and PP provided a negative surface charge. Subsequent to ALP treatment, the zeta potential of the TPP and PP NLCs reversed from negative to positive values with total changes of Δ8.56 and Δ7.47 mV, respectively. Conformably, significant amounts of phosphate were released from both formulations. Compared with core NLCs, improved cellular viability as well as increased cellular uptake were observed in case of Prot, TPP and PP NLCs.
Collapse
Affiliation(s)
- Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Julian David Friedl
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martina Tribus
- Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
42
|
Sun Z, Zhang W, Ye Z, Yuan L, Fu M, Liu X, Liang H, Han H. NIR-II-triggered doxorubicin release for orthotopic bladder cancer chemo-photothermal therapy. NANOSCALE 2022; 14:17929-17939. [PMID: 36325926 DOI: 10.1039/d2nr04200b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intravesical instillation has been widely utilized for bladder cancer treatment in clinic. However, due to the bladder mucosal barrier, its poor penetration efficiency and drug utilization limit the clinical therapeutic effectiveness and result in a high recurrence rate. Therefore, designing an efficient and controllable drug delivery nanoplatform is of great significance for bladder cancer treatment. Non-invasive therapy based on near-infrared-II (NIR-II) photothermal therapy (PTT) conduces to overcome bladder mucosal barrier and enhance drug delivery. Also, the photothermal nanomaterials, Au Hollow Nanorods (AuHNRs), demonstrate strong photothermal properties and drug loading capacity. Herein, a quaternized chitosan N-(2-hydroxyl)propyl-3-trimethyl ammonium chitosan chloride (HTCC)-modified nanocarrier Dox/NH4HCO3@AuHNRs-HTCC (DNAH) was designed for controlled drug release and enhanced penetration. The drug loading capacity of DNAH reached 117.20%. Also, the thermal decomposition of NH4HCO3 realized NIR-II-triggered gas-driven drug burst release, and the doxorubicin release was 2.79 times higher within 1 h after NIR-II irradiation. Also, the HTCC-modified nanocarriers significantly enhanced the bladder mucosal permeability as well as long-term drug retention, and the penetration efficiency of DNAH increased by 144%. In the orthotopic bladder cancer model, the tumor suppression rate and mouse survival time were significantly improved. DNAH showed potent inhibition of the orthotopic bladder tumor growth owing to the enhanced penetration and drug delivery. This work presents a potential drug delivery nanocarrier, which is promising for optimized bladder mucosal permeability and controlled drug burst release.
Collapse
Affiliation(s)
- Zhiduo Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China.
| | - Weiyun Zhang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| | - Zhichao Ye
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Li Yuan
- Department of Ultrasonography, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Manli Fu
- Department of Ultrasonography, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China.
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
43
|
Entirely S-protected thiolated hydroxyethylcellulose: Design of a dual cross-linking approach for hydrogels. Eur J Pharm Biopharm 2022; 181:292-299. [PMID: 36427674 DOI: 10.1016/j.ejpb.2022.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
AIM The aim of this study was the synthesis and evaluation of entirely S-protected thiolated hydroxyethylcellulose (HEC) with low and high viscosity, as well as thiolated poly-L-lysine (poly-L-Lys) used as dual-acting ionic as well as thiol-disulfide exchange mediated cross-linking hydrogel. METHODS Bis(mercaptosuccinic acid) was covalently attached to low and high viscous HECs via Fisher esterification, obtaining S-protected polymers. Poly-L-Lys-cysteine was synthesized via amidation of poly-L-Lys-HBr with cysteine (Cys). Thiolated polymers were examined in terms of cytotoxicity and rheological behavior of hydrogels containing these thiomers was evaluated with a cone-plate rheometer. RESULTS Thiomers showed less cytotoxicity compared to the corresponding unmodified polymers. Rheological studies showed that cross-linking occurred between the two polymers via thiol-disulfide exchange reactions facilitated by the complementary charges. Employing poly-L-Lys-Cys in a concentration of either 0.5 or 5% (m/v) resulted in a 34.5-fold or 17.3-fold as well as a 53.6-fold or 29.6-fold improvement in dynamic viscosity within 5 min at 37 °C on S-protected thiolated low and high viscous HEC, compared to the corresponding unmodified HECs, respectively. CONCLUSION By the combination of anionic S-protected thiolated polymers with a cationic thiolated polymer, dual-acting hydrogels exhibiting a time dependent increase in viscosity can be designed.
Collapse
|
44
|
Surface Design Options in Polymer- and Lipid-Based siRNA Nanoparticles Using Antibodies. Int J Mol Sci 2022; 23:ijms232213929. [PMID: 36430411 PMCID: PMC9692731 DOI: 10.3390/ijms232213929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanism of RNA interference (RNAi) could represent a breakthrough in the therapy of all diseases that arise from a gene defect or require the inhibition of a specific gene expression. In particular, small interfering RNA (siRNA) offers an attractive opportunity to achieve a new milestone in the therapy of human diseases. The limitations of siRNA, such as poor stability, inefficient cell uptake, and undesired immune activation, as well as the inability to specifically reach the target tissue in the body, can be overcome by further developments in the field of nanoparticulate drug delivery. Therefore, types of surface modified siRNA nanoparticles are presented and illustrate how a more efficient and safer distribution of siRNA at the target site is possible by modifying the surface properties of nanoparticles with antibodies. However, the development of such efficient and safe delivery strategies is currently still a major challenge. In consideration of that, this review article aims to demonstrate the function and targeted delivery of siRNA nanoparticles, focusing on the surface modification via antibodies, various lipid- and polymer-components, and the therapeutic effects of these delivery systems.
Collapse
|
45
|
Xu H, Nie W, Dai L, Luo R, Lin D, Zhang M, Zhang J, Gao F. Recent advances in natural polysaccharides-based controlled release nanosystems for anti-cancer phototherapy. Carbohydr Polym 2022; 301:120311. [DOI: 10.1016/j.carbpol.2022.120311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
46
|
Oral Nanomedicines for siRNA Delivery to Treat Inflammatory Bowel Disease. Pharmaceutics 2022; 14:pharmaceutics14091969. [PMID: 36145716 PMCID: PMC9503894 DOI: 10.3390/pharmaceutics14091969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
RNA interference (RNAi) therapies have significant potential for the treatment of inflammatory bowel diseases (IBD). Although administering small interfering RNA (siRNA) via an oral route is desirable, various hurdles including physicochemical, mucus, and cellular uptake barriers of the gastrointestinal tract (GIT) impede both the delivery of siRNA to the target site and the action of siRNA drugs at the target site. In this review, we first discuss various physicochemical and biological barriers in the GI tract. Furthermore, we present recent strategies and the progress of oral siRNA delivery strategies to treat IBD. Finally, we consider the challenges faced in the use of these strategies and future directions of oral siRNA delivery strategies.
Collapse
|
47
|
Wang Z, Guo X, Hao L, Zhang X, Lin Q, Sheng R. Charge-Convertible and Reduction-Sensitive Cholesterol-Containing Amphiphilic Copolymers for Improved Doxorubicin Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6476. [PMID: 36143789 PMCID: PMC9504105 DOI: 10.3390/ma15186476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
For achieving successful chemotherapy against cancer, designing biocompatible drug delivery systems (DDSs) with long circulation times, high cellular endocytosis efficiency, and targeted drug release is of upmost importance. Herein, a well-defined PEG-b-P(MASSChol-co-MANBoc) block copolymer bearing redox-sensitive cholesteryl-side group was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization (with non-redox PEG-b-P(MACCChol-co-MAN-DCA) as the reference), and 1,2-dicarboxylic-cyclohexene acid (DCA) was then grafted onto the hydrophobic block to endow it with charge-convertible characteristics under a tumor microenvironment. The amphiphilic copolymer could be assembled into polymeric spherical micelles (SSMCs) with polyethylene glycol (PEG) as the corona/shell, and anti-cancer drug doxorubicin (DOX) was successfully encapsulated into the micellar core via strong hydrophobic and electrostatic interactions. This nanocarrier showed high stability in the physiological environment and demonstrated "smart" surface charge conversion from negative to positive in the slightly acidic environment of tumor tissues (pH 6.5~6.8), as determined by dynamic light scattering (DLS). Moreover, the cleavage of a disulfide bond linking the cholesterol grafts under an intracellular redox environment (10 mM GSH) resulted in micellar dissociation and accelerated drug release, with the non-redox-responsive micelles (CCMCs) as the control. Additionally, a cellular endocytosis and tumor proliferation inhibition study against MCF-7 tumor cells demonstrated the enhanced endocytosis and tumor cell inhibitory efficiency of dual-responsive SSMCs/DOX nanomedicines, revealing potentials as multifunctional nanoplatforms for effective oncology treatment.
Collapse
Affiliation(s)
- Zhao Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Xinyu Guo
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Lingyun Hao
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Xiaojuan Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Qing Lin
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, Campus da Penteada, Universidade da Madeira, 9000390 Funchal, Madeira, Portugal
| |
Collapse
|
48
|
Saleh A, Akkuş-Dağdeviren ZB, Friedl JD, Knoll P, Bernkop-Schnürch A. Chitosan - Polyphosphate nanoparticles for a targeted drug release at the absorption membrane. Heliyon 2022; 8:e10577. [PMID: 36177244 PMCID: PMC9513768 DOI: 10.1016/j.heliyon.2022.e10577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to develop nanoparticles (NPs) providing a targeted drug release directly on the epithelium of the intestinal mucosa. NPs were prepared via ionic gelation between cationic chitosan (Cs) and anionic polyphosphate (PP). The resulting NPs were characterized by their size, polydispersity index (PDI) and zeta potential. Isolated and cell-associated intestinal alkaline phosphatase (IAP) was employed to trigger polyphosphate cleavage in Cs-PP NPs which was quantified via malachite green assay. In parallel, the shift in zeta potential was determined. In-vitro drug release studies were performed in Franz diffusion cells with Cs-PP NPs containing rhodamine 123 as model active ingredient. Furthermore, cytotoxicity of Cs-PP NPs was assessed via resazurin assay on Caco-2 cells as well as via hemolysis assay on red blood cells. Cs-PP NPs exhibited an average size of 144.17 ± 10.95 nm and zeta potential of -12.6 ± 0.50 mV. The encapsulation efficiency of rhodamine 123 by Cs-PP NPs was 86.8%. After incubation with isolated IAP for 3 h the polyphosphate of Cs-PP NPs was cleaved to monophosphate and zeta potential raised up to -2.3 ± 0.30 mV. Cs-PP NPs showed a non-toxic profile. Within 3 h, 62.0 ± 10.8% and 14.1 ± 2.2% of total rhodamine 123 was released from Cs-PP NPs upon incubation with isolated as well as porcine intestine derived intestinal alkaline phosphatase (IAP), respectively. According to these results, Cs-PP NPs are promising drug delivery systems to enable a drug targeted release at the absorption membrane.
Collapse
Affiliation(s)
- Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Department of Pharmacy, Universitas Mandala Waluya, A.H.Nasution, Kendari 93231, Southeast Sulawesi, Indonesia
| | - Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Julian David Friedl
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
49
|
Kim D, Byun J, Kim SI, Chung HH, Kim YW, Shim G, Oh YK. DNA-cloaked nanoparticles for tumor microenvironment-responsive activation. J Control Release 2022; 350:448-459. [PMID: 36037974 DOI: 10.1016/j.jconrel.2022.08.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
Although progress has been made in developing tumor microenvironment-responsive delivery systems, the list of cargo-releasing stimuli remains limited. In this study, we report DNA nanothread-cloaked nanoparticles for reactive oxygen species (ROS)-rich tumor microenvironment-responsive delivery systems. ROS is well known to strongly induce DNA fragmentation via oxidative stress. As a model anticancer drug, hydrophobic omacetaxine was entrapped in branched cyclam ligand-modified nanoparticles (BNP). DNA nanothreads were prepared by rolling-circle amplification and complexed to BNP, yielding DNA nanothread-cloaked BNP (DBNP). DBNP was unmasked by DNA nanothread-degrading ROS and culture supernatants of LNCaP cells. The size and zeta potential of DBNP were changed by ROS. In ROShigh LNCaP cells, but not in ROSlow fibroblast cells, the uptake of DBNP was higher than that of other nanoparticles. Molecular imaging revealed that DBNP exhibited greater distribution to tumor tissues, compared to other nanoparticles. Ex vivo mass spectrometry-based imaging showed that omacetaxine metabolites were distributed in tumor tissues of mice treated with DBNP. Intravenous administration of DBNP reduced the tumor volume by 80% compared to untreated tumors. Profiling showed that omacetaxine treatment altered the transcriptional profile. These results collectively support the feasibility of using polymerized DNA-masked nanoparticles for selective activation in the ROS-rich tumor microenvironment.
Collapse
Affiliation(s)
- Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Wan Kim
- Daegu Cancer Center, DongSung Bio-Pharmaceuticals, Daegu 41061, Republic of Korea
| | - Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
50
|
Mucoadhesive Marine Polysaccharides. Mar Drugs 2022; 20:md20080522. [PMID: 36005525 PMCID: PMC9409912 DOI: 10.3390/md20080522] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Mucoadhesive polymers are of growing interest in the field of drug delivery due to their ability to interact with the body’s mucosa and increase the effectiveness of the drug. Excellent mucoadhesive performance is typically observed for polymers possessing charged groups or non-ionic functional groups capable of forming hydrogen bonds and electrostatic interactions with mucosal surfaces. Among mucoadhesive polymers, marine carbohydrate biopolymers have been attracting attention due to their biocompatibility and biodegradability, sample functional groups, strong water absorption and favorable physiochemical properties. Despite the large number of works devoted to mucoadhesive polymers, there are very few systematic studies on the influence of structural features of marine polysaccharides on mucoadhesive interactions. The purpose of this review is to characterize the mucoadhesive properties of marine carbohydrates with a focus on chitosan, carrageenan, alginate and their use in designing drug delivery systems. A wide variety of methods which have been used to characterize mucoadhesive properties of marine polysaccharides are presented in this review. Mucoadhesive drug delivery systems based on such polysaccharides are characterized by simplicity and ease of use in the form of tablets, gels and films through oral, buccal, transbuccal and local routes of administration.
Collapse
|