1
|
Xiao Y, Liang Z, Shyngys M, Baekova A, Cheung S, Muljadi MB, Bai Q, Zeng L, Choi CHJ. In Vivo Interactions of Nucleic Acid Nanostructures With Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314232. [PMID: 39263835 DOI: 10.1002/adma.202314232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/03/2024] [Indexed: 09/13/2024]
Abstract
Nucleic acid nanostructures, derived from the assembly of nucleic acid building blocks (e.g., plasmids and oligonucleotides), are important intracellular carriers of therapeutic cargoes widely utilized in preclinical nanomedicine applications, yet their clinical translation remains scarce. In the era of "translational nucleic acid nanotechnology", a deeper mechanistic understanding of the interactions of nucleic acid nanostructures with cells in vivo will guide the development of more efficacious nanomedicines. This review showcases the recent progress in dissecting the in vivo interactions of four key types of nucleic acid nanostructures (i.e., tile-based, origami, spherical nucleic acid, and nucleic acid nanogel) with cells in rodents over the past five years. Emphasis lies on the cellular-level distribution of nucleic acid nanostructures in various organs and tissues and the cellular responses induced by their cellular entry. Next, in the spirit of preclinical translation, this review features the latest interactions of nucleic acid nanostructures with cells in large animals and humans. Finally, the review offers directions for studying the interactions of nucleic acid nanostructures with cells from both materials and biology perspectives and concludes with some regulatory updates.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Zhihui Liang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Moldir Shyngys
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Aiana Baekova
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Suen Cheung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Mathias Billy Muljadi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Qianqian Bai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Lula Zeng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| |
Collapse
|
2
|
Kar A, Baral B, Subudhi U. Minimum number of oligonucleotide-based stable monomeric branched DNA nanostructure: Biochemical and biophysical study. Int J Biol Macromol 2024; 276:133930. [PMID: 39025185 DOI: 10.1016/j.ijbiomac.2024.133930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
DNA has been employed as building blocks for the construction of nanomaterials due to their programmability and wide range applications. The functional branched DNA (bDNA) nanostructure is largely dependent on the sequence and structural symmetry. Despite the discovery of different structures, the synthesis of bDNA nanostructures from optimal number of oligonucleotides is yet to be explored. In the current study, for the first time we demonstrate the designing of stable monomeric bDNA structures using two or three oligonucleotides. Furthermore, the stability of bDNA nanostructures was thoroughly investigated in presence of different pH, cations, fetal bovine serum and DNase I. The thermodynamic parameters indicated that hydrogen bonding and van der Waals interactions played a major role during self-assembly of bDNA nanostructures. From the gel retardation assay, we confirmed the binding of complementary oligonucleotides to the bDNA nanostructures, thus can be explored for target specific transcript regulation. In conclusion, the self-assembled DNA nanostructures developed from optimal oligonucleotides are stable in physiological environment and can be used for biomedical applications.
Collapse
Affiliation(s)
- Avishek Kar
- DNA Nanotechnology & Application Laboratory, Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bineeth Baral
- DNA Nanotechnology & Application Laboratory, Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Jang SJ, Kim TH. Triple multivalent aptamers within DNA tetrahedron on reduced graphene oxide electrode: Unlocking enhanced sensitivity and accelerated reactions in electrochemical sensing. Biosens Bioelectron 2024; 249:116039. [PMID: 38241797 DOI: 10.1016/j.bios.2024.116039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
DNA nanostructures are emerging as promising biosensing platforms due to their programmability, predictable assembly, and compatibility with aptamers for enhanced selectivity. This study focuses on a triple-multivalent aptamer (tApt) complex immobilized on a tetrahedral DNA nanostructure (TDN) and integrated with an electrochemically reduced graphene oxide (ERGO) electrode for highly sensitive mercury ion (Hg2+) detection. Compared to a linear multivalent aptamer-modified electrode (S2/ERGO-GCE), the 3D tApt/ERGO-GCE aptasensor exhibits superior sensitivity, signal amplification, and reaction kinetics. The tApt/ERGO-GCE sensor achieves an exceptional limit of detection (LOD) of 4.1 zM, surpassing the LOD of 0.71 fM for S2/ERGO-GCE. Additionally, the tApt/ERGO-GCE sensor demonstrates faster response times, with a half-saturation time (T1/2) of 6 minutes compared to 17 minutes for S2/ERGO/GCE. The 3D tApt aptamer's superior performance is attributed to its tetrahedral DNA structure integrated on ERGO, providing multiple aptamer binding sites, facilitating oriented immobilization on the electrode surface, and enhancing analyte capture and concentration. In contrast, the linear S2 aptamers lack rigidity, resulting in a disordered orientation on the electrode surface, hindering efficient Hg2+ binding and reducing target molecule binding efficiency. This study underscores the potential of triple-multivalent aptamer-based nanostructures for ultrasensitive and rapid biosensing applications. The tApt/ERGO-GCE aptasensor's exceptional sensitivity, signal amplification, and reaction kinetics make it a promising tool for Hg2+ detection and other biosensing applications.
Collapse
Affiliation(s)
- Seung Joo Jang
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea.
| |
Collapse
|
4
|
Peng Y, Gao Z, Qiao B, Li D, Pang H, Lai X, Pu Q, Zhang R, Zhao X, Zhao G, Xu D, Wang Y, Ji Y, Pei H, Wu Q. Size-Controlled DNA Tile Self-Assembly Nanostructures Through Caveolae-Mediated Endocytosis for Signal-Amplified Imaging of MicroRNAs in Living Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300614. [PMID: 37189216 PMCID: PMC10375201 DOI: 10.1002/advs.202300614] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Signal-amplified imaging of microRNAs (miRNAs) is a promising strategy at the single-cell level because liquid biopsy fails to reflect real-time dynamic miRNA levels. However, the internalization pathways for available conventional vectors predominantly involve endo-lysosomes, showing nonideal cytoplasmic delivery efficiency. In this study, size-controlled 9-tile nanoarrays are designed and constructed by integrating catalytic hairpin assembly (CHA) with DNA tile self-assembly technology to achieve caveolae-mediated endocytosis for the amplified imaging of miRNAs in a complex intracellular environment. Compared with classical CHA, the 9-tile nanoarrays possess high sensitivity and specificity for miRNAs, achieve excellent internalization efficiency by caveolar endocytosis, bypassing lysosomal traps, and exhibit more powerful signal-amplified imaging of intracellular miRNAs. Because of their excellent safety, physiological stability, and highly efficient cytoplasmic delivery, the 9-tile nanoarrays can realize real-time amplified monitoring of miRNAs in various tumor and identical cells of different periods, and imaging effects are consistent with the actual expression levels of miRNAs, ultimately demonstrating their feasibility and capacity. This strategy provides a high-potential delivery pathway for cell imaging and targeted delivery, simultaneously offering a meaningful reference for the application of DNA tile self-assembly technology in relevant fundamental research and medical diagnostics.
Collapse
Affiliation(s)
- Yanan Peng
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Zhijun Gao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Bin Qiao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of EducationResearch Unit of Island Emergency MedicineChinese Academy of Medical Sciences (No. 2019RU013)Hainan Medical UniversityHaikou571199P. R. China
| | - Dongxia Li
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Huajie Pang
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Xiangde Lai
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Qiumei Pu
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Rui Zhang
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Xuan Zhao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Guangyuan Zhao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Dan Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of PharmacyHainan Medical UniversityHaikou571199P. R. China
| | - Yuanyuan Wang
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of EducationResearch Unit of Island Emergency MedicineChinese Academy of Medical Sciences (No. 2019RU013)Hainan Medical UniversityHaikou571199P. R. China
| | - Yuxiang Ji
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Hua Pei
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Qiang Wu
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of EducationResearch Unit of Island Emergency MedicineChinese Academy of Medical Sciences (No. 2019RU013)Hainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
5
|
Zhao J, Zhang C, Lu B, Sha R, Noinaj N, Mao C. Divergence and Convergence: Complexity Emerges in Crystal Engineering from an 8-mer DNA. J Am Chem Soc 2023; 145:10475-10479. [PMID: 37134185 DOI: 10.1021/jacs.3c01941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biology provides plenty of examples on achieving complicated structures out of minimal numbers of building blocks. In contrast, structural complexity of designed molecular systems is achieved by increasing the numbers of component molecules. In this study, the component DNA strand assembles into a highly complex crystal structure via an unusual path of divergence and convergence. This assembly path suggests a route to minimalists for increasing structural complexity. The original purpose of this study is to engineer DNA crystals with high resolution, which is the primary motivation and a key objective for structural DNA nanotechnology. Despite great efforts in the last 40 years, engineered DNA crystals have not yet consistently reached resolution better than 2.5 Å, limiting their potential uses. Our research has shown that small, symmetrical building blocks generally lead to high resolution crystals. Herein, by following this principle, we report an engineered DNA crystal with unprecedented high resolution (2.17 Å) assembled from one single DNA component: an 8-base-long DNA strand. This system has three unique characteristics: (1) It has a very complex architecture, (2) the same DNA strand forms two different structural motifs, both of which are incorporated into the final crystal, and (3) the component DNA molecule is only an 8-base-long DNA strand, which is, arguably, the smallest DNA motif for DNA nanostructures to date. This high resolution opens the possibility of using these DNA crystals to precisely organize guest molecules at the Å level, which could stimulate a range of new investigations.
Collapse
Affiliation(s)
- Jiemin Zhao
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei 230032, China
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Cuizheng Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brandon Lu
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Peng Y, Pang H, Gao Z, Li D, Lai X, Chen D, Zhang R, Zhao X, Chen X, Pei H, Tu J, Qiao B, Wu Q. Kinetics-accelerated one-step detection of MicroRNA through spatially localized reactions based on DNA tile self-assembly. Biosens Bioelectron 2023; 222:114932. [PMID: 36462429 DOI: 10.1016/j.bios.2022.114932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
The localization of isothermal amplification systems has elicited extensive attention due to the enhanced reaction kinetics when detecting ultra-trace small-molecule nucleic acids. Therefore, the seek for an appropriate localization cargo of spatially confined reactions is urgent. Herein, we have developed a novel approach to localize the catalytic hairpin assembly (CHA) system into the DNA tile self-assembly nanostructure. Thanks to the precise programming and robust probe loading capacity, this strategy achieved a 2.3 × 105-fold higher local reaction concentration than a classical CHA system with enhanced reaction kinetics in theory. From the experimental results, this strategy could reach the reaction plateau faster and get access to a magnified effect of 1.57-6.99 times higher in the linear range of microRNA (miRNA) than the simple CHA system. Meanwhile, this strategy satisfied the demand for the one-step detection of miRNA in cell lysates at room temperature with good sensitivity and specificity. These features indicated its excellent potential for ultra-trace molecule detection in clinical diagnosis and provided new insights into the field of bioassays based on DNA tile self-assembly nanotechnology.
Collapse
Affiliation(s)
- Yanan Peng
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Huajie Pang
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Zhijun Gao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Dongxia Li
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Xiangde Lai
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Delun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Rui Zhang
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Xuan Zhao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China; Department of Clinical Laboratory, Hainan Cancer Hospital, Haikou, 570311, China
| | - Xinping Chen
- Department of Clinical Laboratory, Hainan Cancer Hospital, Haikou, 570311, China
| | - Hua Pei
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Bin Qiao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China.
| | - Qiang Wu
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
7
|
Tang J, Li Q, Yao C, Yang D. DNA Nanomaterial-Based Optical Probes for Exosomal miRNA Detection. Chempluschem 2023; 88:e202200345. [PMID: 36650721 DOI: 10.1002/cplu.202200345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Micro ribonucleic acids (miRNAs) in exosomes have been proven as reliable biomarkers to detect disease progression. In recent years, deoxyribonucleic acid (DNA)-based nanomaterials show great potential in the field of diagnosis due to the programmable sequence, various molecule recognition and predictable assembly/disassembly of DNA. In this review, we focus on the molecular design and detection mechanism of DNA nanomaterials, and the developed DNA nanomaterial-based optical probes for exosomal miRNA detection are summarized and discussed. The rationally-designed DNA sequences endows these probes with low background signal and high sensitivity in exosomal miRNA detection, and the detection mechanisms based on different DNA nanomaterials are detailly introduced. At the end, the challenges and future opportunities of DNA nanomaterial-based optical probes in exosomal miRNA detection are discussed. We envision that DNA nanomaterial-based optical probes will be promising in precise biomedicine.
Collapse
Affiliation(s)
- Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Qian Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
8
|
Cao L, Meng Z, Tan J, Ying M, Bi M, Liu Y, Tong X, Wei J, Huang L. Self-assembled endogenous DNA nanoparticles for auto-release and expression of the eGFP gene in Bacillus subtilis. Commun Biol 2022; 5:1373. [PMID: 36517556 PMCID: PMC9751278 DOI: 10.1038/s42003-022-04233-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
The development of DNA delivery techniques is critical to promote the wider use of deoxyribonucleic acids as cellular transporters. The present study aimed to develop a type of DNA nanoparticle (citZ-box) to automatically load and release cargo. The restriction enzyme can cleave citZ-boxes at pro-designed sites, and the enhanced green fluorescent protein gene (eGFP) can be delivered into the B. subtilis protoplasts by them. The process of eGFP expression is recorded using a confocal microscope over 4 h. Here, multiscaffold and multimodular designs are used for citZ-box assembly with a DAEDALUS module, DX_cage_design and rem (edge_length, 21), to ensure the structure was predicted as B-type DNA. Finally the citZ-box is estimated to be a 50.7 nm cube. The 3D structure of the citZ-box particle is detected to be approximately 50.3 ± 0.3 nm. DNA nanoparticles prepared as citZ-boxes have great potential as drug carriers with automatic loading and releasing abilities.
Collapse
Affiliation(s)
- Linfeng Cao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Ziwen Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Junjie Tan
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Ming Ying
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
| | - Meiying Bi
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Yanjun Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xinrui Tong
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Jiaxun Wei
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Lei Huang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
| |
Collapse
|
9
|
Paluzzi VE, Zhang C, Mao C. Assembly of Two-Dimensional DNA Arrays Could Influence the Formation of Their Component Tiles. Chembiochem 2022; 23:e202200306. [PMID: 35802389 PMCID: PMC9543644 DOI: 10.1002/cbic.202200306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Indexed: 11/07/2022]
Abstract
Tile-based DNA self-assembly is a powerful approach for nano-constructions. In this approach, individual DNA single strands first assemble into well-defined structural tiles, which, then, further associate with each other into final nanostructures. It is a general assumption that the lower-level structures (tiles) determine the higher-level, final structures. In this study, we present concrete experimental data to show that higher-level structures could, at least in the current example, also impact on the formation of lower-level structures. This study prompts questions such as: how general is this phenomenon in programmed DNA self-assembly and can we turn it into a useful tool for fine tuning DNA self-assembly?
Collapse
Affiliation(s)
| | - Cuizheng Zhang
- Department of ChemistryPurdue UniversityWest LafayetteIN-47907USA
| | - Chengde Mao
- Department of ChemistryPurdue UniversityWest LafayetteIN-47907USA
| |
Collapse
|
10
|
Jiang H, Wang W, Wang W, Xue C, Wang L, Liu D, Wang R, Yu S, Wu ZS. Hairpin-inserted cross-shaped DNA nanoprobe for ultrasensitive microRNA detection based on built-in target analogue cycle amplification. Talanta 2022; 250:123717. [PMID: 35785608 DOI: 10.1016/j.talanta.2022.123717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
It remains technically challenging to develop a sensitive assay system to isothermally amplify the signal for miRNA detection because of its low abundance in tested sample, sequence similarities and existence in complex biological environments. In this study, using miRNA-21 as target model, a hairpin-inserted cross-shaped DNA nanoprobe (CP) with four functional arms is constructed for the ultrasensitive detection of miRNA via one-step built-in target analogue (BTA) cycle-mediated signal amplification. BTA is pre-locked in one arm of CP probe and inactive. In the presence of target miRNA, BTA can be unlocked and initiate an isothermal amplification process. Utilizing as-designed CP probe, miRNA-21 can be detected to down to 500 fM, and the linear response range spans over five orders of magnitude. The nonspecific signal is less than 1% upon nontarget miRNAs. CP probe exhibits ∼six times enhancement in resistance to nuclease degradation and no obvious degradation-induced fluorescence change is detected during the assay period. The recovery yield ranges from 98.2~105.5% in FBS solution. Because of the high sensitivity, desirable specificity, strong anti-interference ability and substantial increase in nuclease resistance, CP probe is a promising tool for the detection of miRNAs in a complex biological milieu.
Collapse
Affiliation(s)
- Hao Jiang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Wenqing Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Weijun Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Lei Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Dengyou Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Suhong Yu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China.
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Advances in the synthesis and application of self-assembling biomaterials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:46-62. [PMID: 34329646 DOI: 10.1016/j.pbiomolbio.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023]
Abstract
The present study scrutinized some of the crucial advancements in the synthesis and functionalisation of self-assembling biomaterials for application in biomedicine. The basic concept of self-organization was discussed along with the mechanisms and methods involved in its implementation with biomaterials. Further, several recent applications of this technology in the biological and medical domain, and the avenues for future research and development were presented. This study brought to focus the vast potential of basic and applied research involved, especially in the context of hybrids and composites, as well as the difference in pace of new developments for different types of biomolecular materials. As nanobiotechnology matures, the tools and techniques available for developing and controlling self-assembled biomaterials as well as studying their interaction with biological tissue, will grow exponentially. Presently, self-assembly remains a potent tool for the synthesis of functional biomaterials.
Collapse
|
13
|
Zheng M, Li Q, Li Q, Paluzzi VE, Choi JH, Mao C. Engineering the Nanoscaled Morphologies of Linear DNA Homopolymers. Macromol Rapid Commun 2021; 42:e2100217. [PMID: 34173292 DOI: 10.1002/marc.202100217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Supramolecular polymers have unique characteristics such as self-healing and easy processing. However, the scope of their structures is limited to mostly either flexible, random coils or rigid, straight chains. By broadening this scope, novel properties, functions, and applications can be explored. Here, DNA is used as a model system to engineer innovative, nanoscaled morphologies of supramolecular polymers. Each polymer chain consists of multiple copies of the same short (38-46 nucleotides long) DNA strand. The component DNA strands first dimerize into homo-dimers, which then further assemble into long polymer chains. By subtly tuning the design, a range of polymer morphologies are obtained; including straight chains, spirals, and closed rings with finite sizes. Such structures are confirmed by AFM imaging and predicted by molecular coarse simulation.
Collapse
Affiliation(s)
- Mengxi Zheng
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Qian Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.,College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Qian Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Victoria E Paluzzi
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
14
|
|
15
|
Nishikawa M, Sugiyama H. Controlling the function of genes and biologically active nucleic acids. Adv Drug Deliv Rev 2019; 147:1. [PMID: 31783977 DOI: 10.1016/j.addr.2019.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Makiya Nishikawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Japan
| |
Collapse
|