1
|
Lam W, Yao Y, Tang C, Wang Y, Yuan Q, Peng L. Bifunctional mesoporous HMUiO-66-NH 2 nanoparticles for bone remodeling and ROS scavenging in periodontitis therapy. Biomaterials 2025; 314:122872. [PMID: 39383779 DOI: 10.1016/j.biomaterials.2024.122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Periodontal bone defects represent an irreversible consequence of periodontitis associated with reactive oxygen species (ROS). However, indiscriminate removal of ROS proves to be counterproductive for tissue repair and insufficient for addressing existing bone defects. In the treatment of periodontitis, it is crucial to rationally alleviate local ROS while simultaneously promoting bone regeneration. In this study, Zr-based large-pore hierarchical mesoporous metal-organic framework (MOF) nanoparticles (NPs) HMUiO-66-NH2 were successfully proposed as bifunctional nanomaterials for bone regeneration and ROS scavenging in periodontitis therapy. HMUiO-66-NH2 NPs demonstrated outstanding biocompatibility both in vitro and in vivo. Significantly, these NPs enhanced the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) under normal and high ROS conditions, upregulating osteogenic gene expression and mitigating oxidative stress. Furthermore, in vivo imaging revealed a gradual degradation of HMUiO-66-NH2 NPs in periodontal tissues. Local injection of HMUiO-66-NH2 effectively reduced bone defects and ROS levels in periodontitis-induced C57BL/6 mice. RNA sequencing highlighted that differentially expressed genes (DEGs) are predominantly involved in bone tissue development, with notable upregulation in Wnt and TGF-β signaling pathways. In conclusion, HMUiO-66-NH2 exhibits dual functionality in alleviating oxidative stress and promoting bone repair, positioning it as an effective strategy against bone resorption in oxidative stress-related periodontitis.
Collapse
Affiliation(s)
- Waishan Lam
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yufei Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Chenxi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Xie Q, Zhang W, Yang X, Zhou C, Zhang L, Sun T, Gong M, Zhang D. Bright "D-A-D" semiconducting small molecule aggregates for NIR-II fluorescence bioimaging guiding photothermal therapy. J Mater Chem B 2024. [PMID: 39663947 DOI: 10.1039/d4tb02333a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Donor-acceptor-donor (D-A-D) semiconducting small molecule nanoparticles have emerged as high-performance NIR-II fluorophores for real-time bioimaging. However, due to their intrinsic defects in aggregation-caused quenching (ACQ) and "energy gap law", D-A-D semiconducting small molecule nanoparticles typically exhibit low NIR-II fluorescence quantum yields (QYs). Herein, both the strategies of aggregation induced emission (AIE) and intermolecular charge transfer (CT) have been incorporated into the design of new D-A-D semiconducting small molecules. AIE enhances the NIR-II fluorescence intensity of NIR-II fluorophore aggregates in nanoparticles, while intermolecular CT increases both NIR absorption and NIR-II emission, thereby further improving their NIR-II fluorescence QYs. Four D-A-D semiconducting small molecules (TD, TT, TC, and TCD) were designed. Due to the combination of intermolecular CT and AIE of TCD aggregates, the NIR absorption and NIR-II fluorescence signals of TCD NPs were stronger than those of TD NPs and TT NPs with a single AIE property or TC NPs with strong intermolecular CT. Furthermore, TCD NPs demonstrated excellent performance in in vivo NIR-II fluorescence bioimaging guiding photothermal therapy.
Collapse
Affiliation(s)
- Qian Xie
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China.
| | - Wansu Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China.
| | - Xiaofeng Yang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China.
| | - Chunyu Zhou
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China.
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China.
| | - Tao Sun
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China.
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China.
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China.
| |
Collapse
|
3
|
Han CY, Choi SH, Chi SH, Hong JH, Cho YE, Kim J. Nano-fluorescence imaging: advancing lymphatic disease diagnosis and monitoring. NANO CONVERGENCE 2024; 11:53. [PMID: 39661218 PMCID: PMC11635084 DOI: 10.1186/s40580-024-00462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
The lymphatic system plays a crucial role in maintaining physiological homeostasis and regulating immune responses. Traditional imaging modalities such as magnetic resonance imaging, computerized tomography, and positron emission tomography have been widely used to diagnose disorders in the lymphatic system, including lymphedema, lymphangioma, lymphatic metastasis, and Castleman disease. Nano-fluorescence technology has distinct advantages-including naked-eye visibility, operational simplicity, portability of the laser, and real-time visibility-and serves as an innovative alternative to traditional imaging techniques. This review explores recent advancements in nano-fluorescence imaging aimed at enhancing the resolution of lymphatic structure, function, and immunity. After delineating the fundamental characteristics of lymphatic systems, it elaborates on the development of various nano-fluorescence systems (including nanoparticles incorporating fluorescent dyes and those with intrinsic fluorescence) while addressing key challenges such as photobleaching, limited tissue penetration, biocompatibility, and signal interference from biomolecules. Furthermore, this review highlights the clinical applications of nano-fluorescence and its potential integration into standard diagnostic protocols. Ongoing advancements in nanoparticle technology underscore the potential of nano-fluorescence to revolutionize the diagnosis and treatment of lymphatic disease.
Collapse
Affiliation(s)
- Chae Yeon Han
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Sang-Hun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Soo-Hyang Chi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Ji Hyun Hong
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, 36729, South Korea
| | - Jihoon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
4
|
Mo C, Zhang W, Zhu K, Du Y, Huang W, Wu Y, Song J. Advances in Injectable Hydrogels Based on Diverse Gelation Methods for Biomedical Imaging. SMALL METHODS 2024; 8:e2400076. [PMID: 38470225 DOI: 10.1002/smtd.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The injectable hydrogels can deliver the loads directly to the predetermined sites and form reservoirs to increase the enrichment and retention of the loads in the target areas. The preparation and injection of injectable hydrogels involve the sol-gel transformation of hydrogels, which is affected by factors such as temperature, ions, enzymes, light, mechanics (self-healing property), and pH. However, tracing the injection, degradation, and drug release from hydrogels based on different ways of gelation is a major concern. To solve this problem, contrast agents are introduced into injectable hydrogels, enabling the hydrogels to be imaged under techniques such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, and radionuclide imaging. This review details methods for causing the gelation of imageable hydrogels; discusses the application of injectable hydrogels containing contrast agents in various imaging techniques, and finally explores the potential and challenges of imageable hydrogels based on different modes of gelation.
Collapse
Affiliation(s)
- Chunxiang Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Weiyao Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| |
Collapse
|
5
|
Shen R, Chen YX, Chen Y, Sayed ZN, Yi M, Sun C, Zhang B, Fang J. An activatable red emitting fluorescent probe for monitoring vicinal dithiol protein fluctuations in a stroke model. Chem Commun (Camb) 2024; 60:13774-13777. [PMID: 39499213 DOI: 10.1039/d4cc04971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Vicinal dithiol proteins (VDPs) facilitate cellular redox homeostasis, modulate protein synthesis and participate in post-translational modifications through the dynamic equilibrium of dithiol and disulfide bonds. Herein, an activatable red emitting fluorescent probe, VDP-red, is developed for detecting VDPs. With the aid of this probe, we have discovered for the first time a reduction in the levels of reduced VDPs in a stroke mouse model. This work provides a fresh viewpoint for understanding stroke mechanisms.
Collapse
Affiliation(s)
- Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Ya-Xiong Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Yating Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zahid Nasim Sayed
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Meirong Yi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Chunlin Sun
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
6
|
Xu J, Li X, Luo Z, Li J, Yang S, Zhang T. Single Side-Chain-Modulatory of Hemicyanine for Optimized Fluorescence and Photoacoustic Dual-Modality Imaging of H 2S In Vivo. SMALL METHODS 2024; 8:e2400122. [PMID: 38564786 DOI: 10.1002/smtd.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Near-infrared fluorescence (NIRF)/photoacoustic (PA) dual-modality imaging integrated high-sensitivity fluorescence imaging with deep-penetration PA imaging has been recognized as a reliable tool for disease detection and diagnosis. However, it remains an immense challenge for a molecule probe to achieve the optimal NIRF and PA imaging by adjusting the energy allocation between radiative transition and nonradiative transition. Herein, a simple but effective strategy is reported to engineer a NIRF/PA dual-modality probe (Cl-HDN3) based on the near-infrared hemicyanine scaffold to optimize the energy allocation between radiative and nonradiative transition. Upon activation by H2S, the Cl-HDN3 shows a 3.6-fold enhancement in the PA signal and a 4.3-fold enhancement in the fluorescence signal. To achieve the sensitive and selective detection of H2S in vivo, the Cl-HDN3 is encapsulated within an amphiphilic lipid (DSPE-PEG2000) to form the Cl-HDN3-LP, which can successfully map the changes of H2S in a tumor-bearing mouse model with the NIRF/PA dual-modality imaging. This work presents a promising strategy for optimizing fluorescence and PA effects in a molecule probe, which may be extended to the NIRF/PA dual-modality imaging of other disease-relevant biomarkers.
Collapse
Affiliation(s)
- Juntao Xu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Zhiheng Luo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Jiajun Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| |
Collapse
|
7
|
Ye M, Yin D, Wu Y, Miao H, Wu Z, Liu P. Infrared radiation for cancer hyperthermia: the light to brighten up oncology. Expert Rev Anticancer Ther 2024; 24:1147-1160. [PMID: 39390965 DOI: 10.1080/14737140.2024.2416063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Cancer constitutes the greatest public health threat to humans, as its incidence and mortality rates continue to increase worldwide. With the development of medical physics, more practitioners focus on the direct and indirect anti-tumor effects of physical factors. Infrared radiation (INR) is currently the most rapidly developing physical therapy method for tumors and has become a favored target for many oncologists and researchers owing to its advantages of high efficiency, low toxicity, and strong feasibility. AREAS COVERED This work provides a comprehensive collection of the latest information on INR anti-tumor research, drawing from public medical databases (PubMed, Web of Science, Embase, and Clinical Trials) from the last 10 years (2014 to 2024), and encompassing both basic and clinical research in oncology and physics. This article reviews the application of INR in tumor hyperthermia, summarizes and analyzes the practical value of INR for tumor treatment, and discusses future development trends to provide valuable assistance for the subsequent development of oncology. EXPERT OPINION Currently, INR has continuously accumulated excellent data in the field of tumor hyperthermia, bringing practical survival benefits to patients with cancer, and playing an important role in basic and clinical cancer research.
Collapse
Affiliation(s)
- Mengna Ye
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
| | - Dashan Yin
- Department of Radiation Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yufei Wu
- ACS (International) School of Singapore, Singapore, Singapore
| | - Hua Miao
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
| | - Zhibing Wu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengyuan Liu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Wan Y, Guo Z, Wu Z, Liang T, Li Z. Visualization of Diabetes Progression by an Activatable NIR-IIb Luminescent Probe. Anal Chem 2024; 96:14843-14852. [PMID: 39239835 DOI: 10.1021/acs.analchem.4c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Developing NIR-IIb luminescence probes with rapid visualization and a high penetration depth is essential for diabetes research. Combining a sensitizing switch with lanthanide-doped nanoparticles (LnNPs) has been employed to fabricate the NIR-IIb probes. However, these probes mainly adopt heptamethine cyanine dye as the antenna, and the NIR-IIb signal is activated by inhibiting the photoinduced electron transfer (PET) of the dye. Due to limited recognition units, this strategy makes many biomolecules undetectable, such as cysteine (Cys), which is closely related to diabetes. Herein, in this article, hemicyanine dye, NFL-OH, was verified as a new antenna to sensitize NIR-IIb emission from LnNPs. Unlike traditional cyanine dyes, hemicyanine's fluorescence intensity can also be modulated by intramolecular charge transfer (ICT), thereby expanding the range of detectable targets for NIR-IIb probes based on sensitization mechanism. Through switching the hemicyanine-sensitized NIR-IIb emission, we successfully fabricated an NFL-Cys-LnNPs' nanoprobe, which can effectively monitor Cys concentration in the liver of diabetic mice during diabetes progression and evaluate the efficacy of diabetic drugs. Our work not only presents an excellent tool for Cys imaging but also introduces new concepts for designing NIR-IIb probes.
Collapse
Affiliation(s)
- Yong Wan
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhi Guo
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhengjun Wu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Tao Liang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhen Li
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
9
|
Yin C, Hu P, Qin L, Wang Z, Zhao H. The Current Status and Future Directions on Nanoparticles for Tumor Molecular Imaging. Int J Nanomedicine 2024; 19:9549-9574. [PMID: 39296941 PMCID: PMC11409933 DOI: 10.2147/ijn.s484206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Molecular imaging is an advanced technology that utilizes specific probes or markers in conjunction with cutting-edge imaging techniques to observe and analyze the localization, distribution, activity, and interactions of biomolecules within living organisms. Tumor molecular imaging, by enabling the visualization and quantification of molecular characteristics of tumor cells, facilitates a deeper and more comprehensive understanding of tumors, providing valuable insights for early diagnosis, treatment monitoring, and cancer biology research. However, the image quality of molecular imaging still requires improvement, and nanotechnology has significantly propelled the advancement of molecular imaging. Currently, nanoparticle-based tumor molecular imaging technologies encompass radionuclide imaging, fluorescence imaging, magnetic resonance imaging, ultrasound imaging, photoacoustic imaging, and multimodal imaging, among others. As our understanding of the tumor microenvironment deepens, the design of nanoparticle probes for tumor molecular imaging has also evolved, offering new perspectives and expanding the applications of tumor molecular imaging. Beyond diagnostics, there is a marked trend towards integrated diagnosis and therapy, with image-guided treatment playing a pivotal role. This includes image-guided surgery, photodynamic therapy, and chemodynamic therapy. Despite continuous advancements and innovative developments in molecular imaging, many of these remain in the experimental stage and require breakthroughs before they can be fully integrated into clinical practice.
Collapse
Affiliation(s)
- Caiyun Yin
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, People's Republic of China
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Peiyun Hu
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, People's Republic of China
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Lijing Qin
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Zhicheng Wang
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Hongguang Zhao
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
10
|
Poonia N, Jadhav NV, Mamatha D, Garg M, Kabra A, Bhatia A, Ojha S, Lather V, Pandita D. Nanotechnology-assisted combination drug delivery: a progressive approach for the treatment of acute myeloid leukemia. Ther Deliv 2024; 15:893-910. [PMID: 39268925 PMCID: PMC11497954 DOI: 10.1080/20415990.2024.2394012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Acute myeloid leukemia (AML), a heterogeneous hematopoietic cancer prevalent in adults, has been a leading cause of leukemia-associated deaths for decades. Despite advancements in understanding its pathology and pharmacological targets, therapeutic strategies have seen minimal change. The standard treatment, combining cytarabine and anthracycline, has persisted, accompanied by challenges such as pharmacokinetic issues and non-specific drug delivery, leading to severe side effects. Nanotechnology offers a promising solution through combination drug delivery. FDA-approved CPX351 (VYXEOS™) a liposomal formulation delivering doxorubicin and cytarabine, exemplifies enhanced therapeutic efficacy. Ongoing research explores various nanocarriers for delivering multiple bioactives, addressing drug targeting, pharmacokinetics and chemoresistance. This review highlights nanotechnology-based combination therapies for the effective management of AML, presenting a potential breakthrough in leukemia.
Collapse
Affiliation(s)
- Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Nikita Vijay Jadhav
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR), Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017, India
| | - Davuluri Mamatha
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR), Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector-125, Noida, 201313, India
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University (Govt of Punjab), Dabwali Road, Bathinda, Punjab, 151001, India
| | - Shreesh Ojha
- Pharmacology, College of Medicine & Health Sciences, P.O. Box 15551, Al Ain, UAE
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR), Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017, India
- Centre for Advanced Formulation & Technology (CAFT), Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017, India
| |
Collapse
|
11
|
Xu H, Kim D, Zhao YY, Kim C, Song G, Hu Q, Kang H, Yoon J. Remote Control of Energy Transformation-Based Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402806. [PMID: 38552256 DOI: 10.1002/adma.202402806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Cancer treatment requires precise tumor-specific targeting at specific sites that allows for high-resolution diagnostic imaging and long-term patient-tailorable cancer therapy; while, minimizing side effects largely arising from non-targetability. This can be realized by harnessing exogenous remote stimuli, such as tissue-penetrative ultrasound, magnetic field, light, and radiation, that enable local activation for cancer imaging and therapy in deep tumors. A myriad of nanomedicines can be efficiently activated when the energy of such remote stimuli can be transformed into another type of energy. This review discusses the remote control of energy transformation for targetable, efficient, and long-term cancer imaging and therapy. Such ultrasonic, magnetic, photonic, radiative, and radioactive energy can be transformed into mechanical, thermal, chemical, and radiative energy to enable a variety of cancer imaging and treatment modalities. The current review article describes multimodal energy transformation where a serial cascade or multiple types of energy transformation occur. This review includes not only mechanical, chemical, hyperthermia, and radiation therapy but also emerging thermoelectric, pyroelectric, and piezoelectric therapies for cancer treatment. It also illustrates ultrasound, magnetic resonance, fluorescence, computed tomography, photoluminescence, and photoacoustic imaging-guided cancer therapies. It highlights afterglow imaging that can eliminate autofluorescence for sustained signal emission after the excitation.
Collapse
Affiliation(s)
- Hai Xu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yuan-Yuan Zhao
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
12
|
Roschelle M, Rabbani R, Gweon S, Kumar R, Vercruysse A, Cho NW, Spitzer MH, Niknejad AM, Stojanović VM, Anwar M. A Wireless, Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy. ARXIV 2024:arXiv:2406.18881v1. [PMID: 38979489 PMCID: PMC11230517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Real-time monitoring of dynamic biological processes in the body is critical to understanding disease progression and treatment response. This data, for instance, can help address the lower than 50% response rates to cancer immunotherapy. However, current clinical imaging modalities lack the molecular contrast, resolution, and chronic usability for rapid and accurate response assessments. Here, we present a fully wireless image sensor featuring a 2.5×5 mm2 CMOS integrated circuit for multicolor fluorescence imaging deep in tissue. The sensor operates wirelessly via ultrasound (US) at 5 cm depth in oil, harvesting energy with 221 mW/cm2 incident US power density (31% of FDA limits) and backscattering data at 13 kbps with a bit error rate <10-6. In-situ fluorescence excitation is provided by micro-laser diodes controlled with a programmable on-chip driver. An optical frontend combining a multi-bandpass interference filter and a fiber optic plate provides >6 OD excitation blocking and enables three-color imaging for detecting multiple cell types. A 36×40-pixel array captures images with <125 μm resolution. We demonstrate wireless, dual-color fluorescence imaging of both effector and suppressor immune cells in ex vivo mouse tumor samples with and without immunotherapy. These results show promise for providing rapid insight into therapeutic response and resistance, guiding personalized medicine.
Collapse
Affiliation(s)
- Micah Roschelle
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Rozhan Rabbani
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Surin Gweon
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Rohan Kumar
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Alec Vercruysse
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Nam Woo Cho
- Department of Radiation Oncology and the Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA 94158 USA
| | - Matthew H. Spitzer
- Department of Otolaryngology-Head and Neck Surgery and the Department of Microbiology and Immunology, University of California, San Francisco, CA 94158 USA
| | - Ali M. Niknejad
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Vladimir M. Stojanović
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Mekhail Anwar
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720 USA
- Department of Radiation Oncology, University of California, San Francisco, CA 94158 USA
| |
Collapse
|
13
|
Zhang Z, Du Y, Shi X, Wang K, Qu Q, Liang Q, Ma X, He K, Chi C, Tang J, Liu B, Ji J, Wang J, Dong J, Hu Z, Tian J. NIR-II light in clinical oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:449-467. [PMID: 38693335 DOI: 10.1038/s41571-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Novel strategies utilizing light in the second near-infrared region (NIR-II; 900-1,880 nm wavelengths) offer the potential to visualize and treat solid tumours with enhanced precision. Over the past few decades, numerous techniques leveraging NIR-II light have been developed with the aim of precisely eliminating tumours while maximally preserving organ function. During cancer surgery, NIR-II optical imaging enables the visualization of clinically occult lesions and surrounding vital structures with increased sensitivity and resolution, thereby enhancing surgical quality and improving patient prognosis. Furthermore, the use of NIR-II light promises to improve cancer phototherapy by enabling the selective delivery of increased therapeutic energy to tissues at greater depths. Initial clinical studies of NIR-II-based imaging and phototherapy have indicated impressive potential to decrease cancer recurrence, reduce complications and prolong survival. Despite the encouraging results achieved, clinical translation of innovative NIR-II techniques remains challenging and inefficient; multidisciplinary cooperation is necessary to bridge the gap between preclinical research and clinical practice, and thus accelerate the translation of technical advances into clinical benefits. In this Review, we summarize the available clinical data on NIR-II-based imaging and phototherapy, demonstrating the feasibility and utility of integrating these technologies into the treatment of cancer. We also introduce emerging NIR-II-based approaches with substantial potential to further enhance patient outcomes, while also highlighting the challenges associated with imminent clinical studies of these modalities.
Collapse
Affiliation(s)
- Zeyu Zhang
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Qiaojun Qu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Wang
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Jiahong Dong
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China.
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
14
|
Xu ZY, Li ZZ, Cao LM, Zhong NN, Liu XH, Wang GR, Xiao Y, Liu B, Bu LL. Seizing the fate of lymph nodes in immunotherapy: To preserve or not? Cancer Lett 2024; 588:216740. [PMID: 38423247 DOI: 10.1016/j.canlet.2024.216740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Lymph node dissection has been a long-standing diagnostic and therapeutic strategy for metastatic cancers. However, questions over myriad related complications and survival outcomes are continuously debated. Immunotherapy, particularly neoadjuvant immunotherapy, has revolutionized the conventional paradigm of cancer treatment, yet has benefited only a fraction of patients. Emerging evidence has unveiled the role of lymph nodes as pivotal responders to immunotherapy, whose absence may contribute to drastic impairment in treatment efficacy, again posing challenges over excessive lymph node dissection. Hence, centering around this theme, we concentrate on the mechanisms of immune activation in lymph nodes and provide an overview of minimally invasive lymph node metastasis diagnosis, current best practices for activating lymph nodes, and the prognostic outcomes of omitting lymph node dissection. In particular, we discuss the potential for future comprehensive cancer treatment with effective activation of immunotherapy driven by lymph node preservation and highlight the challenges ahead to achieve this goal.
Collapse
Affiliation(s)
- Zhen-Yu Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xuan-Hao Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
15
|
von Behren JM, Wesche J, Greinacher A, Aurich K. Indocyanine Green-Labeled Platelets for Survival and Recovery Studies. Transfus Med Hemother 2024; 51:66-75. [PMID: 38584698 PMCID: PMC10996059 DOI: 10.1159/000533623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/13/2023] [Indexed: 04/09/2024] Open
Abstract
Introduction Before being implemented in daily clinical routine, new production strategies for platelet concentrates (PCs) must be validated for their efficacy. Besides in vitro testing, the establishment of new methods requires the labeling of platelets for in vivo studies of platelets' survival and recovery. Indocyanine green (ICG) is a Food and Drug Administration-approved near-infrared (NIR) fluorescent dye for diagnostic use in vivo, suitable for non-radioactive direct cell labeling of platelets. Methods Platelets from PCs in storage solutions with different plasma concentrations were labeled with ICG up to concentrations of 200 μm. Whole blood (WB) was used as an ex vivo matrix to monitor the labeling stability of ICG-labeled platelets. The impact of labeling processes was assessed by the quantification of CD62P expression and PAC-1 binding as platelet function markers. Platelet aggregation was analyzed by light transmission aggregometry. ICG-labeling efficiency and stability of platelets were determined by flow cytometry. Results Platelets from PCs could be successfully labeled with 10 μm ICG after 1 and 4 days of storage. The best labeling efficiency of 99.8% ± 0.1% (immediately after labeling) and 81% ± 6.2% (after 24 h incubation with WB) was achieved by plasma replacement by 100% platelet additive solution for the labeling process. Since the washing process slightly impaired platelet function, ICG labeling itself did not affect platelets. Immediately after the ICG-labeling process, plasma was re-added, resulting in a recovered platelet function. Conclusion We developed a Good Manufacturing Practice compatible protocol for ICG fluorescent platelet labeling suitable for survival and recovery studies in vivo as a non-radioactive labeling alternative.
Collapse
Affiliation(s)
| | - Jan Wesche
- Universitätsmedizin Greifswald, Institut für Transfusionsmedizin, Greifswald, Germany
| | - Andreas Greinacher
- Universitätsmedizin Greifswald, Institut für Transfusionsmedizin, Greifswald, Germany
| | - Konstanze Aurich
- Universitätsmedizin Greifswald, Institut für Transfusionsmedizin, Greifswald, Germany
| |
Collapse
|
16
|
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto V, Lächelt U, Huang R, Shi Y, Lammers T, Tao W, Xu ZP, Wagner E, Xu Z, Yu H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20210146. [PMID: 38855617 PMCID: PMC11022630 DOI: 10.1002/exp.20210146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wenfang Yang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ulrich Lächelt
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug DeliveryMinistry of Education, Fudan UniversityShanghaiChina
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhenChina
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoscienceLudwig‐Maximilians‐UniversitätMunichGermany
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
17
|
Tian M, Wu R, Xiang C, Niu G, Guan W. Recent Advances in Fluorescent Probes for Cancer Biomarker Detection. Molecules 2024; 29:1168. [PMID: 38474680 DOI: 10.3390/molecules29051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Many important biological species have been identified as cancer biomarkers and are gradually becoming reliable targets for early diagnosis and late therapeutic evaluation of cancer. However, accurate quantitative detection of cancer biomarkers remains challenging due to the complexity of biological systems and the diversity of cancer development. Fluorescent probes have been extensively utilized for identifying biological substances due to their notable benefits of being non-invasive, quickly responsive, highly sensitive and selective, allowing real-time visualization, and easily modifiable. This review critiques fluorescent probes used for detecting and imaging cancer biomarkers over the last five years. Focuses are made on the design strategies of small-molecule and nano-sized fluorescent probes, the construction methods of fluorescence sensing and imaging platforms, and their further applications in detection of multiple biomarkers, including enzymes, reactive oxygen species, reactive sulfur species, and microenvironments. This review aims to guide the design and development of excellent cancer diagnostic fluorescent probes, and promote the broad application of fluorescence analysis in early cancer diagnosis.
Collapse
Affiliation(s)
- Mingce Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Institute of Smart Energy, Beijing 102209, China
| | - Riliga Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Caihong Xiang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guangle Niu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Luo T, Xu T, Ou Y, Ci H, Sun J. Prognostic significance of RKIP, TGM2, and CMTM4 expression in oral squamous cell carcinoma. Medicine (Baltimore) 2024; 103:e37278. [PMID: 38363884 PMCID: PMC10869054 DOI: 10.1097/md.0000000000037278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The expression of RKIP, TGM2, and CMTM4 in oral squamous cell carcinoma (OSCC) and normal oral tissues was detected and their correlations were analyzed. The relationships between RKIP, TGM2, and CMTM4 and the clinicopathological parameters and prognosis of patients were analyzed. METHODS Seventy cancerous and adjacent normal tissue samples were selected, recorded in the pathology department, and embedded in paraffin. Protein expression was detected by immunohistochemistry. Statistical software (SPSS 25.0, IBM Corporation) was used for the statistical analysis. The chi-squared (χ2) test was used to analyze the expression of RKIP, TGM2, and CMTM4 proteins and their clinicopathological features. Differences in RKIP, TGM2, and CMTM4 protein levels between OSCC and normal tissues were compared using a χ2 test. Survival analysis was performed using the Kaplan-Meier method, and differences between survival curves were determined using the log-rank test. The effects of RKIP, TGM2, and CMTM4 expression on patient prognosis were analyzed using a multivariate Cox proportional hazards regression model. P < .05 was considered statistically significant. RESULTS The expression level of RKIP correlated with age and clinical stage (P < .05). TGM2 was associated with clinical stage and lymph node metastasis (P < .05). The expression of CMTM4 increased with a decrease in cancer differentiation. Kaplan-Meier survival analysis suggested that the positive expression of TGM2 and CMTM4 may predict poor prognosis in patients with OSCC. The multivariate Cox proportional hazards regression model suggested that TGM2 could be an independent prognostic factor for patients with OSCC. CONCLUSION Combined expression of TGM2 and CMTM4 can be used as an indicator to evaluate the risk of metastasis and prognosis of OSCC.
Collapse
Affiliation(s)
- Tianyu Luo
- Bengbu Medical University, Bengbu, China
| | - Tao Xu
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui, China
| | - Yurong Ou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui China
| | - Junhui Sun
- Bengbu Medical University, Bengbu, China
| |
Collapse
|
19
|
Wang M, Wu Y, Li G, Lin Q, Zhang W, Liu H, Su J. Articular cartilage repair biomaterials: strategies and applications. Mater Today Bio 2024; 24:100948. [PMID: 38269053 PMCID: PMC10806349 DOI: 10.1016/j.mtbio.2024.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Articular cartilage injury is a frequent worldwide disease, while effective treatment is urgently needed. Due to lack of blood vessels and nerves, the ability of cartilage to self-repair is limited. Despite the availability of various clinical treatments, unfavorable prognoses and complications remain prevalent. However, the advent of tissue engineering and regenerative medicine has generated considerable interests in using biomaterials for articular cartilage repair. Nevertheless, there remains a notable scarcity of comprehensive reviews that provide an in-depth exploration of the various strategies and applications. Herein, we present an overview of the primary biomaterials and bioactive substances from the tissue engineering perspective to repair articular cartilage. The strategies include regeneration, substitution, and immunization. We comprehensively delineate the influence of mechanically supportive scaffolds on cellular behavior, shedding light on emerging scaffold technologies, including stimuli-responsive smart scaffolds, 3D-printed scaffolds, and cartilage bionic scaffolds. Biologically active substances, including bioactive factors, stem cells, extracellular vesicles (EVs), and cartilage organoids, are elucidated for their roles in regulating the activity of chondrocytes. Furthermore, the composite bioactive scaffolds produced industrially to put into clinical use, are also explicitly presented. This review offers innovative solutions for treating articular cartilage ailments and emphasizes the potential of biomaterials for articular cartilage repair in clinical translation.
Collapse
Affiliation(s)
- Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Qiushui Lin
- Department of Spine Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
20
|
Agiba AM, Arreola-Ramírez JL, Carbajal V, Segura-Medina P. Light-Responsive and Dual-Targeting Liposomes: From Mechanisms to Targeting Strategies. Molecules 2024; 29:636. [PMID: 38338380 PMCID: PMC10856102 DOI: 10.3390/molecules29030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, nanocarriers have played an ever-increasing role in clinical and biomedical applications owing to their unique physicochemical properties and surface functionalities. Lately, much effort has been directed towards the development of smart, stimuli-responsive nanocarriers that are capable of releasing their cargos in response to specific stimuli. These intelligent-responsive nanocarriers can be further surface-functionalized so as to achieve active tumor targeting in a sequential manner, which can be simply modulated by the stimuli. By applying this methodological approach, these intelligent-responsive nanocarriers can be directed to different target-specific organs, tissues, or cells and exhibit on-demand controlled drug release that may enhance therapeutic effectiveness and reduce systemic toxicity. Light, an external stimulus, is one of the most promising triggers for use in nanomedicine to stimulate on-demand drug release from nanocarriers. Light-triggered drug release can be achieved through light irradiation at different wavelengths, either in the UV, visible, or even NIR region, depending on the photophysical properties of the photo-responsive molecule embedded in the nanocarrier system, the structural characteristics, and the material composition of the nanocarrier system. In this review, we highlighted the emerging functional role of light in nanocarriers, with an emphasis on light-responsive liposomes and dual-targeted stimuli-responsive liposomes. Moreover, we provided the most up-to-date photo-triggered targeting strategies and mechanisms of light-triggered drug release from liposomes and NIR-responsive nanocarriers. Lastly, we addressed the current challenges, advances, and future perspectives for the deployment of light-responsive liposomes in targeted drug delivery and therapy.
Collapse
Affiliation(s)
- Ahmed M. Agiba
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico;
| | - José Luis Arreola-Ramírez
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City 14080, Mexico; (J.L.A.-R.); (V.C.)
| | - Verónica Carbajal
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City 14080, Mexico; (J.L.A.-R.); (V.C.)
| | - Patricia Segura-Medina
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City 14080, Mexico; (J.L.A.-R.); (V.C.)
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City 14380, Mexico
| |
Collapse
|
21
|
Mavileti SK, Bila G, Utka V, Bila E, Kato T, Bilyy R, Pandey SS. Photophysical Characterization and Biointeractions of NIR Squaraine Dyes for in Vitro and in Vivo Bioimaging. ACS APPLIED BIO MATERIALS 2024; 7:416-428. [PMID: 38112180 DOI: 10.1021/acsabm.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The increasing demand for reliable near-infrared (NIR) probes exhibiting enduring fluorescence in living systems and facile compatibility with biomolecules such as peptides, antibodies or proteins is driven by the increasing use of NIR imaging in clinical diagnostics. To address this demand, a series of carboxy-functionalized unsymmetrical squaraine dyes (SQ-27, SQ-212, and SQ-215) along with non-carboxy-functionalized SQ-218 absorbing and emitting in the NIR wavelength range were designed and synthesized followed by photophysical characterization. This study focused on the impact of structural variations in the alkyl chain length, carboxy functionality positioning, and spacer chain length on dye aggregation and interaction with bovine serum albumin (BSA) as a model protein. In phosphate buffer (PB), the absorption intensity of the dyes markedly decreased accompanied by pronounced shoulders indicative of dye aggregation, and complete fluorescence quenching was seen in contrast to organic solvents. However, in the presence of BSA in PB, there was a enhancement in absorption intensity while regaining the fluorescence coupled with a remarkable increase in the intensity with increasing BSA concentrations, signifying the impact of dye-BSA interactions on preventing aggregation. Further analysis of Job's plot unveiled a 2:1 interaction ratio between BSA and all dyes, while the binding studies revealed a robust binding affinity (Ka) in the order of 107/mol. SQ-212 and SQ-215 were further tested for their in vitro and in vivo imaging capabilities. Notably, SQ-212 demonstrated nonpermeability to cells, while SQ-215 exhibited easy penetration and prominent cytoplasmic localization in in vitro studies. Injection of the dyes into laboratory mice showcased their efficacy in visualization, displaying stable and intense fluorescence in tissues without toxicity, organ damage, or behavioral changes. Thus, SQ-212 and SQ-215 are promising candidates for imaging applications, holding potential for noninvasive cellular and diagnostic imaging as well as biomarker detection when coupled with specific vectors in living systems.
Collapse
Affiliation(s)
- Sai Kiran Mavileti
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196Kitakyushu ,Japan
| | - Galyna Bila
- Lectinotest R&D, Mechanichna Str 2, 79000 Lviv, Ukraine
- Department of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, 79010 Lviv, Ukraine
| | - Valentyn Utka
- Lectinotest R&D, Mechanichna Str 2, 79000 Lviv, Ukraine
| | - Evgenia Bila
- Lectinotest R&D, Mechanichna Str 2, 79000 Lviv, Ukraine
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyrylo and Mefodiy Street 6, 79005 Lviv, Ukraine
| | - Tamaki Kato
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196Kitakyushu ,Japan
| | - Rostyslav Bilyy
- Lectinotest R&D, Mechanichna Str 2, 79000 Lviv, Ukraine
- Department of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, 79010 Lviv, Ukraine
| | - Shyam S Pandey
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196Kitakyushu ,Japan
| |
Collapse
|
22
|
Fan X, Nijman HW, de Bruyn M, Elsinga PH. ImmunoPET provides a novel way to visualize the CD103 + tissue-resident memory T cell to predict the response of immune checkpoint inhibitors. EJNMMI Res 2024; 14:5. [PMID: 38182929 PMCID: PMC10769965 DOI: 10.1186/s13550-023-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have made significant progress in oncotherapy improving survival of patients. However, the benefits are limited to only a small subgroup of patients who could achieve durable responses. Early prediction of response may enable treatment optimization and patient stratification. Therefore, developing appropriate biomarkers is critical to monitoring efficacy and assessing patient response to ICIs. MAIN BODY Herein, we first introduce a new potential biomarker, CD103, expressed on tissue-resident memory T cells, and discuss the potential application of CD103 PET imaging in predicting immune checkpoint inhibitor treatment. In addition, we describe the current targets of ImmunoPET and compare these targets with CD103. To assess the benefit of PET imaging, a comparative analysis between ImmunoPET and other imaging techniques commonly employed for tumor diagnosis was performed. Additionally, we compare ImmunoPET and immunohistochemistry (IHC), a widely utilized clinical method for biomarker identification with respect to visualizing the immune targets. CONCLUSION CD103 ImmunoPET is a promising method for determining tumor-infiltrating lymphocytes (TILs) load and response to ICIs, thereby addressing the lack of reliable biomarkers in cancer immunotherapy. Compared to general T cell markers, CD103 is a specific marker for tissue-resident memory T cells, which number increases during successful ICI therapy. ImmunoPET offers noninvasive, dynamic imaging of specific markers, complemented by detailed molecular information from immunohistochemistry (IHC). Radiomics can extract quantitative features from traditional imaging methods, while near-infrared fluorescence (NIRF) imaging aids tumor detection during surgery. In the era of precision medicine, combining such methods will offer a more comprehensive approach to cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoyu Fan
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
23
|
Chao JJ, Zhang H, Wang ZQ, Liu QR, Mao GJ, Li Y, Li CY. A near-infrared fluorescent probe for viscosity: Differentiating cancer cells from normal cells and dual-modal imaging in tumor mice. Anal Chim Acta 2024; 1285:342024. [PMID: 38057061 DOI: 10.1016/j.aca.2023.342024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
As a basic parameter of the intracellular microenvironment, viscosity is closely related to the development of cancer. Thus, it is necessary to utilize a sensitive tool to visualize the viscosity in tumor cells and mice, which is helpful for the diagnosis of cancer. Herein, a novel dual-modal probe (IX-V) that has a near-infrared fluorescence (NIRF) and photoacoustic (PA) response to viscosity is synthesized. In low viscosity media, the probe has no fluorescence. With the increase of viscosity, the fluorescence is produced in the near-infrared region due to the inhibition of the TICT process. At the same time, the probe shows different photoacoustic (PA) signals in different viscosity media. Most notably, the viscosity in tumor cells has been imaged successfully by the application of IX-V, and the probe can effectively distinguish cancer cells from normal cells co-cultured in one dish by the difference of fluorescence intensity. In addition, the probe has been used for dual-modal imaging (NIRF and PA) of viscosity in tumor mice, which provides a tool for exploring the relationship between viscosity and diseases. That is to say, IX-V can achieve complementary imaging effects and has great application prospects in the tumor diagnosis.
Collapse
Affiliation(s)
- Jing-Jing Chao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Hui Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Qiao-Rong Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China.
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
24
|
Hu X, Zhu C, Sun F, Chen Z, Zou J, Chen X, Yang Z. J-Aggregation Strategy toward Potentiated NIR-II Fluorescence Bioimaging of Molecular Fluorophores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304848. [PMID: 37526997 DOI: 10.1002/adma.202304848] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Molecular fluorophores emitting in the second near-infrared (NIR-II, 1000-1700 nm) window with strong optical harvesting and high quantum yields hold great potential for in vivo deep-tissue bioimaging and high-resolution biosensing. Recently, J-aggregates are harnessed to engineer long-wavelength NIR-II emitters and show unique superiority in tumor detection, vessel mapping, surgical navigation, and phototheranostics due to their bathochromic-shifted optical bands in the required slip-stacked arrangement aggregation state. However, despite the preliminary progress of NIR-II J-aggregates and theoretical study of structure-property relationships, further paradigms of NIR-II J-aggregates remain scarce due to the lack of study on aggregated fluorophores with slip-stacked fashion. In this effort, how to utilize the specific molecular structure to form slip-stacked packing motifs with J-type aggregated exciton coupling is emphatically elucidated. First, several molecular regulating strategies to achieve NIR-II J-aggregates containing intermolecular interactions and external conditions are positively summarized and deeply analyzed. Then, the recent reports on J-aggregates for NIR-II bioimaging and theranostics are systematically summarized to provide a clear reference and direction for promoting the development of NIR-II organic fluorophores. Eventually, the prospective efforts on ameliorating and promoting NIR-II J-aggregates to further clinical practices are outlined.
Collapse
Affiliation(s)
- Xiaoming Hu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Caijun Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Fengwei Sun
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Zejing Chen
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR) 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhen Yang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| |
Collapse
|
25
|
Shu WJ, Ma Z, Tian X, Wang F. Near-Infrared Fluorescence Imaging of miRNA Using a Transmembrane Polypeptide-Based Genetic Reporter. SMALL METHODS 2024; 8:e2300990. [PMID: 37882335 DOI: 10.1002/smtd.202300990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/29/2023] [Indexed: 10/27/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play important regulatory roles in multiple biological processes. Many miRNAs exhibit unique expression patterns and are considered as theranostic biomarkers in a variety of human diseases. A reporter system that is capable of imaging miRNA in vivo is crucial for investigating miRNA biology. In the present study, an organic anion-transporting polypeptide 1B3 (OATP1B3)-based genetic switch system is designed and optimized to achieve near-infrared fluorescent imaging of miRNA by the uptake of indocyanine green (ICG) dye. The reporter system, named miR-ON-OB3, is shown to be efficient to regulate the expression of OATP1B3 in mammalian cells. Notably, the results indicate that the system is of high sensitivity for near-infrared fluorescence imaging of both exogenous and endogenous miRNA in mammalian cells. Moreover, the system is proved to be functional for real-time near-infrared fluorescence imaging of miRNA in living mice. This study establishes a novel genetic encoded reporter for near-infrared fluorescence imaging of miRNA, which may provide a potential tool for in vivo imaging of miRNA in clinical applications due to the clinical availability of ICG.
Collapse
Affiliation(s)
- Wen-Jie Shu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhe Ma
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaojie Tian
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fu Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi, 712046, China
| |
Collapse
|
26
|
Cui M, Tang D, Wang B, Zhang H, Liang G, Xiao H. Bioorthogonal Guided Activation of cGAS-STING by AIE Photosensitizer Nanoparticles for Targeted Tumor Therapy and Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305668. [PMID: 37668998 DOI: 10.1002/adma.202305668] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) leverage reactive oxygen species (ROS) and control local hyperthermia by photosensitizer to perturb intracellular redox equilibrium, inducing DNA damage in both mitochondria and nucleus, activating the cGAS-STING pathway, ultimately eliciting antitumor immune responses. However, current photosensitizers are encumbered by limitations such as suboptimal tumor targeting, aggregation-caused quenching (ACQ), and restricted excitation and emission wavelengths. Here, this work designs novel nanoparticles based on aggregation-induced emission (AIE) photosensitizer (BODTPE) for targeted tumor therapy and near-infrared II fluorescence imaging (NIR-II FLI) with enhanced PDT/PTT effects. BODTPE is employed as a monomer, dibenzocyclooctyne (DBCO)-PEG2k -amine serving as an end-capping polymer, to synthesize a BODTPE-containing polymer (DBD). Further, through self-assembly, DBD and mPEG-DSPE2k combined to form nanoparticles (NP-DBD). Notably, the DBCO on the surface of NP-DBD can react with azide groups on cancer cells pretreated with Ac4 ManNAz through a copper-free click reaction. This innovative formulation led to targeted accumulation of NP-DBD within tumor sites, a phenomenon convincingly demonstrated in murine tumor models subjected to N-azidoacetylmannosamine-tetraacylated (Ac4 ManNAz) pretreatment. Significantly, NP-DBD exhibits a multifaceted effect encompassing PDT/PTT/NIR-II FLI upon 808 nm laser irradiation, thereby better activating the cGAS-STING pathway, culminating in a compelling tumor inhibition effect augmented by robust immune modulation.
Collapse
Affiliation(s)
- Minhui Cui
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
27
|
Zhao B, Gu Z, Li Z, Cheng L, Li C, Hong Y. Colon targeted releases and uptakes of paclitaxel loaded in modified porous starch. Carbohydr Polym 2023; 318:121126. [PMID: 37479457 DOI: 10.1016/j.carbpol.2023.121126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/23/2023]
Abstract
Hyaluronic acid can modify porous starch through cross-linking and hydrogen bonding, effectively achieving a paclitaxel entrapment efficiency of ∼92 % and drug loading of ∼23 %. In this study, the pores and intergranular gaps of porous starch were filled with paclitaxel under solvent volatilization, and the enrichment process and its characteristics were recorded using a microscope. The paclitaxel-loaded particles were coated with chitosan-phytic acid to target the colon. In vivo imaging in mice showed that the capsule released paclitaxel in the colon rather than in the upper digestive tract, and the paclitaxel distribution in the main organs at 24 h was significantly lower than that of raw paclitaxel. Hyaluronic acid-modified porous starch can target cancer cells. Cell internalization of paclitaxel mediated by hyaluronic acid was approximately 1.97 times that of raw paclitaxel, higher than that of receptor-shielded cells and cells incubated with unmodified carriers, as evidenced by the accumulation of fluorescent paclitaxel in the nucleus and marked cell apoptosis. The hyaluronic acid-modified porous starch system is an effective method for the high-load and targeted release of hydrophobic anticancer drugs.
Collapse
Affiliation(s)
- Beibei Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
28
|
Guo S, Gu D, Yang Y, Tian J, Chen X. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnology 2023; 21:348. [PMID: 37759287 PMCID: PMC10523653 DOI: 10.1186/s12951-023-02111-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
29
|
Yan J, Wang K, Gui L, Liu X, Ji Y, Lin J, Luo M, Xu H, Lv J, Tan F, Lin L, Yuan Z. Diagnosing Orthotopic Lung Tumor Using a NTR-Activatable Near-Infrared Fluorescent Probe by Tracheal Inhalation. Anal Chem 2023; 95:14402-14412. [PMID: 37698361 DOI: 10.1021/acs.analchem.3c02760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Nitroreductase (NTR) is an enzyme that is upregulated under tumor-depleted oxygen conditions. The majority of studies have been conducted on NTR, but many existing fluorescent imaging tools for monitoring NTR inevitably suffer from weak targeting, low sensitivity, and simple tumor models. Research on diagnosing lung tumors has been very popular in recent years, but targeting assays in orthotopic lung tumors is still of great research value, as such models better mimic the reality of cancer in the organism. Here, we developed a novel near-infrared (NIR) fluorescent probe IR-ABS that jointly targets NTR and carbonic anhydrase IX (CAIX). IR-ABS has excellent sensitivity and selectivity and shows exceptional NTR response in spectroscopic tests. The measurements ensured that this probe has good biosafety in both cells and mice. A better NTR response was found in hypoxic tumor cells at the cellular level, distinguishing tumor cells from normal cells. In vivo experiments demonstrated that IR-ABS achieves a hypoxic response at the zebrafish level and enables rapid and accurate tumor margin distinguishment in different mouse tumor models. More importantly, we successfully applied IR-ABS for NTR detection in orthotopic lung tumor models, further combined with tracheal inhalation drug delivery to improve targeting. To the best of our knowledge, we present for the first time a near-infrared imaging method for targeting lung cancerous tumor in situ via tracheal inhalation drug delivery, in contrast to the reported literature. This NIR fluorescence diagnostic strategy for targeting orthotopic lung cancer holds exciting potential for clinical aid in cancer diagnosis.
Collapse
Affiliation(s)
- Jun Yan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Kaizhen Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Xian Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Yingying Ji
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Man Luo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Hong Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Jingxuan Lv
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Fang Tan
- Third Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, 650000 Kunming, Yunnan Province, China
| | - Liangting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| |
Collapse
|
30
|
Robertus CM, Snyder SM, Curley SM, Murundi SD, Whitman MA, Fischbach C, Putnam D. Selective Accumulation of Near Infrared-Labeled Multivalent Quinidine Copolymers in Tumors Overexpressing P-Glycoprotein: Potential for Noninvasive Diagnostic Imaging. ACS APPLIED BIO MATERIALS 2023; 6:3117-3130. [PMID: 37498226 DOI: 10.1021/acsabm.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
P-glycoprotein (P-gp) is a promiscuous small molecule transporter whose overexpression in cancer is associated with multidrug resistance (MDR). In these instances, anticancer drugs can select for P-gp-overexpressing cells, leading to cancer recurrence with an MDR phenotype. To avoid selection for MDR cancers and inform individual patient treatment plans, it is critical to noninvasively identify P-gp-overexpressing tumors prior to administration of chemotherapy. We report the facile free radical copolymerization of quinidine, a competitive inhibitor of P-gp, and acrylic acid to generate multiplexed polymeric P-gp-targeted imaging agents with tunable quinidine content. Copolymer targeting was demonstrated in a nude mouse xenograft model. In xenografts overexpressing P-gp, copolymer distribution was enhanced over two-fold compared to the negative control of poly(acrylic acid) regardless of quinidine content. In contrast, accumulation of the copolymers in xenografts lacking P-gp was equivalent to poly(acrylic acid). This work forms the foundation for a unique approach toward the phenotype-specific noninvasive imaging of MDR tumors and is the first in vivo demonstration of copolymer accumulation through the active targeting of P-gp.
Collapse
Affiliation(s)
- Cara M Robertus
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
| | - Sarah M Snyder
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
| | - Stephanie M Curley
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
| | - Shamanth D Murundi
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, New York 14853-0001, United States
| | - Matthew A Whitman
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
| | - Claudia Fischbach
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, 245 Feeney Way, Ithaca, New York 14853, United States
| | - David Putnam
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
- Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Kheyrolahzadeh K, Tohidkia MR, Tarighatnia A, Shahabi P, Nader ND, Aghanejad A. Theranostic chimeric antigen receptor (CAR)-T cells: Insight into recent trends and challenges in solid tumors. Life Sci 2023; 328:121917. [PMID: 37422069 DOI: 10.1016/j.lfs.2023.121917] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/15/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Cell therapy has reached significant milestones in various life-threatening diseases, including cancer. Cell therapy using fluorescent and radiolabeled chimeric antigen receptor (CAR)-T cell is a successful strategy for diagnosing or treating malignancies. Since cell therapy approaches have different results in cancers, the success of hematological cancers has yet to transfer to solid tumor therapy, leading to more casualties. Therefore, there are many areas for improvement in the cell therapy platform. Understanding the therapeutic barriers associated with solid cancers through cell tracking and molecular imaging may provide a platform for effectively delivering CAR-T cells into solid tumors. This review describes CAR-T cells' role in treating solid and non-solid tumors and recent advances. Furthermore, we discuss the main obstacles, mechanism of action, novel strategies and solutions to overcome the challenges from molecular imaging and cell tracking perspectives.
Collapse
Affiliation(s)
- Keyvan Kheyrolahzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Fan H, McGhee CE, Lake RJ, Yang Z, Guo Z, Zhang XB, Lu Y. A Highly Selective Mn(II)-Specific DNAzyme and Its Application in Intracellular Sensing. JACS AU 2023; 3:1615-1622. [PMID: 37388692 PMCID: PMC10302744 DOI: 10.1021/jacsau.3c00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
Manganese is an essential trace element in the human body that acts as a cofactor in many enzymes and metabolisms. It is important to develop methods to detect Mn2+ in living cells. While fluorescent sensors have been very effective in detecting other metal ions, Mn2+-specific fluorescent sensors are rarely reported due to nonspecific fluorescence quenching by the paramagnetism of Mn2+ and poor selectivity against other metal ions such as Ca2+ and Mg2+. To address these issues, we herein report in vitro selection of an RNA-cleaving DNAzyme with exceptionally high selectivity for Mn2+. Through converting it into a fluorescent sensor using a catalytic beacon approach, Mn2+ sensing in immune cells and tumor cells has been achieved. The sensor is also used to monitor degradation of manganese-based nanomaterials such as MnOx in tumor cells. Therefore, this work provides an excellent tool to detect Mn2+ in biological systems and monitor the Mn2+-involved immune response and antitumor therapy.
Collapse
Affiliation(s)
- Huanhuan Fan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Nanjing University, Nanjing 210023, China
| | - Claire E. McGhee
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ryan J. Lake
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zijian Guo
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiao-Bing Zhang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Yi Lu
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Xia W, Singh N, Goel S, Shi S. Molecular Imaging of Innate Immunity and Immunotherapy. Adv Drug Deliv Rev 2023; 198:114865. [PMID: 37182699 DOI: 10.1016/j.addr.2023.114865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.
Collapse
Affiliation(s)
- Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
34
|
Wang Y, Nan J, Ma H, Xu J, Guo F, Wang Y, Liang Y, Zhang J, Zhu S. NIR-II Imaging and Sandwiched Plasmonic Biosensor for Ultrasensitive Intraoperative Definition of Tumor-Invaded Lymph Nodes. NANO LETTERS 2023; 23:4039-4048. [PMID: 37071592 PMCID: PMC10176571 DOI: 10.1021/acs.nanolett.3c00829] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Radical lymphadenectomy remains the cornerstone of preventing tumor metastasis through the lymphatic system. Current surgical resection of lymph nodes (LNs) based on fluorescence-guided surgery (FGS) suffers from low sensitivity/selectivity with only qualitative information, hampering accurate intraoperative decision-making. Herein, we develop a modularized theranostic system including NIR-II FGS and a sandwiched plasmonic chip (SPC). Intraoperative NIR-II FGS and detection of tumor-positive lymph nodes were performed on the gastric tumor to determine the feasibility of the modularized theranostic system in defining LN metastasis. Under the NIR-II imaging window, the orthotopic tumor and sentinel lymph nodes (SLNs) were successfully excised without ambient light interference in the operating room. Importantly, the SPC biosensor achieved 100% sensitivity and 100% specificity for tumor markers and realized rapid and high-throughput intraoperative SLN detection. We propose the synergetic design of combining the NIR-II FGS and suitable biosensor will substantially improve the efficiency of cancer diagnosis and therapy follow-up.
Collapse
Affiliation(s)
- Yajun Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Jingjie Nan
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Huilong Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Jiajun Xu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Feifei Guo
- Cancer Institute, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Yufeng Wang
- Cancer Institute, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
35
|
Yang H, Wu Q, Li J, Chen Q, Su L, He X, Li J, Qiu X. In Vivo Fate of CXCR2-Overexpressing Mesenchymal Stromal/Stem Cells in Pulmonary Diseases Monitored by Near-Infrared Region 2 Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20742-20752. [PMID: 37071603 DOI: 10.1021/acsami.3c01741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lung-associated diseases pose a huge threat to human society. Mesenchymal stromal/stem cells (MSCs) hold great promise in the treatment of pulmonary diseases through cell transdifferentiation, paracrine factors, immune regulation, EV secretion, and drug loading. However, intravenous injection of MSCs often resulted in limited lesion tropism and apparent off-target accumulation. The IL-8-CXCR1/2 chemokine axis has been shown to be involved in progression of diseases including lung cancer and acute lung injury (ALI). Herein, we took advantage of this chemokine axis to enhance the homing of MSCs to cancerous and inflammation lesions. The in vivo distribution of MSCs was further monitored real-time by near-infrared region 2 (NIR-II) imaging owing to its outstanding performance in deep tissue imaging. Specifically, a new high-brightness D-A-D NIR-II dye, LJ-858, was synthesized and coprecipitated with a poly(d,l-lactic acid) polymer to form LJ-858 nanoparticles (NPs) with a relative quantum yield of 14.978%. LJ-858 NPs can efficiently label MSCs, and the NIR-II signal can be stable for 14 days without compromising the cell viability. Subcutaneous tracking of labeled MSCs showed no significant decline of NIR-II intensity within 24 h. The enhanced tropism of CXCR2-overexpressing MSCs to A549 tumor cells and the inflamed lung tissue was demonstrated through transwell models. The in vivo and ex vivo NIR-II imaging results further validated the significantly enhanced lesion retention of MSCCXCR2 in the lung cancer and ALI models. Taken together, this work reported a robust strategy to enhance the pulmonary disease tropism by the IL-8-CXCR1/2 chemokine axis. In addition, in vivo distribution of MSCs was successfully visualized by NIR-II imaging, which provides more insights into optimizing protocols for MSC-based therapies in the future.
Collapse
Affiliation(s)
- Huiying Yang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qingxia Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinwei Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qimingxing Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lili Su
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyan He
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianfeng Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
36
|
Zhou Y, Li Q, Wu Y, Li X, Zhou Y, Wang Z, Liang H, Ding F, Hong S, Steinmetz NF, Cai H. Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS NANO 2023; 17:8004-8025. [PMID: 37079378 DOI: 10.1021/acsnano.3c01452] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembly has emerged as an extensively used method for constructing biomaterials with sizes ranging from nanometers to micrometers. Peptides have been extensively investigated for self-assembly. They are widely applied owing to their desirable biocompatibility, biodegradability, and tunable architecture. The development of peptide-based nanoparticles often requires complex synthetic processes involving chemical modification and supramolecular self-assembly. Stimuli-responsive peptide nanoparticles, also termed "smart" nanoparticles, capable of conformational and chemical changes in response to stimuli, have emerged as a class of promising materials. These smart nanoparticles find a diverse range of biomedical applications, including drug delivery, diagnostics, and biosensors. Stimuli-responsive systems include external stimuli (such as light, temperature, ultrasound, and magnetic fields) and internal stimuli (such as pH, redox environment, salt concentration, and biomarkers), facilitating the generation of a library of self-assembled biomaterials for biomedical imaging and therapy. Thus, in this review, we mainly focus on peptide-based nanoparticles built by self-assembly strategy and systematically discuss their mechanisms in response to various stimuli. Furthermore, we summarize the diverse range of biomedical applications of peptide-based nanomaterials, including diagnosis and therapy, to demonstrate their potential for medical translation.
Collapse
Affiliation(s)
- Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ye Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xinyu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ya Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Zhu Wang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Hui Liang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Nicole F Steinmetz
- Department of NanoEngineering, Department of Biongineering, Department of Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Center for Engineering in Cancer, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| |
Collapse
|
37
|
Gao D, Luo Z, He Y, Yang L, Hu D, Liang Y, Zheng H, Liu X, Sheng Z. Low-Dose NIR-II Preclinical Bioimaging Using Liposome-Encapsulated Cyanine Dyes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206544. [PMID: 36710248 DOI: 10.1002/smll.202206544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) provides a powerful tool for in vivo structural and functional imaging in deep tissue. However, the lack of biocompatible contrast agents with bright NIR-II emission has hindered its application in fundamental research and clinical trials. Herein, a liposome encapsulation strategy for generating ultrabright liposome-cyanine dyes by restricting dyes in the hydrophobic pockets of lipids and inhibiting the aggregation, as corroborated by computational modeling, is reported. Compared with free indocyanine green (ICG, an US Food and Drug Administration-approved cyanine dye), liposome-encapsulated ICG (S-Lipo-ICG) shows a 38.7-fold increase in NIR-II brightness and enables cerebrovascular imaging at only one-tenth dose over a long period (30 min). By adjusting the excitation wavelength, two liposome-encapsulated cyanine dyes (S-Lipo-ICG and S-Lipo-FD1080) enable NIR-II dual-color imaging. Moreover, small tumor nodules (2-5 mm) can be successfully distinguished and removed with S-Lipo-ICG image-guided tumor surgery in rabbit models. This liposome encapsulation maintains the metabolic pathway of ICG, promising for clinical implementation.
Collapse
Affiliation(s)
- Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zichao Luo
- Department of Chemistry and Center for NanoMedicine, National University of Singapore, Singapore, 117543, Singapore
| | - Yang He
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. China
| | - Lixiang Yang
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaogang Liu
- Department of Chemistry and Center for NanoMedicine, National University of Singapore, Singapore, 117543, Singapore
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
38
|
Kashiwagi S, Choi HS. Ovarian cancer-targeted near-infrared fluorophores for fluorescence-guided surgery. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:274. [PMID: 37082670 PMCID: PMC10113083 DOI: 10.21037/atm-22-6455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/30/2023]
Affiliation(s)
- Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Jeon HJ, Byun JK, Lee SB, Son KH, Lim JY, Lee DS, Kim KS, Park JW, Shin GR, Kim YJ, Jin J, Kim D, Kim DH, Yu JH, Choi YK, Park KG, Jeon YH. N-methyl-d-aspartate receptors induce M1 polarization of macrophages: Feasibility of targeted imaging in inflammatory response in vivo. Cell Biosci 2023; 13:69. [PMID: 36998073 PMCID: PMC10064586 DOI: 10.1186/s13578-023-01007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
Abstract
Background
N-methyl-d-aspartate receptors (NMDARs) are considered to be involved in several physiological and pathophysiological processes in addition to the progression of neurological disorders. However, how NMDARs are involved in the glycolytic phenotype of M1 macrophage polarization and the possibility of using them as a bio-imaging probe for macrophage-mediated inflammation remain unclear.
Methods
We analyzed cellular responses to NMDAR antagonism and small interfering RNAs using mouse bone marrow-derived macrophages (BMDMs) treated with lipopolysaccharide (LPS). An NMDAR targeting imaging probe, N-TIP, was produced via the introduction of NMDAR antibody and the infrared fluorescent dye FSD Fluor™ 647. N-TIP binding efficiency was tested in intact and LPS-stimulated BMDMs. N-TIP was intravenously administered to mice with carrageenan (CG)- and LPS-induced paw edema, and in vivo fluorescence imaging was conducted. The anti-inflammatory effects of dexamethasone were evaluated using the N-TIP-mediated macrophage imaging technique.
Results
NMDARs were overexpressed in LPS-treated macrophages, subsequently inducing M1 macrophage polarization. Mechanistically, NMDAR-mediated Ca2+ accumulation resulted in LPS-stimulated glycolysis via upregulation of PI3K/AKT/mTORC1 signaling. In vivo fluorescence imaging with N-TIP showed LPS- and CG-induced inflamed lesions at 5 h post-inflammation, and the inflamed lesions could be detected until 24 h. Furthermore, our N-TIP-mediated macrophage imaging technique helped successfully visualize the anti-inflammatory effects of dexamethasone in mice with inflammation.
Conclusion
This study demonstrates that NMDAR-mediated glycolysis plays a critical role in M1 macrophage-related inflammation. Moreover, our results suggest that NMDAR targeting imaging probe may be useful in research on inflammatory response in vivo.
Collapse
|
40
|
Qi Q, Wang Q, Li Y, Silva DZ, Ruiz MEL, Ouyang R, Liu B, Miao Y. Recent Development of Rhenium-Based Materials in the Application of Diagnosis and Tumor Therapy. Molecules 2023; 28:molecules28062733. [PMID: 36985704 PMCID: PMC10051626 DOI: 10.3390/molecules28062733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Rhenium (Re) is widely used in the diagnosis and treatment of cancer due to its unique physical and chemical properties. Re has more valence electrons in its outer shell, allowing it to exist in a variety of oxidation states and to form different geometric configurations with many different ligands. The luminescence properties, lipophilicity, and cytotoxicity of complexes can be adjusted by changing the ligand of Re. This article mainly reviews the development of radionuclide 188Re in radiotherapy and some innovative applications of Re as well as the different therapeutic approaches and imaging techniques used in cancer therapy. In addition, the current application and future challenges and opportunities of Re are also discussed.
Collapse
Affiliation(s)
- Qingwen Qi
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| | - Dionisio Zaldivar Silva
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Faculty of Biology, University of Havana, Havana 10400, Cuba
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| | - Maria Eliana Lanio Ruiz
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Ruizhuo Ouyang
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
| | - Baolin Liu
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| |
Collapse
|
41
|
Awen A, Hu D, Gao D, Wang Z, Wu Y, Zheng H, Guan L, Mu Y, Sheng Z. Dual-modal molecular imaging and therapeutic evaluation of coronary microvascular dysfunction using indocyanine green-doped targeted microbubbles. Biomater Sci 2023; 11:2359-2371. [PMID: 36883518 DOI: 10.1039/d2bm02155b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Coronary microvascular dysfunction (CMD), which causes a series of cardiovascular diseases, seriously endangers human health. However, precision diagnosis of CMD is still challenging due to the lack of sensitive probes and complementary imaging technologies. Herein, we demonstrate indocyanine green-doped targeted microbubbles (named T-MBs-ICG) as dual-modal probes for highly sensitive near-infrared (NIR) fluorescence imaging and high-resolution ultrasound imaging of CMD in mouse models. In vitro results show that T-MBs-ICG can specifically target fibrin, a specific CMD biomarker, via the cysteine-arginine-glutamate-lysine-alanine (CREKA) peptide modified on the surface of microbubbles. We further employ T-MBs-ICG to achieve NIR fluorescence imaging of injured myocardial tissue in a CMD mouse model, leading to a signal-to-background ratio (SBR) of up to 50, which is 20 fold higher than that of the non-targeted group. Furthermore, ultrasound molecular imaging of T-MBs-ICG is obtained within 60 s after intravenous injection, providing molecular information on ventricular and myocardial structures and fibrin with a resolution of 1.033 mm × 0.466 mm. More importantly, we utilize comprehensive dual-modal imaging of T-MBs-ICG to evaluate the therapeutic efficacy of rosuvastatin, a cardiovascular drug for the clinical treatment of CMD. Overall, the developed T-MBs-ICG probes with good biocompatibility exhibit great potential in the clinical diagnosis of CMD.
Collapse
Affiliation(s)
- Alimina Awen
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Zihang Wang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Yayun Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Lina Guan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| |
Collapse
|
42
|
Mohizin A, Imran JH, Lee KS, Kim JK. Dynamic interaction of injected liquid jet with skin layer interfaces revealed by microsecond imaging of optically cleared ex vivo skin tissue model. J Biol Eng 2023; 17:15. [PMID: 36849998 PMCID: PMC9969392 DOI: 10.1186/s13036-023-00335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Needle-free jet injection (NFJI) systems enable a controlled and targeted delivery of drugs into skin tissue. However, a scarce understanding of their underlying mechanisms has been a major deterrent to the development of an efficient system. Primarily, the lack of a suitable visualization technique that could capture the dynamics of the injected fluid-tissue interaction with a microsecond range temporal resolution has emerged as a main limitation. A conventional needle-free injection system may inject the fluids within a few milliseconds and may need a temporal resolution in the microsecond range for obtaining the required images. However, the presently available imaging techniques for skin tissue visualization fail to achieve these required spatial and temporal resolutions. Previous studies on injected fluid-tissue interaction dynamics were conducted using in vitro media with a stiffness similar to that of skin tissue. However, these media are poor substitutes for real skin tissue, and the need for an imaging technique having ex vivo or in vivo imaging capability has been echoed in the previous reports. METHODS A near-infrared imaging technique that utilizes the optical absorption and fluorescence emission of indocyanine green dye, coupled with a tissue clearing technique, was developed for visualizing a NFJI in an ex vivo porcine skin tissue. RESULTS The optimal imaging conditions obtained by considering the optical properties of the developed system and mechanical properties of the cleared ex vivo samples are presented. Crucial information on the dynamic interaction of the injected liquid jet with the ex vivo skin tissue layers and their interfaces could be obtained. CONCLUSIONS The reported technique can be instrumental for understanding the injection mechanism and for the development of an efficient transdermal NFJI system as well.
Collapse
Affiliation(s)
- Abdul Mohizin
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea
| | - Jakir Hossain Imran
- Department of Mechanical Engineering, Graduate School, Kookmin University, Seoul, 02707, Republic of Korea
| | - Kee Sung Lee
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea
| | - Jung Kyung Kim
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea.
| |
Collapse
|
43
|
Chao JJ, Zhang H, Wang ZQ, Liu QR, Mao GJ, Chen DH, Li CY. A near-infrared fluorescent probe for monitoring abnormal mitochondrial viscosity in cancer and fatty-liver mice model. Anal Chim Acta 2023; 1242:340813. [PMID: 36657896 DOI: 10.1016/j.aca.2023.340813] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Viscosity is an important component of cell microenvironment, and abnormal mitochondrial viscosity is associated with many diseases such as tumor and fatty liver. Herein, a near-infrared fluorescence probe (QX-V) based on quinoline-xanthene dye for detecting viscosity is constructed. In high viscosity medium, the free rotation of single bond is inhibited and the fluorescence is released. The probe shows high sensitivity together with good selectivity. Notably, QX-V has a long excitation wavelength (710 nm) and emission wavelength (786 nm). At the same time, the probe is a positively charged molecule that can target mitochondria. QX-V can not only distinguish cancer cells from normal cells, but also make a distinction between normal cells and fatty hepatocytes. In addition, QX-V is used to image viscosity abnormality in tumor-bearing mice. The probe also has a good ability to image viscosity abnormality caused by liver injury in fatty-liver mice.
Collapse
Affiliation(s)
- Jing-Jing Chao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Hui Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Qiao-Rong Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Dong-Hua Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
44
|
Dai L, Li S, Hao Q, Zhou R, Zhou H, Lei W, Kang H, Wu H, Li Y, Ma X. Low-density lipoprotein: a versatile nanoscale platform for targeted delivery. NANOSCALE ADVANCES 2023; 5:1011-1022. [PMID: 36798503 PMCID: PMC9926902 DOI: 10.1039/d2na00883a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Low-density lipoprotein (LDL) is a small lipoprotein that plays a vital role in controlling lipid metabolism. LDL has a delicate nanostructure with unique physicochemical properties: superior payload capacity, long residence time in circulation, excellent biocompatibility, smaller size, and natural targeting. In recent decades, the superiority and feasibility of LDL particles as targeted delivery carriers have attracted much attention. In this review, we introduce the structure, composition, advantages, defects, and reconstruction of LDL delivery systems, summarize their research status and progress in targeted diagnosis and therapy, and finally look forward to the clinical application of LDL as an effective delivery vehicle.
Collapse
Affiliation(s)
- Luyao Dai
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Shuaijun Li
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Ruina Zhou
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Hui Zhou
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Wenxi Lei
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| | - Hao Wu
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis Sacramento CA 95817 USA
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis Sacramento CA 95817 USA
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| |
Collapse
|
45
|
Organosilicon Fluorescent Materials. Polymers (Basel) 2023; 15:polym15020332. [PMID: 36679212 PMCID: PMC9862885 DOI: 10.3390/polym15020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In the past few decades, organosilicon fluorescent materials have attracted great attention in the field of fluorescent materials not only due to their abundant and flexible structures, but also because of their intriguing fluorescence properties, distinct from silicon-free fluorescent materials. Considering their unique properties, they have found broad application prospects in the fields of chemosensor, bioimaging, light-emitting diodes, etc. However, a comprehensive review focusing on this field, from the perspective of their catalogs and applications, is still absent. In this review, organosilicon fluorescent materials are classified into two main types, organosilicon small molecules and polymers. The former includes fluorescent aryl silanes and siloxanes, and the latter are mainly fluorescent polysiloxanes. Their synthesis and applications are summarized. In particular, the function of silicon atoms in fluorescent materials is introduced. Finally, the development trend of organosilicon fluorescent materials is prospected.
Collapse
|
46
|
Dobre EG, Surcel M, Constantin C, Ilie MA, Caruntu A, Caruntu C, Neagu M. Skin Cancer Pathobiology at a Glance: A Focus on Imaging Techniques and Their Potential for Improved Diagnosis and Surveillance in Clinical Cohorts. Int J Mol Sci 2023; 24:1079. [PMID: 36674595 PMCID: PMC9866322 DOI: 10.3390/ijms24021079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023] Open
Abstract
Early diagnosis is essential for completely eradicating skin cancer and maximizing patients' clinical benefits. Emerging optical imaging modalities such as reflectance confocal microscopy (RCM), optical coherence tomography (OCT), magnetic resonance imaging (MRI), near-infrared (NIR) bioimaging, positron emission tomography (PET), and their combinations provide non-invasive imaging data that may help in the early detection of cutaneous tumors and surgical planning. Hence, they seem appropriate for observing dynamic processes such as blood flow, immune cell activation, and tumor energy metabolism, which may be relevant for disease evolution. This review discusses the latest technological and methodological advances in imaging techniques that may be applied for skin cancer detection and monitoring. In the first instance, we will describe the principle and prospective clinical applications of the most commonly used imaging techniques, highlighting the challenges and opportunities of their implementation in the clinical setting. We will also highlight how imaging techniques may complement the molecular and histological approaches in sharpening the non-invasive skin characterization, laying the ground for more personalized approaches in skin cancer patients.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Mihaela Surcel
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | | | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| |
Collapse
|
47
|
Hao L, Zhu W. Research Progress on Organic Cocrystals Nonlinear Optics Materials and Applications. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
48
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
49
|
Kamya E, Lu Z, Cao Y, Pei R. Effective design of organic luminogens for near-infrared-II fluorescence imaging and photo-mediated therapy. J Mater Chem B 2022; 10:9770-9788. [PMID: 36448479 DOI: 10.1039/d2tb01903e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Due to their electron coupling capability, organic luminescent materials exhibit powerful optoelectronic features that are responsible for their light-harvesting and light-amplification properties. The extensive modification of conjugated systems has shown significant improvement in their photonic properties thus broadening their applicability in photo-mediated imaging and photo-based treatment. Organic luminogens with emission in the near-infrared second region are found attractive not only for their deeper penetrating power but also for accurate visual imaging superiority with higher temporal resolution and spatial resolution suitable for tumor precision treatment. In this review, we underscore the latest development in organic luminogens (conjugated polymers and small molecules), focusing on chemical design, molecular engineering, and their applications in the scope of bioimaging followed by photo-assisted treatment, including photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy ablation. Organic luminogens integrated with an aggregation-induced emission feature significantly optimize their physicochemical properties to act as quintessential nanoplatforms for controllable image-guided therapy. In conclusion, we clarify the limitations and challenges and provide insights into how to design organic dyes with improved safety for potential clinical applications.
Collapse
Affiliation(s)
- Edward Kamya
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China. .,CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China. .,CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China. .,CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| |
Collapse
|
50
|
Kaneko Y, Yamatsugu K, Yamashita T, Takahashi K, Tanaka T, Aki S, Tatsumi T, Kawamura T, Miura M, Ishii M, Ohkubo K, Osawa T, Kodama T, Ishikawa S, Tsukagoshi M, Chansler M, Sugiyama A, Kanai M, Katoh H. Pathological complete remission of relapsed tumor by photo-activating antibody-mimetic drug conjugate treatment. Cancer Sci 2022; 113:4350-4362. [PMID: 36121618 DOI: 10.1111/cas.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023] Open
Abstract
Antibody-mimetic drug conjugate is a novel noncovalent conjugate consisting of an antibody-mimetic recognizing a target molecule on the cancer cell surface and low-molecular-weight payloads that kill the cancer cells. In this study, the efficacy of a photo-activating antibody-mimetic drug conjugate targeting HER2-expressing tumors was evaluated in mice, by using the affibody that recognize HER2 (ZHER2:342 ) as a target molecule and an axially substituted silicon phthalocyanine (a novel potent photo-activating compound) as a payload. The first treatment with the photo-activating antibody-mimetic drug conjugates reduced the size of all HER2-expressing KPL-4 xenograft tumors macroscopically. However, during the observation period, relapsed tumors gradually appeared in approximately 50% of the animals. To evaluate the efficacy of repeated antibody-mimetic drug conjugate treatment, animals with relapsed tumors were treated again with the same regimen. After the second observation period, the mouse tissues were examined histopathologically. Unexpectedly, all relapsed tumors were eradicated, and all animals were diagnosed with pathological complete remission. After the second treatment, skin wounds healed rapidly, and no significant side effects were observed in other organs, except for occasional microscopic granulomatous tissues beneath the serosa of the liver in a few mice. Repeated treatments seemed to be well tolerated. These results indicate the promising efficacy of the repeated photo-activating antibody-mimetic drug conjugate treatment against HER2-expressing tumors.
Collapse
Affiliation(s)
- Yudai Kaneko
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takefumi Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kazuki Takahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiya Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Sho Aki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshifumi Tatsumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Kawamura
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mai Miura
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masazumi Ishii
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tsuyoshi Osawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Akira Sugiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|