1
|
Trappetti V, Fernández-Palomo C, Arora P, Potez M, Pellicioli P, Fazzari J, Shintani N, Sanchez-Gonzalez I, Wu CT, de Breuyn Dietler B, Mercader-Huber N, Martin OA, von Gunten S, Volarevic V, Djonov V. Towards melanoma in situ vaccination with multiple ultra-narrow X-ray beams. Cancer Lett 2025; 608:217326. [PMID: 39547332 DOI: 10.1016/j.canlet.2024.217326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/23/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Despite the recent progress, current treatment modalities are not able to eradicate cancer. We show that Microbeam Radiotherapy (MRT), an innovative type of Spatially Fractionated Radiotherapy, can control murine melanoma by activating the host's own immune system. The beneficial effects are very pronounced in comparison to uniform radiotherapy traditionally employed in the clinic. Our results show that MRT increased antigen presentation, activating Cytotoxic T Lymphocytes (CTLs) which are essential to MRT's treatment efficacy in melanoma. Depletion of CTLs abrogated treatment response. Multiplex nucleic acid hybridization technology revealed key features of lymphocyte populations such as proliferation, differentiation, and ligand-receptor interactions. In addition, CTLs were shown to be essential for locoregional metastatic control and systemic abscopal effects confirmed by activation of antigen presenting cells and CTL trafficking in the tumour-draining lymph nodes. MRT also showed a synergistic effect with immunotherapy. Overall, MRT induces a robust antitumour immune response, acting like an in situ vaccination, which could be exploited to treat a variety of treatment-resistant malignancies.
Collapse
Affiliation(s)
| | | | - Prateek Arora
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3008, Bern, Switzerland.
| | - Marine Potez
- H. Lee Moffitt Cancer Center and Research Institute, 33612, Tampa, FL, USA.
| | - Paolo Pellicioli
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland; Biomedical Beamline ID17, ESRF, The European Synchrotron, 38000, Grenoble, France.
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland.
| | - Nahoko Shintani
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland.
| | | | - Cheuk Ting Wu
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland.
| | | | - Nadia Mercader-Huber
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3008, Bern, Switzerland.
| | - Olga A Martin
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland; Centre for Medical Radiation Physics (CMRP), University of Wollongong, 2522, NSW, Australia.
| | | | - Vladislav Volarevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, 34000, Kragujevac, Serbia.
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
2
|
Deng H, Chen Y, An R, Wang J. Pyroptosis-related lncRNA prognostic signatures for cutaneous melanoma and tumor microenvironment status. Epigenomics 2023; 15:657-675. [PMID: 37577979 DOI: 10.2217/epi-2023-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Aims: To explore whether the expression of pyroptosis-related lncRNAs makes a difference in the prognosis and antitumor immunity of cutaneous melanoma (CM) patients. Methods: A series of analyses were conducted to establish a prognostic risk model and validate its accuracy. Immune-related analyses were performed to further assess the associations among immune status, tumor microenvironment and the prognostic risk model. Results: Eight pyroptosis-related lncRNAs relevant to prognosis were ascertained and applied to establish the prognostic risk model. The low-risk group had a higher overall survival rate. Conclusion: The established prognostic risk model presents better prediction ability for the prognosis of CM patients and provides new possible therapeutic targets for CM.
Collapse
Affiliation(s)
- Huiling Deng
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuxuan Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
3
|
Xue W, Zhu H, Liu H, He H. DIRAS2 Is a Prognostic Biomarker and Linked With Immune Infiltrates in Melanoma. Front Oncol 2022; 12:799185. [PMID: 35651810 PMCID: PMC9149220 DOI: 10.3389/fonc.2022.799185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/24/2022] [Indexed: 01/03/2023] Open
Abstract
Background Skin cutaneous melanoma (SKCM) is a highly malignant skin tumor. DIRAS2 is considered to be a tumor suppressor gene; however, its function in SKCM has not been explored. Methods The Gene Expression Profiling Interactive Analysis (GEPIA) was implemented to investigate the expression of DIRAS2 in SKCM, and plot the survival curve to determine the effect of DIRAS2 on the survival rates of SKCM patients. Then, the correlation between DIRAS2 and tumor immune infiltration was also discussed, and the expression of DIRAS2 and immune infiltration level in SKCM immune cells was determined using TIMER. The top 100 genes most associated with DIRAS2 expression were used for functional enrichment analysis. In order to confirm the anti-cancer effects of DIRAS2 in SKCM in the data analysis, in vitro assays as well as in vivo studies of DIRAS2 on SKCM tumor cell proliferation, migration, invasion, and metastasis were conducted. Western blot and immunofluorescence assay were employed to study the relationship between DIRAS2 and Wnt/β-catenin signaling pathway in SKCM. Results DIRAS2 expression was shown to be significantly correlated with tumor grade using univariate logistic regression analysis. DIRAS2 was found to be an independent prognostic factor for SKCM in multivariate analysis. Of note, DIRAS2 expression levels were positively correlated with the infiltration levels of B cells, CD4+ T cells, and CD8+ T cells in SKCM. The infiltration of B cells, CD4+ T cells, and CD8+ T cells was positively correlated with the cumulative survival rate of SKCM patients. In vitro experiments suggested that proliferation, migration, invasion, and metastasis of SKCM tumor cells were distinctly enhanced after DIRAS2 knockdown. Furthermore, DIRAS2 depletion promoted melanoma growth and metastasis in vivo. As for the mechanism, silencing DIRAS2 can activate the signal transduction of the Wnt/β-catenin signaling pathway. Conclusion DIRAS2 functions as a tumor suppressor gene in cases of SKCM by inhibiting the Wnt/β-catenin signaling. It is also associated with immune infiltration in SKCM.
Collapse
Affiliation(s)
- Wenli Xue
- Department of Dermatology, The First Hospital of Shanxi Medical University, Tai Yuan City, China
| | - Hongbo Zhu
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hongye Liu
- Department of Dermatology, The First Hospital of Shanxi Medical University, Tai Yuan City, China
| | - Hongxia He
- Department of Dermatology, The First Hospital of Shanxi Medical University, Tai Yuan City, China
| |
Collapse
|
4
|
Bogéa GMR, Silva-Carvalho AÉ, Filiú-Braga LDDC, Neves FDAR, Saldanha-Araujo F. The Inflammatory Status of Soluble Microenvironment Influences the Capacity of Melanoma Cells to Control T-Cell Responses. Front Oncol 2022; 12:858425. [PMID: 35419291 PMCID: PMC8996246 DOI: 10.3389/fonc.2022.858425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
The development of immunotherapeutic approaches for the treatment of melanoma requires a better understanding of immunoescape mechanisms of tumor cells and how they interact with other tumor-resident cell types. Here, we evaluated how the conditioned media of resting (rCM) and immune-activated PBMCs (iCM) influence the ability of a metastatic melanoma cell line (MeWo) to control T-cells function. MeWo cells were expanded in RPMI, rCM, or iCM and the secretome generated after cell expansion was identified as MeSec (RPMI), niSec (non-inflammatory), or iSec (inflammatory secretome), respectively. Then, the immunomodulatory potential of such secretomes was tested in PHA-activated PBMCs. iCM induced higher levels of IFN-γ and IL-10 in treated melanoma cells compared to rCM, as well as higher IDO and PD-L1 expression. The iSec was able to inhibit T-cell activation and proliferation. Interestingly, PBMCs treated with iSec presented a reduced expression of the regulators of Th1 and Th2 responses T-BET and GATA-3, as well as low expression of IFN-γ, and co-stimulatory molecules TIM-3 and LAG-3. Importantly, our findings show that melanoma may benefit from an inflammatory microenvironment to enhance its ability to control the T-cell response. Interestingly, such an immunomodulatory effect involves the inhibition of the checkpoint molecules LAG-3 and TIM-3, which are currently investigated as important therapeutic targets for melanoma treatment. Further studies are needed to better understand how checkpoint molecules are modulated by paracrine and cell contact-dependent interaction between melanoma and immune cells. Such advances are fundamental for the development of new therapeutic approaches focused on melanoma immunotherapy.
Collapse
Affiliation(s)
- Gabriela Muller Reche Bogéa
- Laboratório de Farmacologia Molecular, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Amandda Évelin Silva-Carvalho
- Laboratório de Farmacologia Molecular, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Luma Dayane de Carvalho Filiú-Braga
- Laboratório de Farmacologia Molecular, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
5
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Wei X, Feng Z, Huang J, Xiang X, Du F, He C, Zhou M, Ma L, Cheng C, Qiu L. Homology and Immune Checkpoint Dual-Targeted Sonocatalytic Nanoagents for Enhancing Sonodynamic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32810-32822. [PMID: 34232622 DOI: 10.1021/acsami.1c08105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sonocatalytic nanoagents (SCNs), a kind of sonosensitizers, could catalyze oxygen to generate abundant reactive oxygen species (ROS) under stimulations of noninvasive and deep-penetrating ultrasound (US), which is commonly used for sonodynamic therapy (SDT) of tumors such as malignant melanoma. However, poor bioavailability of most SCNs and fast quenching of extracellular-generating ROS from SDT limit further applications of SCNs in the SDT of tumors. Herein, we synthesized a new kind of TiO2-based SCN functionalized with the malignant melanoma cell membrane (B16F10M) and programmed cell death-ligand 1 antibody (aPD-L1) for homology and immune checkpoint dual-targeted and enhanced sonodynamic tumor therapy. Under US irradiation, the synthesized SCN can catalytically generate a large amount of 1O2. In vitro experiments validate that functionalized SCNs exhibit precise targeting effects, high tumor cell uptake, and intracellular sonocatalytic killing of the B16F10 cells by a large amount of localized ROS. Utilizing the melanoma animal model, the functionalized SCN displays visible long-term retention in the tumor area, which assists the homology and immune checkpoint synergistically dual-targeted and enhanced in vivo SDT of the tumor. We suggest that this highly bioavailable and dual-functionalized SCN may provide a promising strategy and nanoplatform for enhancing sonodynamic tumor therapies.
Collapse
Affiliation(s)
- Xin Wei
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
- Department of Ultrasound, Deyang People's Hospital, Deyang 618000, China
| | - Ziyan Feng
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Jianbo Huang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Xi Xiang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Fangxue Du
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Chao He
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lang Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, Berlin 14195, Germany
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Galore-Haskel G, Greenberg E, Yahav I, Markovits E, Ortenberg R, Shapira-Fromer R, Itzhaki O, Schachter J, Besser MJ, Markel G. microRNA expression patterns in tumor infiltrating lymphocytes are strongly associated with response to adoptive cell transfer therapy. Cancer Immunol Immunother 2021; 70:1541-1555. [PMID: 33201337 DOI: 10.1007/s00262-020-02782-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
Adoptive cell transfer (ACT) using autologous tumor infiltrating lymphocytes (TILs) was previously shown to yield clinical response in metastatic melanoma patients as an advanced line. Unfortunately, there is no reliable marker for predicting who will benefit from the treatment. We analyzed TIL samples from the infusion bags used for treatment of 57 metastatic melanoma patients and compared their microRNA profiles. The discovery cohort included six responding patients and seven patients with progressive disease, as defined by RECIST1.1. High throughput analysis with NanoString nCounter demonstrated significantly higher levels of miR-34a-5p and miR-22-3p among TIL from non-responders. These results were validated in TIL infusion bag samples from an independent cohort of 44 patients, using qRT-PCR of the individual microRNAs. Using classification trees, a data-driven predictive model for response was built, based on the level of expression of these microRNAs. Patients that achieved stable disease were classified with responders, setting apart the patients with progressive disease. Moreover, the expression levels of miR-34a-5p in the infused TIL created distinct survival groups, which strongly supports its role as a potential biomarker for TIL-ACT therapy. Indeed, when tested against autologous melanoma cells, miRLow TIL cultures exhibited significantly higher cytotoxic activity than miRHigh TIL cultures, and expressed features of terminally exhausted effectors. Finally, overexpression of miR-34a-5p or miR-22-3p in TIL inhibited their cytotoxic ability in vitro. Overall, we show that a two-microRNA signature correlates with failure of TIL-ACT therapy and survival in melanoma patients.
Collapse
Affiliation(s)
- Gilli Galore-Haskel
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, 526260, Israel
| | - Eyal Greenberg
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, 526260, Israel
| | - Inbal Yahav
- Graduate School of Business Administration, Tel Aviv University, Tel Aviv, Israel
| | - Ettai Markovits
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, 526260, Israel.,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rona Ortenberg
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, 526260, Israel
| | - Ronnie Shapira-Fromer
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, 526260, Israel
| | - Orit Itzhaki
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, 526260, Israel
| | - Jacob Schachter
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, 526260, Israel.,Sackler School of Medicine and Tel Aviv University, Tel Aviv, Israel
| | - Michal J Besser
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, 526260, Israel.,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gal Markel
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, 526260, Israel. .,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Qin R, Peng W, Wang X, Li C, Xi Y, Zhong Z, Sun C. Identification of Genes Related to Immune Infiltration in the Tumor Microenvironment of Cutaneous Melanoma. Front Oncol 2021; 11:615963. [PMID: 34136377 PMCID: PMC8202075 DOI: 10.3389/fonc.2021.615963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/28/2021] [Indexed: 01/02/2023] Open
Abstract
Cutaneous melanoma (CM) is the leading cause of skin cancer deaths and is typically diagnosed at an advanced stage, resulting in a poor prognosis. The tumor microenvironment (TME) plays a significant role in tumorigenesis and CM progression, but the dynamic regulation of immune and stromal components is not yet fully understood. In the present study, we quantified the ratio between immune and stromal components and the proportion of tumor-infiltrating immune cells (TICs), based on the ESTIMATE and CIBERSORT computational methods, in 471 cases of skin CM (SKCM) obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) were analyzed by univariate Cox regression analysis, least absolute shrinkage, and selection operator (LASSO) regression analysis, and multivariate Cox regression analysis to identify prognosis-related genes. The developed prognosis model contains ten genes, which are all vital for patient prognosis. The areas under the curve (AUC) values for the developed prognostic model at 1, 3, 5, and 10 years were 0.832, 0.831, 0.880, and 0.857 in the training dataset, respectively. The GSE54467 dataset was used as a validation set to determine the predictive ability of the prognostic signature. Protein–protein interaction (PPI) analysis and weighted gene co-expression network analysis (WGCNA) were used to verify “real” hub genes closely related to the TME. These hub genes were verified for differential expression by immunohistochemistry (IHC) analyses. In conclusion, this study might provide potential diagnostic and prognostic biomarkers for CM.
Collapse
Affiliation(s)
- Rujia Qin
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Wen Peng
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Xuemin Wang
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Chunyan Li
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yan Xi
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Zhaoming Zhong
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China.,Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chuanzheng Sun
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
9
|
Chen X, Wang M, Hu Y, Gong T, Zhang ZR, Yu R, Fu Y. Low-dose paclitaxel via hyaluronan-functionalized bovine serum albumin nanoparticulate assembly for metastatic melanoma treatment. J Mater Chem B 2021; 8:2139-2147. [PMID: 32090232 DOI: 10.1039/c9tb02780g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Due to the critical role of CD44 in mediating cell adhesion and migration, CD44-targeted drug delivery via hyaluronan has been extensively explored. Herein, cationic bovine serum albumin nanoparticles were assembled with hyaluronan (HA) of various molecular weights via simple electrostatic interaction to afford hierarchical nanoparticles (HNPs) with various size distributions and structures. Next, HNPs obtained using 49 kDa HA have been used to encapsulate paclitaxel (PTX-HNPs), which demonstrated selective lung accumulation due to both size effect and CD44-mediated targetability. Biodistribution studies showed that HNPs enhanced the lung specific accumulation of HNPs in the C57BL/6 mice melanoma lung metastasis model. In the antitumor studies, compared with the Taxol or bovine serum albumin nanoparticle (NP) groups, PTX-HNPs significantly inhibited B16F10 lung metastasis at a relatively low dose. Additionally, cell migration and invasion experiments in vitro further confirmed that PTX-HNPs significantly inhibited the migration of B16F10 cells compared to Taxol or paclitaxel-loaded NP groups. Overall, our results suggest that PTX-HNPs represent a highly promising strategy for the treatment of lung metastatic melanoma.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Mou Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ying Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ruilian Yu
- Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
The Efficacy and Safety of PD-1/PD-L1 Inhibitors in Combination with Conventional Therapies for Advanced Solid Tumors: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5059079. [PMID: 32461994 PMCID: PMC7225910 DOI: 10.1155/2020/5059079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Objectives To evaluate the efficacy of immuno-oncology combinational therapy (IOCT) versus monotherapy with programmed cell death 1 (PD-1) or PD-ligand 1 (PD-L1) inhibitors or conventional therapies, i.e., non-IOCT, in patients with advanced solid tumors. Methods We systematically searched the PubMed, Embase, and Cochrane Library databases from January 2015 to October 2018 for eligible studies. We included randomized trials of IOCT with available hazard ratios (HR) for death. The random effects model was used to calculate pooled HR for death; heterogeneity was assessed using I2 statistics. The main outcome measure was overall survival (OS). Results After screening 483 relevant articles, we identified twelve trials comprising 5388 patients for quantitative analysis. IOCT-treated patients had significantly higher tumor response rate (relative risk (RR): 2.51, 95% confidence interval (CI): 1.82-3.47), prolonged progression-free survival (HR 0.62, 95% CI: 0.53-0.74), and OS (HR 0.69, 95% CI: 0.61-0.78), compared with non-IOCT–treated patients. Sensitivity analyses also demonstrated the OS advantage of IOCT across different combination modalities, intervention agents, malignancy types, and PD-L1 expression (all P < 0.05). Notably, there were higher odds of high-grade (grade ≥ 3) adverse events with IOCT (RR: 1.81, 95% CI: 1.13-2.90), but the risk of treatment-related death (RR: 1.16, 95% CI: 0.84–1.60) was not increased compared with non-IOCT. Conclusions IOCT is a preferable treatment option over PD-1/PD-L1 inhibitor monotherapy and conventional therapy for patients with advanced solid tumors. However, we should note the increased incidence rate of high-grade AEs in IOCT.
Collapse
|
11
|
Nie RC, Yuan SQ, Wang Y, Chen YB, Cai YY, Chen S, Li SM, Zhou J, Chen GM, Luo TQ, Zhou ZW, Li YF. Robust immunoscore model to predict the response to anti-PD1 therapy in melanoma. Aging (Albany NY) 2019; 11:11576-11590. [PMID: 31796647 PMCID: PMC6932919 DOI: 10.18632/aging.102556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
This study aimed to construct immune-related predictors to identify responders to anti-PD1 therapy of melanoma through CIBERSORT algorithm. Using the least absolute shrinkage and selection operator (LASSO) logistic regression, we constructed an immunoscore consisting of 8 immune subsets to predict the anti-PD1 response. This score achieved an overall accuracy of AUC = 0.77, 0.80 and 0.73 in the training cohort, validation cohort and on-anti-PD1 cohort, respectively. Patients with high immunoscores had significantly higher objective response rates (ORRs) than did those with low immunoscores (ORR: 53.8% vs 17.7%, P < 0.001 for entire pre-anti-PD1 cohort; 42.1% vs 15.1%, P = 0.022 for on-anti-PD1 cohort; 66.7% vs 16.7%, P = 0.038 for neoadjuvant anti-PD1 cohort). Prolonged survival trends were observed in high-immunoscore group (1-year PFS: 42.4% vs 14.3%, P = 0.059; 3-year OS: 41.5% vs 31.6%, P = 0.057). Furthermore, we found that high-immunoscore group exhibited higher fractions of tumor-infiltrating lymphocytes and an increased IFN-γ response. Analysis of the results of the GSEA indicated a significant enrichment of antitumor immunity pathways in the high-immunoscore group. Therefore, this study indicated that we constructed a robust immunoscore model to predict the anti-PD1 response of metastatic melanoma and the neoadjuvant anti-PD1 response of resectable melanoma.
Collapse
Affiliation(s)
- Run-Cong Nie
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shu-Qiang Yuan
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yun Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying-Bo Chen
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yan-Yu Cai
- VIP Department, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shi Chen
- Department of Gastric Surgery, The 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu-Man Li
- Department of Experimental Research (Cancer Institute), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jie Zhou
- Department of Experimental Research (Cancer Institute), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guo-Ming Chen
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tian-Qi Luo
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhi-Wei Zhou
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuan-Fang Li
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
12
|
Horak V, Palanova A, Cizkova J, Miltrova V, Vodicka P, Kupcova Skalnikova H. Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma. Genes (Basel) 2019; 10:E915. [PMID: 31717496 PMCID: PMC6895830 DOI: 10.3390/genes10110915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
National cancer databases document that melanoma is the most aggressive and deadly cutaneous malignancy with worldwide increasing incidence in the Caucasian population. Around 10% of melanomas occur in families. Several germline mutations were identified that might help to indicate individuals at risk for preventive interventions and early disease detection. More than 50% of sporadic melanomas carry mutations in Ras/Raf/mitogen-activated protein kinase (MAPK/MEK) pathway, which may represent aims of novel targeted therapies. Despite advances in targeted therapies and immunotherapies, the outcomes in metastatic tumor are still unsatisfactory. Here, we review animal models that help our understanding of melanoma development and treatment, including non-vertebrate, mouse, swine, and other mammal models, with an emphasis on those with spontaneously developing melanoma. Special attention is paid to the melanoma-bearing Libechov minipig (MeLiM). This original swine model of hereditary metastatic melanoma enables studying biological processes underlying melanoma progression, as well as spontaneous regression. Current histological, immunohistochemical, biochemical, genetic, hematological, immunological, and skin microbiome findings in the MeLiM model are summarized, together with development of new therapeutic approaches based on tumor devitalization. The ongoing study of molecular and immunological base of spontaneous regression in MeLiM model has potential to bring new knowledge of clinical importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Helena Kupcova Skalnikova
- Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Laboratory of Applied Proteome Analyses and Research Center PIGMOD, 277 21 Libechov, Czech Republic; (V.H.); (A.P.); (J.C.); (V.M.); (P.V.)
| |
Collapse
|
13
|
Moghimi SM, Peer D. Reprogramming the lymphocyte axis for advanced immunotherapy. Adv Drug Deliv Rev 2019; 141:1-2. [PMID: 31375166 DOI: 10.1016/j.addr.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Institute of Cellular Medicine, Division of Stratified Medicine, Biomarkers and Therapeutics, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | - Dan Peer
- Laboratory of Precision NanoMedicine, School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel.; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|