1
|
Zeng Z, Gong S, Quan C, Zhou S, Kulyar MFEA, Iqbal M, Li Y, Li X, Li J. Impact of Bacillus licheniformis from yaks following antibiotic therapy in mouse model. Appl Microbiol Biotechnol 2024; 108:139. [PMID: 38229401 DOI: 10.1007/s00253-023-12866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/18/2024]
Abstract
Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.
Collapse
Affiliation(s)
- Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, Tibet, China.
| |
Collapse
|
2
|
Cheng B, Wang R, Wang X, Wang N, Ouyang XK. Heterojunction functionalized sodium alginate/carboxylated cellulose nanocrystals film enhancing sterilization performance for wound healing. Carbohydr Polym 2024; 345:122550. [PMID: 39227117 DOI: 10.1016/j.carbpol.2024.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024]
Abstract
In the realm of natural polysaccharides, hydrogen bonding is a prevalent feature, yet its role in enhancing photocatalytic antimicrobial properties has been underexplored. In this paper, heterojunctions formed by graphene oxide (GO) and ZIF-8 were locked in sodium alginate/ carboxylated cellulose nanocrystals via hydrogen bonding networks, designated as SCGZ. The SCGZ films exhibit superior photocatalytic performance compared to either ZIF-8 or heterojunctions. This enhancement is primarily due to two key factors: firstly, the hydrogen bonding network significantly enhances the transfer of protons and holes, thereby improving the separation efficiency of photo-generated carriers; secondly, the hydrogen bonding between the layers facilitates a more efficient charge transfer, which expedites the movement of electrons from ZIF-8 to GO upon illumination. In vitro studies demonstrated that the SCGZ films possess remarkable antibacterial capabilities, achieving 99.75 % and 99.61 % inhibition rates against S. aureus and E. coli, respectively. In vivo animal experiments have shown that SCGZ films can significantly accelerate the healing process of damaged tissues, with a healing efficiency of up to 90.5 %. This research provides additional insights into the development of natural polysaccharide-based multi‑hydrogen bonded macromolecules with enhanced photocatalytic properties.
Collapse
Affiliation(s)
- Baijie Cheng
- School of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Ruolin Wang
- School of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xinhao Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
3
|
Singh A, Tanwar M, Singh TP, Sharma S, Sharma P. An escape from ESKAPE pathogens: A comprehensive review on current and emerging therapeutics against antibiotic resistance. Int J Biol Macromol 2024; 279:135253. [PMID: 39244118 DOI: 10.1016/j.ijbiomac.2024.135253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The rise of antimicrobial resistance has positioned ESKAPE pathogens as a serious global health threat, primarily due to the limitations and frequent failures of current treatment options. This growing risk has spurred the scientific community to seek innovative antibiotic therapies and improved oversight strategies. This review aims to provide a comprehensive overview of the origins and resistance mechanisms of ESKAPE pathogens, while also exploring next-generation treatment strategies for these infections. In addition, it will address both traditional and novel approaches to combating antibiotic resistance, offering insights into potential new therapeutic avenues. Emerging research underscores the urgency of developing new antimicrobial agents and strategies to overcome resistance, highlighting the need for novel drug classes and combination therapies. Advances in genomic technologies and a deeper understanding of microbial pathogenesis are crucial in identifying effective treatments. Integrating precision medicine and personalized approaches could enhance therapeutic efficacy. The review also emphasizes the importance of global collaboration in surveillance and stewardship, as well as policy reforms, enhanced diagnostic tools, and public awareness initiatives, to address resistance on a worldwide scale.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
4
|
Wang Y, Frascella F, Gaglio CG, Pirri CF, Wei Q, Roppolo I. Vat Photopolymerization 3D Printing of Hydrogels Embedding Metal-Organic Frameworks for Photodynamic Antimicrobial Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57778-57791. [PMID: 39399980 DOI: 10.1021/acsami.4c15168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Given the variability in wounds based on the underlying causes, personalized medicine and tailored care for patients with wounds are required to ensure optimal therapeutic outcomes. With the emergence of high-precision and high-efficiency photocuring 3D printing technology, there is the potential for its use in customizing precise shapes that can match complex wound sites, thereby providing better treatment for patients with wound infections. In this work, porphyrinic metal-organic framework (MOF) crystals, serving as the functional filler, were incorporated into gelatin methacrylate (GelMA) as a photocurable composite resin to investigate the capabilities of producing customizable wound dressings through vat photopolymerization 3D printing. The embedded MOF crystals allow for better control of the photopolymerization process due to photon competition with the photoinitiator, enabling the precise printing of complex structures. In addition, these crystals impart photothermal and photodynamic capabilities to the printed object. The antibacterial assay confirms the potent photothermal and photodynamic bactericidal properties of the printed GelMA/MOF hydrogels. The hydrogel with the highest MOF content exhibited over 99.99% antibacterial efficiency against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli after 30 min of light exposure (∼30 mW/cm2, λ ≥ 420 nm). Simultaneously, hemolysis and cytotoxicity evaluations validated their excellent biocompatibility. The findings presented here introduce a strategy for integrating photosensitive MOF and 3D printing to fabricate size-adjustable photothermal/photodynamic monoliths and patches, opening perspectives toward personalized treatment for wound management.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Francesca Frascella
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy
| | - Cesare Gabriele Gaglio
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy
| | - Qufu Wei
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy
| |
Collapse
|
5
|
Junya O, Jumpei F, Kinoshita M, Sudo K, Kawaguchi K, Inoue K, Naito Y, Moriyama K, Nakamura T, Iwano H, Sawa T. Effects of the combination of anti-PcrV antibody and bacteriophage therapy in a mouse model of Pseudomonas aeruginosa pneumonia. Microbiol Spectr 2024:e0178124. [PMID: 39440986 DOI: 10.1128/spectrum.01781-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
Acute lung injury caused by Pseudomonas aeruginosa is attributed to the translocation of cytotoxin into pulmonary epithelial cells via the P. aeruginosa type III secretion system. This virulence can be blocked with a specific antibody against PcrV in this secretion system. However, because anti-PcrV antibodies do not have bactericidal activity, the treatment of bacteria depends on the phagocytic system of the host. In this study, we investigated the therapeutic effect of combination therapy with an anti-PcrV antibody and bactericidal bacteriophages on acute lung injury and subsequent death in mice compared with a single treatment. After the mice intratracheally received a lethal dose of the cytotoxic P. aeruginosa strain, a second instillation was performed with saline, anti-PcrV IgG, bacteriophages, or a mixture of anti-PcrV and bacteriophages. The survival rates 24 h after infection were as follows: 7.1% in the saline group, 26.7% in the anti-PcrV group, 41.2% in the phage group, and 66.7% in the anti-PcrV + phage group (P < 0.001 vs saline-treated group). The activity of surviving mice in the anti-PcrV + phage group was significantly greater than that in the saline group. The lung weight in the anti-PcrV + phage group was significantly lower than that in the anti-PcrV group. In conclusion, combination therapy with an anti-PcrV antibody and a bacteriophage reduces acute lung injury and suggests improved survival compared with each treatment alone. This combination therapy, which does not rely on conventional antibiotics, could constitute a new strategy for treating multidrug-resistant P. aeruginosa infections.IMPORTANCECombination therapy with either bacteriophages alone or in combination with anti-PcrV antibodies in a mouse model of Pseudomonas aeruginosa pneumonia may reduce the acute lung injury and improve survival. This combination therapy, which does not rely on conventional antibiotics, may be a new strategy to treat multidrug-resistant Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- Ohara Junya
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fujiki Jumpei
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Mao Kinoshita
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuki Sudo
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Kawaguchi
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keita Inoue
- Division of Critical Care Medicine, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshifumi Naito
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kiyoshi Moriyama
- Department of Anesthesiology, School of Medicine, Kyorin University, Mitaka, Japan
| | - Tomohiro Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Zheng R, Yu C, Yao D, Cai M, Zhang L, Ye F, Huang X. Engineering Stimuli-Responsive Materials for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406439. [PMID: 39444066 DOI: 10.1002/smll.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, precision medicine has garnered increasing attention, making significant strides in discovering new therapeutic drugs and mechanisms, resulting in notable achievements in symptom alleviation, pain reduction, and extended survival rates. However, the limited target specificity of primary drugs and inter-individual differences have often necessitated high-dosage strategies, leading to challenges such as restricted deep tissue penetration rates and systemic side effects. Material science advancements present a promising avenue for these issues. By leveraging the distinct internal features of diseased regions and the application of specific external stimuli, responsive materials can be tailored to achieve targeted delivery, controllable release, and specific biochemical reactions. This review aims to highlight the latest advancements in stimuli-responsive materials and their potential in precision medicine. Initially, we introduce disease-related internal stimuli and capable external stimuli, elucidating the reaction principles of responsive functional groups. Subsequently, we provide a detailed analysis of representative pre-clinical achievements of stimuli responsive materials across various clinical applications, including enhancements in the treatment of cancers, injury diseases, inflammatory diseases, infection diseases, and high-throughput microfluidic biosensors. Finally, we discuss some clinical challenges, such as off-target effects, long-term impacts of nano-materials, potential ethical concerns, and offer insights into future perspectives of stimuli-responsive materials.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Chang Yu
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
- Intervention Department, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Dan Yao
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Mengsi Cai
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Lexiang Zhang
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Fangfu Ye
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoying Huang
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
7
|
Liu HJ, Li LY, Wang ZL, Fan YL, Shen YX, Song F, Zhu LL. Dynamic polysaccharide/platelet-rich plasma hydrogels with synergistic antibacterial activities for accelerating infected wound healing. Int J Biol Macromol 2024; 281:136209. [PMID: 39383899 DOI: 10.1016/j.ijbiomac.2024.136209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Platelet-rich plasma (PRP) has been recognized as an effective therapy in regenerative medicine and surgery, which can reduce the risk of antibiotic abuse and promote the healing of infected wounds. Recent advances in PRP-based treatments have focused on the controlled release of growth factors in PRP with biocompatible hydrogels and antimicrobial promotion by introducing hydrogel components or antibiotics, while the inherent antimicrobial activity of PRP is mostly neglected or sacrificed. Here, we demonstrate the combination of an antimicrobial polysaccharide, carboxymethyl chitosan, and PRP to construct an antimicrobial hydrogel via dynamic bonding with oxidized chondroitin sulfate. Significant inhibitory effects against Staphylococcus aureus and Escherichia coli (95 % of inhibition rate) are achieved through the synergistic contributions of the polysaccharide and PRP. Additionally, the resulting hydrogel promotes the migration of NIH-3T3 fibroblasts and collagen deposition by approximately 1.7 and 1.8 times, respectively, thereby accelerating the healing process of infected wounds. This work may bring new perspectives for potent applications of PRP-based hydrogel dressings for antibiotic-free management of infected wounds.
Collapse
Affiliation(s)
- Hong-Jie Liu
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China; Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550001, China
| | - Lin-Yue Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials, (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zi-Lin Wang
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550001, China; Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, Sichuan 643000, China
| | - Ya-Ling Fan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials, (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Xue Shen
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550001, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials, (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Li-Li Zhu
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China; Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550001, China.
| |
Collapse
|
8
|
Wang Q, Chen R, Liu H, Liu Y, Li J, Wang Y, Jin Y, Bai Y, Song Z, Lu X, Wang C, Hao Y. Isolation and characterization of lytic bacteriophage vB_KpnP_23: A promising antimicrobial candidate against carbapenem-resistant Klebsiella pneumoniae. Virus Res 2024; 350:199473. [PMID: 39332682 PMCID: PMC11474366 DOI: 10.1016/j.virusres.2024.199473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
The global health threat posed by carbapenem-resistant Klebsiella pneumoniae (CRKP) is exacerbated by the limited availability of effective treatments. Bacteriophages are promising alternatives to conventional antimicrobial agents. However, current phage databases are limited. Thus, identifying and characterizing new phages could provide biological options for the treatment of multi-drug resistant bacterial infections. Here, we report the characterization of a novel lytic phage, vB_KpnP_23, isolated from hospital sewage. This phage exhibited potent activity against carbapenemase-producing CRKP strains and was characterised by an icosahedral head, a retractable tail, and a genome comprising 40,987 base pairs, with a G + C content of 51 %. Capable of targeting and lysing nine different capsule types (K-types) of CRKP, including the clinically relevant ST11-K64, it demonstrated both high bacteriolytic efficiency and stability in various environmental contexts. Crucially, vB_KpnP_23 lacks virulence factors, antimicrobial resistance genes, or tRNA, aligning with the key criteria for therapeutic application. In vitro evaluation of phage-antibiotic combinations revealed a significant synergistic effect between vB_KpnP_23 and meropenem, levofloxacin, or amikacin. This synergy could lead to an 8-fold reduction in the minimum inhibitory concentration (MIC), suggesting that integrated treatments combining this phage with the aforementioned antibiotics may substantially enhance drug effectiveness. This approach not only extends the clinical utility of these antibiotics but also presents a strategic advance in combating antibiotic resistance. Specifically, it underscores the potential of phage-antibiotic combinations as a powerful tool in the treatment of infections caused by CRKP, offering a promising avenue to mitigate the public health challenges of antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Qian Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ran Chen
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui Liu
- Department of Clinical Laboratory, Maternal and Child Health Care Hospital of Zaozhuang, Zaozhuang, Shandong, 277100, China
| | - Yue Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinmei Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo college of Medicine, Shandong University, Jinan, Shandong, China; Department of Clinical Laboratory, Jinan Seventh People's Hospital, Jinan, Shandong, 250021, China
| | - Yueling Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuanyuan Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinglun Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Changyin Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo college of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Wang Y, Wu F, Li Y, Wang S, Ren Y, Shi L, van der Mei HC, Liu Y. Ellagic acid-modified gold nanoparticles to combat multi-drug resistant bacterial infections in vitro and in vivo. MATERIALS HORIZONS 2024; 11:4781-4790. [PMID: 39026466 DOI: 10.1039/d4mh00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The overuse of antibiotics has led to the rapid development of multi-drug resistant bacteria, making antibiotics increasingly ineffective against bacterial infections. Consequently, there is an urgent need to develop alternative strategies to combat multi-drug-resistant bacterial infections. In this study, gold nanoparticles modified with ellagic acid (EA-AuNPs) were prepared using a simple and mild one-pot hydrothermal process. EA-AuNPs demonstrated high bactericidal efficacy and broad-spectrum antimicrobial activities against clinical isolates of the antibiotic-resistant ESKAPE pathogens. Furthermore, EA-AuNPs effectively disperse biofilms of multi-drug-resistant bacteria. Additionally, EA-AuNPs mitigated inflammatory responses at the bacterial infection sites. The combined bactericidal and anti-inflammatory treatment with EA-AuNPs resulted in faster curing of peritonitis caused by Staphylococcus aureus in mice compared to treatment with free EA or gentamicin. Moreover, transcriptome analysis revealed that EA-AuNPs exhibited a multi-targeting mechanism, making resistance development in pathogens more challenging than traditional antibiotics that recognize specific cellular targets. Overall, EA-AuNPs emerged as a promising antimicrobial agent against multi-drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yaran Wang
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Groningen, The Netherlands.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Fan Wu
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Groningen, The Netherlands.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yuanfeng Li
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Siran Wang
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Groningen, The Netherlands.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Groningen, The Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Groningen, The Netherlands.
| | - Yong Liu
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
10
|
Zhang N, Dhumal D, Kuo SH, Lew SQ, Patil PD, Taher R, Vaidya S, Galanakou C, Elkihel A, Oh MW, Chong SY, Marson D, Zheng J, Rouvinski O, Abolarin WO, Pricl S, Lau GW, Lee LTO, Peng L. Targeting the phosphatidylglycerol lipid: An amphiphilic dendrimer as a promising antibacterial candidate. SCIENCE ADVANCES 2024; 10:eadn8117. [PMID: 39321303 PMCID: PMC11423894 DOI: 10.1126/sciadv.adn8117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
The rapid emergence and spread of multidrug-resistant bacterial pathogens require the development of antibacterial agents that are robustly effective while inducing no toxicity or resistance development. In this context, we designed and synthesized amphiphilic dendrimers as antibacterial candidates. We report the promising potent antibacterial activity shown by the amphiphilic dendrimer AD1b, composed of a long hydrophobic alkyl chain and a tertiary amine-terminated poly(amidoamine) dendron, against a panel of Gram-negative bacteria, including multidrug-resistant Escherichia coli and Acinetobacter baumannii. AD1b exhibited effective activity against drug-resistant bacterial infections in vivo. Mechanistic studies revealed that AD1b targeted the membrane phospholipids phosphatidylglycerol (PG) and cardiolipin (CL), leading to the disruption of the bacterial membrane and proton motive force, metabolic disturbance, leakage of cellular components, and, ultimately, cell death. Together, AD1b that specifically interacts with PG/CL in bacterial membranes supports the use of small amphiphilic dendrimers as a promising strategy to target drug-resistant bacterial pathogens and addresses the global antibiotic crisis.
Collapse
Affiliation(s)
- Nian Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dinesh Dhumal
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisee Ligue Contre le Cancer," 13288 Marseille, France
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shi Qian Lew
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pankaj D Patil
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Raleb Taher
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Sanika Vaidya
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Christina Galanakou
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisee Ligue Contre le Cancer," 13288 Marseille, France
| | - Abdechakour Elkihel
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisee Ligue Contre le Cancer," 13288 Marseille, France
| | - Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sook Yin Chong
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, Italy
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Oleg Rouvinski
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Williams O Abolarin
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leo Tsz On Lee
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Ling Peng
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisee Ligue Contre le Cancer," 13288 Marseille, France
| |
Collapse
|
11
|
Zhao Y, Zhang T, Liang Y, Xie X, Pan H, Cao M, Wang S, Wu D, Wang J, Wang C, Hu W. Combination of aloe emodin, emodin, and rhein from Aloe with EDTA sensitizes the resistant Acinetobacter baumannii to polymyxins. Front Cell Infect Microbiol 2024; 14:1467607. [PMID: 39346899 PMCID: PMC11428196 DOI: 10.3389/fcimb.2024.1467607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background The continuous emergence and spread of polymyxin-resistant Acinetobacter baumannii pose a significant global health challenge, necessitating the development of novel therapeutic strategies. Aloe, with its long-standing history of medicinal use, has recently been the subject of substantial research for its efficacy against pathogenic infections. Methods This study investigates the potential application of anthraquinone components in aloe against polymyxin-resistant A. baumannii by liquid chromatography-mass spectrometry, in vitro activity assessment, and construction of animal infection models. Results The findings demonstrate that aloe emodin, emodin, rhein, and their mixtures in equal mass ratios (EAR) exhibit strain-specific antibacterial activities against polymyxin-resistant A. baumannii. Co-administration of EAR with EDTA synergistically and universally enhanced the antibacterial activity and bactericidal efficacy of polymyxins against polymyxin-resistant A. baumannii, while also reducing the frequency of polymyxin-resistant mutations in polymyxinssensitive A. baumannii. Following toxicity assessment on human hepatic and renal cell lines, the combination therapy was applied to skin wounds in mice infected with polymyxin-resistant A. baumannii. Compared to monotherapy, the combination therapy significantly accelerated wound healing and reduced bacterial burden. Conclusions The combination of EAR and EDTA with polymyxins offers a novel therapeutic approach for managing skin infections caused by polymyxinresistant A. baumannii.
Collapse
Affiliation(s)
- Yue Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yinping Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiaoqing Xie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Cao
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Shuhua Wang
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
12
|
Zhu J, Chen T, Ju Y, Dai J, Zhuge X. Transmission Dynamics and Novel Treatments of High Risk Carbapenem-Resistant Klebsiella pneumoniae: The Lens of One Health. Pharmaceuticals (Basel) 2024; 17:1206. [PMID: 39338368 PMCID: PMC11434721 DOI: 10.3390/ph17091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and discoveries in recent years regarding its frequency, transmission traits, and mechanisms of resistance. In this comprehensive review, we present an in-depth analysis of the global epidemiology of K. pneumoniae, elucidate resistance mechanisms underlying its spread, explore evolutionary dynamics concerning carbapenem-resistant hypervirulent strains as well as KL64 strains of K. pneumoniae, and discuss recent therapeutic advancements and effective control strategies while providing insights into future directions. By going through up-to-date reports, we found that the ST11 KL64 CRKP subclone with high risk demonstrated significant potential for expansion and survival benefits, likely due to genetic influences. In addition, it should be noted that phage and nanoparticle treatments still pose significant risks for resistance development; hence, innovative infection prevention and control initiatives rooted in One Health principles are advocated as effective measures against K. pneumoniae transmission. In the future, further imperative research is warranted to comprehend bacterial resistance mechanisms by focusing particularly on microbiome studies' application and implementation of the One Health strategy.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Taoyu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
13
|
Sher EK, Džidić-Krivić A, Sesar A, Farhat EK, Čeliković A, Beća-Zećo M, Pinjic E, Sher F. Current state and novel outlook on prevention and treatment of rising antibiotic resistance in urinary tract infections. Pharmacol Ther 2024; 261:108688. [PMID: 38972453 DOI: 10.1016/j.pharmthera.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Antibiotic-resistant bacteria are currently an important public health concern posing a serious threat due to their resistance to the current arsenal of antibiotics. Uropathogens Escherichia coli (UPEC), Proteus mirabilis, Klebsiella pneumoniae and Enterococcus faecalis, antibiotic-resistant gram-negative bacteria, cause serious cases of prolonged UTIs, increasing healthcare costs and potentially even leading to the death of an affected patient. This review discusses current knowledge about the increasing resistance to currently recommended antibiotics for UTI therapy, as well as novel therapeutic options. Traditional antibiotics are still a part of the therapy guidelines for UTIs, although they are often not effective and have serious side effects. Hence, novel drugs are being developed, such as combinations of β-lactam antibiotics with cephalosporins and carbapenems. Siderophoric cephalosporins, such as cefiderocol, have shown potential in the treatment of individuals with significant gram-negative bacterial infections, as well as aminoglycosides, fluoroquinolones and tetracyclines that are also undergoing clinical trials. The use of cranberry and probiotics is another potential curative and preventive method that has shown antimicrobial and anti-inflammatory effects. However, further studies are needed to assess the efficacy and safety of probiotics containing cranberry extract for UTI prevention and treatment. An emerging novel approach for UTI treatment is the use of immuno-prophylactic vaccines, as well as different nanotechnology solutions such as nanoparticles (NP). NP have the potential to be used as delivery systems for drugs to specific targets. Furthermore, nanotechnology could enable the development of nano antibiotics with improved features by the application of different NPs in their structure, such as gold and copper NPs. However, further high-quality research is required for the synthesis and testing of these novel molecules, such as safety evaluation and pharmacovigilance.
Collapse
Affiliation(s)
- Emina K Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Zenica 72000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ana Sesar
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Health Studies, Victoria International University, Mostar 88000, Bosnia and Herzegovina
| | - Esma K Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Croatia
| | - Amila Čeliković
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Medicine, University of Zenica, Zenica 71000, Bosnia and Herzegovina
| | - Merima Beća-Zećo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Health Studies, Victoria International University, Mostar 88000, Bosnia and Herzegovina
| | - Emma Pinjic
- Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, United States
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
14
|
Costabile G, Baldassi D, Müller C, Groß B, Ungaro F, Schubert S, Firestine SM, Merkel OM. Antibiotic-loaded nanoparticles for the treatment of intracellular methicillin-resistant Staphylococcus Aureus infections: In vitro and in vivo efficacy of a novel antibiotic. J Control Release 2024; 374:454-465. [PMID: 39181163 DOI: 10.1016/j.jconrel.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Antimicrobial resistance is considered one of the biggest threats to public health worldwide. Methicillin-resistant S. aureus is the causative agent of a number of infections and lung colonization in people suffering from cystic fibrosis. Moreover, a growing body of evidence links the microbiome to the development of cancer, as well as to the success of the treatment. In this view, the development of novel antibiotics is of critical importance, and SV7, a novel antibiotic active against MRSA at low concentrations, represents a promising candidate. However, the low aqueous solubility of SV7 hampers its therapeutic translation. In this study, SV7 was encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to improve the solubility profile, to ensure sustained release and eventually support deposition in the airways. Furthermore, PLGA NPs were formulated as dry powder to extend their shelf-life and were shown to efficiently target intracellular infections. After identifying a formulation with suitable physico-chemical characteristics, SV7-loaded NPs were investigated in vitro in terms of inhibitory activity against MRSA, and their safety profile in lung epithelial cells. Subsequently, the activity against MRSA intracellular infections was investigated in a co-culture model of MRSA and macrophages. To test the translatability of our findings, SV7-loaded NPs were tested in vivo in a Galleria mellonella infection model. In conclusion, SV7-loaded NPs showed a safe profile and efficient inhibitory activity against MRSA at low concentrations. Furthermore, their activity against intracellular infections was confirmed, and was retained in vivo, rendering them a promising candidate for treatment of MRSA lung infections.
Collapse
Affiliation(s)
- Gabriella Costabile
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, DE, Germany; Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, IT, Italy
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, DE, Germany
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, DE, Germany
| | - Birgit Groß
- Max von Pettenkofer-Institut Munich für Hygiene und Medizinische Mikrobiologie, Elisabeth-Winterhalter-Weg 6, 81377 Munich, DE, Germany
| | - Francesca Ungaro
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, IT, Italy
| | - Sören Schubert
- Max von Pettenkofer-Institut Munich für Hygiene und Medizinische Mikrobiologie, Elisabeth-Winterhalter-Weg 6, 81377 Munich, DE, Germany
| | - Steven M Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Detroit, MI 48201, USA
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, DE, Germany.
| |
Collapse
|
15
|
Yoda T, Matsuhashi A, Matsushita A, Shibagaki S, Sasakura Y, Aoki K, Hosokawa M, Tsuda S. Uncovering Endolysins against Methicillin-Resistant Staphylococcus aureus Using a Microbial Single-Cell Genome Database. ACS Infect Dis 2024; 10:2679-2689. [PMID: 38906534 PMCID: PMC11320564 DOI: 10.1021/acsinfecdis.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/23/2024]
Abstract
Endolysins, peptidoglycan hydrolases derived from bacteriophages (phages), are being developed as a promising alternative to conventional antibiotics. To obtain highly active endolysins, a diverse library of these endolysins is vital. We propose here microbial single-cell genome sequencing as an efficient tool to discover dozens of previously unknown endolysins, owing to its culture-independent sequencing method. As a proof of concept, we analyzed and recovered endolysin genes within prophage regions of Staphylococcus single-amplified genomes in human skin microbiome samples. We constructed a library of chimeric endolysins by shuffling domains of the natural endolysins and performed high-throughput screening against Staphylococcus aureus. One of the lead endolysins, bbst1027, exhibited desirable antimicrobial properties, such as rapid bactericidal activity, no detectable resistance development, and in vivo efficacy. We foresee that this endolysin discovery pipeline is in principle applicable to any bacterial target and boost the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Takuya Yoda
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Ayumi Matsuhashi
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Ai Matsushita
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Shohei Shibagaki
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Yukie Sasakura
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Kazuteru Aoki
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Department
of Life Science and Medical Bioscience, Waseda University, 2-2
Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Research
Organization for Nano and Life Innovation, Waseda University, 513
Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute
for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Soichiro Tsuda
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| |
Collapse
|
16
|
Yu H, Xu Y, Imani S, Zhao Z, Ullah S, Wang Q. Navigating ESKAPE Pathogens: Considerations and Caveats for Animal Infection Models Development. ACS Infect Dis 2024; 10:2336-2355. [PMID: 38866389 PMCID: PMC11249778 DOI: 10.1021/acsinfecdis.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
The misuse of antibiotics has led to the global spread of drug-resistant bacteria, especially multi-drug-resistant (MDR) ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These opportunistic bacteria pose a significant threat, in particular within hospitals, where they cause nosocomial infections, leading to substantial morbidity and mortality. To comprehensively explore ESKAPE pathogenesis, virulence, host immune response, diagnostics, and therapeutics, researchers increasingly rely on necessitate suitable animal infection models. However, no single model can fully replicate all aspects of infectious diseases. Notably when studying opportunistic pathogens in immunocompetent hosts, rapid clearance by the host immune system can limit the expression of characteristic disease symptoms. In this study, we examine the critical role of animal infection models in understanding ESKAPE pathogens, addressing limitations and research gaps. We discuss applications and highlight key considerations for effective models. Thoughtful decisions on disease replication, parameter monitoring, and data collection are crucial for model reliability. By meticulously replicating human diseases and addressing limitations, researchers maximize the potential of animal infection models. This aids in targeted therapeutic development, bridges knowledge gaps, and helps combat MDR ESKAPE pathogens, safeguarding public health.
Collapse
Affiliation(s)
- Haojie Yu
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Key Laboratory of Pollution Exposure and Health Intervention
of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
- Stomatology
Hospital, School of Stomatology, Zhejiang University School of Medicine,
Zhejiang Provincial Clinical Research Center for Oral Diseases, Key
Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Yongchang Xu
- Key
Laboratory of Aging and Cancer Biology of Zhejiang Province, School
of Basic Medical Sciences, Hangzhou Normal
University, Hangzhou 311121, China
| | - Saber Imani
- Shulan
International Medical College, Zhejiang
Shuren University, Hangzhou 310015, Zhejiang China
| | - Zhuo Zhao
- Department
of Computer Science and Engineering, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Saif Ullah
- Department
of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Qingjing Wang
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Key Laboratory of Pollution Exposure and Health Intervention
of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
| |
Collapse
|
17
|
Mazzantini D, Massimino M, Calvigioni M, Rossi V, Celandroni F, Lupetti A, Batoni G, Ghelardi E. Anti-staphylococcal activity of a polyphenol-rich citrus extract: synergy with β-lactams and low proficiency to induce resistance. Front Microbiol 2024; 15:1415400. [PMID: 39021634 PMCID: PMC11252074 DOI: 10.3389/fmicb.2024.1415400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Antibiotic resistance represents one of the most significant threats to public health in the 21st century. Polyphenols, natural molecules with antibacterial activity produced by plants, are being considered as alternative antimicrobial strategies to manage infections caused by drug-resistant bacteria. In this study, we investigated the antibacterial activity of a polyphenol mixture extracted from citrus fruits, against both antibiotic-susceptible and resistant strains of Staphylococcus aureus and Staphylococcus epidermidis. Methods Broth microdilution and time-kill curve experiments were used to test the extract anti-staphylococcal activity. Cytotoxicity was assessed by the hemolysis assay. The interaction between the mixture and antibiotics was investigated by the checkerboard assay. The effect of B alone and in combination with oxacillin on the membrane potential was investigated by the 3,3'-dipropylthiadicarbocyanine iodide assay. The ability of the extract to induce the development of resistance was verified by propagating S. aureus for 10 transfers in the presence of sub-inhibitory concentrations. Results The citrus extract was found to be active against all Staphylococcus strains at remarkably low concentrations (0.0031 and 0.0063%), displaying rapid bactericidal effects without being toxic on erythrocytes. In particular, B was found to rapidly cause membrane depolarization. When combined with methicillin, meropenem, and oxacillin, the mixture displayed synergistic activity exclusively against methicillin-resistant strains. We additionally show that the sequential exposure of S. aureus to sub-inhibitory concentrations did not induce the development of resistance against the extract. Discussion Overall, these findings support the potential use of the citrus extract as promising option to manage staphylococcal infections and suggest that it may counteract the mechanism behind methicillin-resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Shein AMS, Hongsing P, Smith OK, Phattharapornjaroen P, Miyanaga K, Cui L, Ishikawa H, Amarasiri M, Monk PN, Kicic A, Chatsuwan T, Pletzer D, Higgins PG, Abe S, Wannigama DL. Current and novel therapies for management of Acinetobacter baumannii-associated pneumonia. Crit Rev Microbiol 2024:1-22. [PMID: 38949254 DOI: 10.1080/1040841x.2024.2369948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Acinetobacter baumannii is a common pathogen associated with hospital-acquired pneumonia showing increased resistance to carbapenem and colistin antibiotics nowadays. Infections with A. baumannii cause high patient fatalities due to their capability to evade current antimicrobial therapies, emphasizing the urgency of developing viable therapeutics to treat A. baumannii-associated pneumonia. In this review, we explore current and novel therapeutic options for overcoming therapeutic failure when dealing with A. baumannii-associated pneumonia. Among them, antibiotic combination therapy administering several drugs simultaneously or alternately, is one promising approach for optimizing therapeutic success. However, it has been associated with inconsistent and inconclusive therapeutic outcomes across different studies. Therefore, it is critical to undertake additional clinical trials to ascertain the clinical effectiveness of different antibiotic combinations. We also discuss the prospective roles of novel antimicrobial therapies including antimicrobial peptides, bacteriophage-based therapy, repurposed drugs, naturally-occurring compounds, nanoparticle-based therapy, anti-virulence strategies, immunotherapy, photodynamic and sonodynamic therapy, for utilizing them as additional alternative therapy while tackling A. baumannii-associated pneumonia. Importantly, these innovative therapies further require pharmacokinetic and pharmacodynamic evaluation for safety, stability, immunogenicity, toxicity, and tolerability before they can be clinically approved as an alternative rescue therapy for A. baumannii-associated pulmonary infections.
Collapse
Affiliation(s)
- Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in, Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - O'Rorke Kevin Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Phatthranit Phattharapornjaroen
- Department of Emergency Medicine, Center of Excellence, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Surgery, Sahlgrenska Academy, Institute of Clinical Sciences, Gothenburg University, Gothenburg, Sweden
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Japan
| | - Peter N Monk
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, UK
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Western Australia, Australia
- School of Population Health, Curtin University, Bentley, Western Australia, Australia
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in, Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in, Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
19
|
Huang J, Wu S, Wang Y, Shen J, Wang C, Zheng Y, Chu PK, Liu X. Dual elemental doping activated signaling pathway of angiogenesis and defective heterojunction engineering for effective therapy of MRSA-infected wounds. Bioact Mater 2024; 37:14-29. [PMID: 38515610 PMCID: PMC10951428 DOI: 10.1016/j.bioactmat.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Multi-drug resistant bacterial infections pose a significant threat to human health. Thus, the development of effective bactericidal strategies is a pressing concern. In this study, a ternary heterostructure (Zn-CN/P-GO/BiS) comprised of Zn-doped graphite phase carbon nitride (g-C3N4), phosphorous-doped graphene oxide (GO) and bismuth sulphide (Bi2S3) is constructed for efficiently treating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound. Zn doping-induced defect sites in g-C3N4 results in a reduced band gap (ΔE) and a smaller energy gap (ΔEST) between the singlet state S1 and triplet state T1, which favours two-photon excitation and accelerates electron transfer. Furthermore, the formation of an internal electric field at the ternary heterogeneous interface optimizes the charge transfer pathway, inhibits the recombination of electron-hole pairs, improves the photodynamic effect of g-C3N4, and enhances its catalytic performance. Therefore, the Zn-CN/P-GO/BiS significantly augments the production of reactive oxygen species and heat under 808 nm NIR (0.67 W cm-2) irradiation, leading to the elimination of 99.60% ± 0.07% MRSA within 20 min. Additionally, the release of essential trace elements (Zn and P) promotes wound healing by activating hypoxia-inducible factor-1 (HIF-1) and peroxisome proliferator-activated receptors (PPAR) signaling pathways. This work provides unique insight into the rapid antibacterial applications of trace element doping and two-photon excitation.
Collapse
Affiliation(s)
- Jin Huang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Yi Wang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Paul K. Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, 999077, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
20
|
Skrzyniarz K, Takvor-Mena S, Lach K, Łysek-Gładysińska M, Barrios-Gumiel Ó, Cano J, Ciepluch K. Molecular mechanism of action of imidazolium carbosilane dendrimers on the outer bacterial membrane - From membrane damage to permeability to antimicrobial endolysin. J Colloid Interface Sci 2024; 665:814-824. [PMID: 38555749 DOI: 10.1016/j.jcis.2024.03.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The outer bacterial membrane of drug-resistant bacteria is a significant barrier to many antimicrobials. Therefore, the development of new antibacterials primarily focuses on damaging the outer bacterial membrane of Gram-negative bacteria. Among many membrane-disrupting substances, the most promising are cationic dendritic systems. However, the mode of action may vary among different strains due to variations in the lipid compositions of the membrane. Here, we investigated the interaction of two types of cationic imidazolium carbosilane dendrimers: one with a single cationic group (methyl imidazolium) and the other with the same cationic group but attached to a functional group (a pendant pyridyl moiety), capable of establishing interactions with membranes through H-bonding or ion-dipole electrostatic interactions. We used different models of the outer membrane of Gram-negative bacteria - Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Additionally, we assessed the combined effect of the dendrimers and the antibacterial endolysin on P. aeruginosa. Our results show that the mechanism of action depends on the type of dendrimer and the lipid composition of the membrane. We also demonstrate that the alteration of membrane fluidity and permeability to endolysin by the methyl imidazolium and pyridyl imidazolium dendrimers may play a more significant role in antimicrobial activity compared to membrane damage caused by positively charged dendrimers.
Collapse
Affiliation(s)
- Kinga Skrzyniarz
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland
| | - Samuel Takvor-Mena
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28805 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Karolina Lach
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland
| | - Małgorzata Łysek-Gładysińska
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland
| | - Óscar Barrios-Gumiel
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28805 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28805 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-640 Kielce, Poland.
| |
Collapse
|
21
|
Zhang H, You J, Pan X, Hu Y, Zhang Z, Zhang X, Zhang W, Rao Z. Genomic and biological insights of bacteriophages JNUWH1 and JNUWD in the arms race against bacterial resistance. Front Microbiol 2024; 15:1407039. [PMID: 38989022 PMCID: PMC11233448 DOI: 10.3389/fmicb.2024.1407039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
The coevolution of bacteria and bacteriophages has created a great diversity of mechanisms by which bacteria fight phage infection, and an equivalent diversity of mechanisms by which phages subvert bacterial immunity. Effective and continuous evolution by phages is necessary to deal with coevolving bacteria. In this study, to better understand the connection between phage genes and host range, we examine the isolation and genomic characterization of two bacteriophages, JNUWH1 and JNUWD, capable of infecting Escherichia coli. Sourced from factory fermentation pollutants, these phages were classified within the Siphoviridae family through TEM and comparative genomic analysis. Notably, the phages exhibited a viral burst size of 500 and 1,000 PFU/cell, with latent periods of 15 and 20 min, respectively. They displayed stability over a pH range of 5 to 10, with optimal activity at 37°C. The complete genomes of JNUWH1 and JNUWD were 44,785 bp and 43,818 bp, respectively. Phylogenetic analysis revealed their close genetic relationship to each other. Antibacterial assays demonstrated the phages' ability to inhibit E. coli growth for up to 24 h. Finally, through laboratory-driven adaptive evolution, we successfully identified strains for both JNUWH1 and JNUWD with mutations in receptors specifically targeting lipopolysaccharides (LPS) and the lptD gene. Overall, these phages hold promise as additives in fermentation products to counter E. coli, offering potential solutions in the context of evolving bacterial resistance.
Collapse
Affiliation(s)
- Hengwei Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Yanglu Hu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Zan Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Weiguo Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Peng S, Song J, Wu S, Wang Q, Shen L, Li D, Peng J, Zhang Q, Yang X, Xu H, Redshaw C, Li Y. Aggregation-Induced Emission Photosensitizer with Ag(I)-π Interaction-Enhanced Reactive Oxygen Species for Eliminating Multidrug Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30915-30928. [PMID: 38847621 DOI: 10.1021/acsami.4c05202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Multidrug-resistant (MDR) bacteria pose serious threats to public health due to the lack of effective and biocompatible drugs to kill MDR bacteria. Photodynamic antibacterial therapy has been widely studied due to its low induction of resistance. However, photosensitizers that can efficiently generate reactive oxygen species (ROS) through both type I and type II mechanisms and that have the capability of multiple modes of action are rarely reported. Addressing this issue, we developed a near-infrared-emitting triphenylamine indole iodoethane (TTII) and its silver(I) self-assembled (TTIIS) aggregation-induced emission (AIE) photosensitizer for multimode bacterial infection therapy. TTII can efficiently produce both Type I ROS •OH and Type II ROS 1O2. Interestingly, the Ag(I)-π interaction contributed in TTIIS efficiency promotion of the generation of 1O2. Moreover, by releasing Ag+, TTIIS enabled photodynamic-Ag(I) dual-mode sterilization. As a result, TTIIS achieved an effective enhancement of antibacterial activity, with a 1-2-fold boost against multidrug-resistant Escherichia coli (MDR E. coli). Both TTII and TTIIS at a concentration as low as 0.55 μg mL-1 can kill more than 98% of methicillin resistant Staphylococcus aureus (MRSA) on MRSA-infected full-thickness defect wounds of a mouse, and both TTII and TTIIS were effective in eliminating the bacteria and promoting wound healing.
Collapse
Affiliation(s)
- Senlin Peng
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, China
| | - Jiayi Song
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shouting Wu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, China
| | - Qian Wang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Lingyi Shen
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Dongmei Li
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Jian Peng
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Qilong Zhang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Xianjiong Yang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Hong Xu
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Cottingham Road, Hull, Yorkshire HU6 7RX, United Kingdom
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
23
|
Tan YM, Zhang J, Wei YJ, Hu YG, Li SR, Zhang SL, Zhou CH. Cyanomethylquinolones as a New Class of Potential Multitargeting Broad-Spectrum Antibacterial Agents. J Med Chem 2024; 67:9028-9053. [PMID: 38787534 DOI: 10.1021/acs.jmedchem.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
This work identified a class of cyanomethylquinolones (CQs) and their carboxyl analogues as potential multitargeting antibacterial candidates. Most of the prepared compounds showed high antibacterial activities against most of the tested bacteria, exhibiting lower MIC values (0.125-2 μg/mL) than those of clinical norfloxacin, ciprofloxacin, and clinafloxacin. The low hemolysis, drug resistance, and cytotoxicity, as well as good predictive pharmacokinetics of active CQs and carboxyl analogues revealed their development potential. Furthermore, they could eradicate the established biofilm, facilitating bacterial exposure to these antibacterial candidates. These active compounds could induce bacterial death through multitargeting effects, including intercalating into DNA, up-regulating reactive oxygen species, damaging membranes directly, and impeding metabolism. Moreover, the highly active cyclopropyl CQ 15 exhibited more effective in vivo anti-MRSA potency than ciprofloxacin. These findings highlight the potential of CQs and their carboxyl analogues as multitargeting broad-spectrum antibacterial candidates for treating intractable bacterial infections.
Collapse
Affiliation(s)
- Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jing Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yu-Jia Wei
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yue-Gao Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
24
|
Ranathunga K, Yapa P, Munaweera I, Weerasekera MM, Sandaruwan C. Preparation and characterization of Fe-ZnO cellulose-based nanofiber mats with self-sterilizing photocatalytic activity to enhance antibacterial applications under visible light. RSC Adv 2024; 14:18536-18552. [PMID: 38860242 PMCID: PMC11163953 DOI: 10.1039/d4ra03136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Bacterial infections and antibiotic resistance have posed a severe threat to public health in recent years. One emerging and promising approach to this issue is the photocatalytic sterilization of nanohybrids. By utilizing ZnO photocatalytic sterilization, the drawbacks of conventional antibacterial treatments can be efficiently addressed. This study examines the enhanced photocatalytic sterilizing effectiveness of Fe-doped ZnO nanoparticles (Fe-ZnO nanohybrids) incorporated into polymer membranes that are active in visible light. Using the co-precipitation procedure, Fe-ZnO nanohybrids (Fe x Zn100-x O) have been generated using a range of dopant ratios (x = 0, 3, 5, 7, and 10) and characterized. The ability to scavenge free radicals was assessed and the IC50 value was calculated using the DPPH test at different catalytic concentrations. PXRD patterns showed a hexagonal wurtzite structure, which indicated that the particle size of the nanohybrid decreased as the dopant concentration rose. It was demonstrated by UV-vis diffuse reflectance experiments that the band gap of the nanohybrid decreased (redshifted) with Fe doping. The photocatalytic activity under sunlight increased steadily to 87% after Fe was added as a dopant. The Fe 5%-ZnO nanohybrid exhibited the lowest IC50 value of 81.44 μg mL-1 compared to ZnO, indicating the highest radical scavenging activity and the best antimicrobial activity. The Fe 5%-ZnO nanohybrid, which is proven to have the best photocatalytic sterilization activity, was then incorporated into a cellulose acetate polymer membrane by electrospinning. Disc diffusion assay confirmed the highest antimicrobial activity of the Fe 5%-ZnO nanohybrid incorporated electrospun membrane against Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC 10231) under visible light. As a result, Fe 5%-ZnO nanofiber membranes have the potential to be employed as self-sterilizing materials in healthcare settings.
Collapse
Affiliation(s)
- Kithmini Ranathunga
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - Piumika Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - M M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - Chanaka Sandaruwan
- Sri Lanka Institute of Nanotechnology (SLINTEC) Homagama Sri Lanka
- Department of Aerospace Engineering, Khalifa University of Science and Technology 127788 Abu Dhabi United Arab Emirates
| |
Collapse
|
25
|
Wang M, Zhu X, Yin Y, Ling G, Zhang P. Porous reticular Co@Fe metal-organic gel: dual-function simulated peroxidase nanozyme for both colorimetric sensing and antibacterial applications. J Mater Chem B 2024; 12:5418-5430. [PMID: 38716837 DOI: 10.1039/d4tb00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Constructing metal-organic gels (MOGs) with enzyme-catalyzed activity and studying their catalytic mechanism are crucial for the development of novel nanozyme materials. In this study, a Co@Fe MOG with excellent peroxidase activity was developed by a simple and mild one-pot process. The results showed that the material exhibited almost a single peroxidase activity under optimal pH conditions, which allowed it to attract and oxidize the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB). Based on the active electron transfer between the metal centers and the organic ligand in the synthetic material, the Co@Fe MOG-H2O2-TMB system was verified to be able to detect H2O2 and citric acid (CA). The catalytic microenvironment formed by the adsorption and the catalytic center accelerated the electron-transfer rate, which expedited the generation of hydroxyl radicals (˙OH, a kind of reactive oxygen species (ROS)) in the presence of H2O2. The persistence and high intensity of ˙OH generation were proven, which would endow Co@Fe MOG with a certain antibacterial ability, promoting the healing of bacteria-infected wounds. In conclusion, this study contributes to the development efforts toward the application systems of nanozymes for marker detection and antibacterial activity.
Collapse
Affiliation(s)
- Meng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
26
|
Kelly JB, Nolan AC, Zeden MS. How can we escape the ESKAPEs: Antimicrobial resistance mechanisms and what lies ahead? PLoS Pathog 2024; 20:e1012270. [PMID: 38870133 PMCID: PMC11175505 DOI: 10.1371/journal.ppat.1012270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Affiliation(s)
- Jessica B. Kelly
- Microbiology, Infectious Disease Section, School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Aaron C. Nolan
- Microbiology, Infectious Disease Section, School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Merve S. Zeden
- Microbiology, Infectious Disease Section, School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
27
|
Khan FM, Rasheed F, Yang Y, Liu B, Zhang R. Endolysins: a new antimicrobial agent against antimicrobial resistance. Strategies and opportunities in overcoming the challenges of endolysins against Gram-negative bacteria. Front Pharmacol 2024; 15:1385261. [PMID: 38831886 PMCID: PMC11144922 DOI: 10.3389/fphar.2024.1385261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Antibiotic-resistant bacteria are rapidly emerging, and the increasing prevalence of multidrug-resistant (MDR) Acinetobacter baumannii poses a severe threat to humans and healthcare organizations, due to the lack of innovative antibacterial drugs. Endolysins, which are peptidoglycan hydrolases encoded by a bacteriophage, are a promising new family of antimicrobials. Endolysins have been demonstrated as an effective therapeutic agent against bacterial infections of A. baumannii and many other Gram-positive and Gram-negative bacteria. Endolysin research has progressed from basic in vitro characterization to sophisticated protein engineering methodologies, including advanced preclinical and clinical testing. Endolysin are therapeutic agent that shows antimicrobial properties against bacterial infections caused by drug-resistant Gram-negative bacteria, there are still barriers to their implementation in clinical settings, such as safety concerns with outer membrane permeabilizers (OMP) use, low efficiency against stationary phase bacteria, and stability issues. The application of protein engineering and formulation techniques to improve enzyme stability, as well as combination therapy with other types of antibacterial drugs to optimize their medicinal value, have been reviewed as well. In this review, we summarize the clinical development of endolysin and its challenges and approaches for bringing endolysin therapies to the clinic. This review also discusses the different applications of endolysins.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Fazal Rasheed
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yunlan Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
28
|
Zang ZL, Gao WW, Zhou CH. Unique aminothiazolyl coumarins as potential DNA and membrane disruptors towards Enterococcus faecalis. Bioorg Chem 2024; 148:107451. [PMID: 38759357 DOI: 10.1016/j.bioorg.2024.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Aminothiazolyl coumarins as potentially new antimicrobial agents were designed and synthesized in an effort to overcome drug resistance. Biological activity assay revealed that some target compounds exhibited significantly inhibitory efficiencies toward bacteria and fungi including drug-resistant pathogens. Especially, aminothiazolyl 7-propyl coumarin 8b and 4-dichlorobenzyl derivative 11b exhibited bactericidal potential (MBC/MIC = 2) toward clinically drug-resistant Enterococcus faecalis with low cytotoxicity to human lung adenocarcinoma A549 cells, rapidly bactericidal effects and no obvious bacterial resistance development against E. faecalis. The preliminary antibacterial action mechanism studies suggested that compound 11b was able to disturb E. faecalis membrane effectively, and interact with bacterial DNA isolated from resistant E. faecalis through noncovalent bonds to cleave DNA, thus inhibiting the growth of E. faecalis strain. Further molecular modeling indicated that compounds 8b and 11b could bind with SER-1084 and ASP-1083 residues of gyrase-DNA complex through hydrogen bonds and hydrophobic interactions. Moreover, compound 11b showed low hemolysis and in vivo toxicity. These findings of aminothiazolyl coumarins as unique structural scaffolds might hold a large promise for the treatments of drug-resistant bacterial infection.
Collapse
Affiliation(s)
- Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
29
|
Zhang J, Guo H, Liu M, Tang K, Li S, Fang Q, Du H, Zhou X, Lin X, Yang Y, Huang B, Yang D. Recent design strategies for boosting chemodynamic therapy of bacterial infections. EXPLORATION (BEIJING, CHINA) 2024; 4:20230087. [PMID: 38855616 PMCID: PMC11022619 DOI: 10.1002/exp.20230087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 06/11/2024]
Abstract
The emergence of drug-resistant bacteria poses a significant threat to people's lives and health as bacterial infections continue to persist. Currently, antibiotic therapy remains the primary approach for tackling bacterial infections. However, the escalating rates of drug resistance coupled with the lag in the development of novel drugs have led to diminishing effectiveness of conventional treatments. Therefore, the development of nonantibiotic-dependent therapeutic strategies has become imperative to impede the rise of bacterial resistance. The emergence of chemodynamic therapy (CDT) has opened up a new possibility due to the CDT can convert H2O2 into •OH via Fenton/Fenton-like reaction for drug-resistant bacterial treatment. However, the efficacy of CDT is limited by a variety of practical factors. To overcome this limitation, the sterilization efficiency of CDT can be enhanced by introducing the therapeutics with inherent antimicrobial capability. In addition, researchers have explored CDT-based combined therapies to augment its antimicrobial effects and mitigate its potential toxic side effects toward normal tissues. This review examines the research progress of CDT in the antimicrobial field, explores various strategies to enhance CDT efficacy and presents the synergistic effects of CDT in combination with other modalities. And last, the current challenges faced by CDT and the future research directions are discussed.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Haiyang Guo
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Ming Liu
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Kaiyuan Tang
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Shengke Li
- Macao Centre for Research and Development in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau SARChina
| | - Qiang Fang
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Hengda Du
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Xiaogang Zhou
- Anhui Key Laboratory of Infection and Immunity, School of Basic MedicineBengbu Medical CollegeBengbuChina
| | - Xin Lin
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of OptometryOphthalmology and Vision ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Bin Huang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical SciencesNanjing Tech University (NanjingTech)NanjingChina
| |
Collapse
|
30
|
Roy R, Paul P, Chakraborty P, Malik M, Das S, Chatterjee S, Maity A, Dasgupta M, Sarker RK, Sarkar S, Das Gupta A, Tribedi P. Cuminaldehyde and Tobramycin Forestall the Biofilm Threats of Staphylococcus aureus: A Combinatorial Strategy to Evade the Biofilm Challenges. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04914-6. [PMID: 38526664 DOI: 10.1007/s12010-024-04914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Staphylococcus aureus, an opportunistic Gram-positive pathogen, is known for causing various infections in humans, primarily by forming biofilms. The biofilm-induced antibiotic resistance has been considered a significant medical threat. Combinatorial therapy has been considered a reliable approach to combat antibiotic resistance by using multiple antimicrobial agents simultaneously, targeting bacteria through different mechanisms of action. To this end, we examined the effects of two molecules, cuminaldehyde (a natural compound) and tobramycin (an antibiotic), individually and in combination, against staphylococcal biofilm. Our experimental observations demonstrated that cuminaldehyde (20 μg/mL) in combination with tobramycin (0.05 μg/mL) exhibited efficient reduction in biofilm formation compared to their individual treatments (p < 0.01). Additionally, the combination showed an additive interaction (fractional inhibitory concentration value 0.66) against S. aureus. Further analysis revealed that the effective combination accelerated the buildup of reactive oxygen species (ROS) and increased the membrane permeability of the bacteria. Our findings also specified that the cuminaldehyde in combination with tobramycin efficiently reduced biofilm-associated pathogenicity factors of S. aureus, including fibrinogen clumping ability, hemolysis property, and staphyloxanthin production. The selected concentrations of tobramycin and cuminaldehyde demonstrated promising activity against the biofilm development of S. aureus on catheter models without exerting antimicrobial effects. In conclusion, the combination of tobramycin and cuminaldehyde presented a successful strategy for combating staphylococcal biofilm-related healthcare threats. This combinatorial approach holds the potential for controlling biofilm-associated infections caused by S. aureus.
Collapse
Affiliation(s)
- Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sudipta Chatterjee
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Alakesh Maity
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Monikankana Dasgupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Ranojit Kumar Sarker
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sarita Sarkar
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Anirban Das Gupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
31
|
Zhang K, Cao F, Zhao Y, Wang H, Chen L. Antibacterial Ingredients and Modes of the Methanol-Phase Extract from the Fruit of Amomum villosum Lour. PLANTS (BASEL, SWITZERLAND) 2024; 13:834. [PMID: 38592864 PMCID: PMC10975419 DOI: 10.3390/plants13060834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Epidemics of infectious diseases threaten human health and society stability. Pharmacophagous plants are rich in bioactive compounds that constitute a safe drug library for antimicrobial agents. In this study, we have deciphered for the first time antibacterial ingredients and modes of the methanol-phase extract (MPE) from the fruit of Amomum villosum Lour. The results have revealed that the antibacterial rate of the MPE was 63.64%, targeting 22 species of common pathogenic bacteria. The MPE was further purified by high performance liquid chromatography (Prep-HPLC), and three different constituents (Fractions 1-3) were obtained. Of these, the Fraction 2 treatment significantly increased the cell membrane fluidity and permeability, reduced the cell surface hydrophobicity, and damaged the integrity of the cell structure, leading to the leakage of cellular macromolecules of Gram-positive and Gram-negative pathogens (p < 0.05). Eighty-nine compounds in Fraction 2 were identified by ultra HPLC-mass spectrometry (UHPLC-MS) analysis, among which 4-hydroxyphenylacetylglutamic acid accounted for the highest 30.89%, followed by lubiprostone (11.86%), miltirone (10.68%), and oleic acid (10.58%). Comparative transcriptomics analysis revealed significantly altered metabolic pathways in the representative pathogens treated by Fraction 2 (p < 0.05), indicating multiple antibacterial modes. Overall, this study first demonstrates the antibacterial activity of the MPE from the fruit of A. villosum Lour., and should be useful for its application in the medicinal and food preservative industries against common pathogens.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fengfeng Cao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yueliang Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hengbin Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
32
|
Tan Y, Su J, Luo D, Liang B, Liu S, Zeng H. Isolation and genome-wide analysis of the novel Acinetobacter baumannii bacteriophage vB_AbaM_AB3P2. Arch Virol 2024; 169:66. [PMID: 38451338 DOI: 10.1007/s00705-024-05986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
A lytic Acinetobacter baumannii phage, isolate vB_AbaM_AB3P2, was isolated from a sewage treatment plant in China. A. baumannii phage vB_AbaM_AB3P2 has a dsDNA genome that is 44,824 bp in length with a G + C content of 37.75%. Ninety-six open reading frames were identified, and no genes for antibiotic resistance or virulence factors were found. Genomic and phylogenetic analysis of this phage revealed that it represents a new species in the genus Obolenskvirus. Phage vB_AbaM_AB3P2 has a short latent period (10 min) and high stability at 30-70°C and pH 2-10 and is potentially useful for controlling multi-drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Yujing Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou, Guangdong Province, 510006, China
| | - Jianhui Su
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou, Guangdong Province, 510006, China
| | - Dandan Luo
- Yunnan Zhinong High-technology Company, Limited, Kunming, 650000, China
| | - Bingshao Liang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Shenshen Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou, Guangdong Province, 510006, China
| | - Haiyan Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou, Guangdong Province, 510006, China.
| |
Collapse
|
33
|
Kavaliauskas P, Grybaitė B, Sapijanskaitė-Banevič B, Vaickelionienė R, Petraitis V, Petraitienė R, Naing E, Garcia A, Grigalevičiūtė R, Mickevičius V. Synthesis of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Promising Scaffolds for the Development of Antimicrobial Candidates Targeting Multidrug-Resistant Bacterial and Fungal Pathogens. Antibiotics (Basel) 2024; 13:193. [PMID: 38391579 PMCID: PMC10886201 DOI: 10.3390/antibiotics13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Infections caused by multidrug-resistant bacterial and fungal pathogens represent a significant global health concern, contributing to increased morbidity and mortality rates. Therefore, it is crucial to develop novel compounds targeting drug-resistant microbial strains. Herein, we report the synthesis of amino acid derivatives bearing an incorporated 4-hydroxyphenyl moiety with various substitutions. The resultant novel 3-((4-hydroxyphenyl)amino)propanoic acid derivatives 2-37 exhibited structure-dependent antimicrobial activity against both ESKAPE group bacteria and drug-resistant Candida species. Furthermore, these derivatives demonstrated substantial activity against Candida auris, with minimum inhibitory concentrations ranging from 0.5 to 64 µg/mL. Hydrazones 14-16, containing heterocyclic substituents, showed the most potent and broad-spectrum antimicrobial activity. This activity extended to methicillin-resistant Staphylococcus aureus (MRSA) with MIC values ranging from 1 to 8 µg/mL, vancomycin-resistant Enterococcus faecalis (0.5-2 µg/mL), Gram-negative pathogens (MIC 8-64 µg/mL), and drug-resistant Candida species (MIC 8-64 µg/mL), including Candida auris. Collectively, these findings underscore the potential utility of the novel 3-((4-hydroxyphenyl)amino)propanoic acid scaffold for further development as a foundational platform for novel antimicrobial agents targeting emerging and drug-resistant bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| | | | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| | - Vidmantas Petraitis
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Rūta Petraitienė
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Ethan Naing
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Andrew Garcia
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
34
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
35
|
Miao L, Wei Y, Lu X, Jiang M, Liu Y, Li P, Ren Y, Zhang H, Chen W, Han B, Lu W. Interaction of 2D nanomaterial with cellular barrier: Membrane attachment and intracellular trafficking. Adv Drug Deliv Rev 2024; 204:115131. [PMID: 37977338 DOI: 10.1016/j.addr.2023.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The cell membrane serves as a barrier against the free entry of foreign substances into the cell. Limited by factors such as solubility and targeting, it is difficult for some drugs to pass through the cell membrane barrier and exert the expected therapeutic effect. Two-dimensional nanomaterial (2D NM) has the advantages of high drug loading capacity, flexible modification, and multimodal combination therapy, making them a novel drug delivery vehicle for drug membrane attachment and intracellular transport. By modulating the surface properties of nanocarriers, it is capable of carrying drugs to break through the cell membrane barrier and achieve precise treatment. In this review, we review the classification of various common 2D NMs, the primary parameters affecting their adhesion to cell membranes, and the uptake mechanisms of intracellular transport. Furthermore, we discuss the therapeutic potential of 2D NMs for several major disorders. We anticipate this review will deepen researchers' understanding of the interaction of 2D NM drug carriers with cell membrane barriers, and provide insights for the subsequent development of novel intelligent nanomaterials capable of intracellular transport.
Collapse
Affiliation(s)
- Li Miao
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yaoyao Wei
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Xue Lu
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Min Jiang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China; State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yixuan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peishan Li
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxin Ren
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
36
|
de la Rica-Martinez A, Martínez-Muñoz G, Sanjuan MA, Conesa-Celdrán A, Garcia-Moreno L, Estan-Cerezo G, Oates MJ, Gonzalo-Jimenez N, Ruiz-Canales A. Low-Cost Electronic Nose for the Determination of Urinary Infections. SENSORS (BASEL, SWITZERLAND) 2023; 24:157. [PMID: 38203029 PMCID: PMC10781376 DOI: 10.3390/s24010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Currently, urine samples for bacterial or fungal infections require a long diagnostic period (48 h). In the present work, a point-of-care device known as an electronic nose (eNose) has been designed based on the "smell print" of infections, since each one emits various volatile organic compounds (VOC) that can be registered by the electronic systems of the device and recognized in a very short time. Urine samples were analyzed in parallel using urine culture and eNose technology. A total of 203 urine samples were analyzed, of which 106 were infected and 97 were not infected. A principal component analysis (PCA) was performed using these data. The algorithm was initially capable of correctly classifying 49% of the total samples. By using SVM-based models, it is possible to improve the accuracy of the classification up to 74% when randomly using 85% of the data for training and 15% for validation. The model is evaluated as having a correct classification rate of 74%. In conclusion, the diagnostic accuracy of the eNose in urine samples is high, promising and amenable for further improvement, and the eNose has the potential to become a feasible, reproducible, low-cost and high-precision device to be applied in clinical practice for the diagnosis of urinary tract infections.
Collapse
Affiliation(s)
- Alba de la Rica-Martinez
- Servicio de Microbiología, Hospital General Universitario de Elche, 03202 Elche, Spain; (A.d.l.R.-M.); (M.A.S.); (L.G.-M.); (G.E.-C.); (N.G.-J.)
| | - Gemma Martínez-Muñoz
- Engineering Department, Miguel Hernández University of Elche, 03312 Orihuela, Spain (A.C.-C.); (M.J.O.)
| | - Marta Amoros Sanjuan
- Servicio de Microbiología, Hospital General Universitario de Elche, 03202 Elche, Spain; (A.d.l.R.-M.); (M.A.S.); (L.G.-M.); (G.E.-C.); (N.G.-J.)
| | - Agustín Conesa-Celdrán
- Engineering Department, Miguel Hernández University of Elche, 03312 Orihuela, Spain (A.C.-C.); (M.J.O.)
| | - Lucía Garcia-Moreno
- Servicio de Microbiología, Hospital General Universitario de Elche, 03202 Elche, Spain; (A.d.l.R.-M.); (M.A.S.); (L.G.-M.); (G.E.-C.); (N.G.-J.)
| | - Gabriel Estan-Cerezo
- Servicio de Microbiología, Hospital General Universitario de Elche, 03202 Elche, Spain; (A.d.l.R.-M.); (M.A.S.); (L.G.-M.); (G.E.-C.); (N.G.-J.)
| | - Martin J. Oates
- Engineering Department, Miguel Hernández University of Elche, 03312 Orihuela, Spain (A.C.-C.); (M.J.O.)
| | - Nieves Gonzalo-Jimenez
- Servicio de Microbiología, Hospital General Universitario de Elche, 03202 Elche, Spain; (A.d.l.R.-M.); (M.A.S.); (L.G.-M.); (G.E.-C.); (N.G.-J.)
| | - Antonio Ruiz-Canales
- Engineering Department, Miguel Hernández University of Elche, 03312 Orihuela, Spain (A.C.-C.); (M.J.O.)
| |
Collapse
|
37
|
Shin MK, Hwang IW, Jang BY, Bu KB, Han DH, Lee SH, Oh JW, Yoo JS, Sung JS. The Identification of a Novel Spider Toxin Peptide, Lycotoxin-Pa2a, with Antibacterial and Anti-Inflammatory Activities. Antibiotics (Basel) 2023; 12:1708. [PMID: 38136742 PMCID: PMC10740532 DOI: 10.3390/antibiotics12121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
With the increasing challenge of controlling infectious diseases due to the emergence of antibiotic-resistant strains, the importance of discovering new antimicrobial agents is rapidly increasing. Animal venoms contain a variety of functional peptides, making them a promising platform for pharmaceutical development. In this study, a novel toxin peptide with antibacterial and anti-inflammatory activities was discovered from the spider venom gland transcriptome by implementing computational approaches. Lycotoxin-Pa2a (Lytx-Pa2a) showed homology to known-spider toxin, where functional prediction indicated the potential of both antibacterial and anti-inflammatory peptides without hemolytic activity. The colony-forming assay and minimum inhibitory concentration test showed that Lytx-Pa2a exhibited comparable or stronger antibacterial activity against pathogenic strains than melittin. Following mechanistic studies revealed that Lytx-Pa2a disrupts both cytoplasmic and outer membranes of bacteria while simultaneously inducing the accumulation of reactive oxygen species. The peptide exerted no significant toxicity when treated to human primary cells, murine macrophages, and bovine red blood cells. Moreover, Lytx-Pa2a alleviated lipopolysaccharide-induced inflammation in mouse macrophages by suppressing the expression of inflammatory mediators. These findings not only suggested that Lytx-Pa2a with dual activity can be utilized as a new antimicrobial agent for infectious diseases but also demonstrated the implementation of in silico methods for discovering a novel functional peptide, which may enhance the future utilization of biological resources.
Collapse
Affiliation(s)
- Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - In-Wook Hwang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Bo-Young Jang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Kyung-Bin Bu
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Dong-Hee Han
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Seung-Ho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Jin Wook Oh
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Jung Sun Yoo
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea;
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| |
Collapse
|
38
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
39
|
Xi H, Fu Y, Chen C, Feng X, Han W, Gu J, Ji Y. Aerococcus viridans Phage Lysin AVPL Had Lytic Activity against Streptococcus suis in a Mouse Bacteremia Model. Int J Mol Sci 2023; 24:16670. [PMID: 38068990 PMCID: PMC10706753 DOI: 10.3390/ijms242316670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Streptococcus suis (S. suis) is a swine pathogen that can cause sepsis, meningitis, endocarditis, and other infectious diseases; it is also a zoonotic pathogen that has caused a global surge in fatal human infections. The widespread prevalence of multidrug-resistant S. suis strains and the decline in novel antibiotic candidates have necessitated the development of alternative antimicrobial agents. In this study, AVPL, the Aerococcus viridans (A. viridans) phage lysin, was found to exhibit efficient bactericidal activity and broad lytic activity against multiple serotypes of S. suis. A final concentration of 300 μg/mL AVPL reduced S. suis counts by 4-4.5 log10 within 1 h in vitro. Importantly, AVPL effectively inhibited 48 h S. suis biofilm formation and disrupted preformed biofilms. In a mouse model, 300 μg/mouse AVPL protected 100% of mice from infection following the administration of lethal doses of multidrug-resistant S. suis type 2 (SS2) strain SC19, reduced the bacterial load in different organs, and effectively alleviated inflammation and histopathological damage in infected mice. These data suggest that AVPL is a valuable candidate antimicrobial agent for treating S. suis infections.
Collapse
Affiliation(s)
- Hengyu Xi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Yao Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Chong Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Xin Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Wenyu Han
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jingmin Gu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yalu Ji
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| |
Collapse
|
40
|
Qi G, Tang Y, Shi L, Zhuang J, Liu X, Liu B. Capsule Shedding and Membrane Binding Enhanced Photodynamic Killing of Gram-Negative Bacteria by a Unimolecular Conjugated Polyelectrolyte. NANO LETTERS 2023; 23:10374-10382. [PMID: 37921703 DOI: 10.1021/acs.nanolett.3c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The development of new antimicrobial agents to treat infections caused by Gram-negative bacteria is of paramount importance due to increased antibiotic resistance worldwide. Herein, we show that a water-soluble porphyrin-cored hyperbranched conjugated polyelectrolyte (PorHP) exhibits high photodynamic bactericidal activity against the Gram-negative bacteria tested, including a multidrug-resistant (MDR) pathogen, while demonstrating low cytotoxicity toward mammalian cells. Comprehensive analyses reveal that the antimicrobial activity of PorHP proceeds via a multimodal mechanism by effective bacterial capsule shedding, strong bacterial outer membrane binding, and singlet oxygen generation. Through this multimodal antimicrobial mechanism, PorHP displays significant performance for Gram-negative bacteria with >99.9% photodynamic killing efficacy. Overall, PorHP shows great potential as an antimicrobial agent in fighting the growing threat of Gram-negative bacteria.
Collapse
Affiliation(s)
- Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
| | - Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
| | - Leilei Shi
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jiahao Zhuang
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University (Fuzhou, China), Binhai New City, Fuzhou 350207, China
| | - Xianglong Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University (Fuzhou, China), Binhai New City, Fuzhou 350207, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University (Fuzhou, China), Binhai New City, Fuzhou 350207, China
- Institute for Functional Intelligent Materials, National University of Singapore (Singapore), Blk S9, Level 9, 4 Science Drive 2, Singapore 117544
| |
Collapse
|
41
|
Russo TP, Santaniello A. Tackling Antibiotic and Antifungal Resistance in Domestic Animals, Synanthropic Species, and Wildlife: A Global Health Imperative. Antibiotics (Basel) 2023; 12:1632. [PMID: 37998834 PMCID: PMC10668830 DOI: 10.3390/antibiotics12111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Antibiotic resistance (ABR) and antifungal resistance (AFR) arise when microorganisms evolve mechanisms to resist pharmacological treatments [...].
Collapse
Affiliation(s)
- Tamara Pasqualina Russo
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80137 Naples, Italy;
| | | |
Collapse
|
42
|
Mercante LA, Teodoro KBR, dos Santos DM, dos Santos FV, Ballesteros CAS, Ju T, Williams GR, Correa DS. Recent Progress in Stimuli-Responsive Antimicrobial Electrospun Nanofibers. Polymers (Basel) 2023; 15:4299. [PMID: 37959981 PMCID: PMC10647808 DOI: 10.3390/polym15214299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Electrospun nanofibrous membranes have garnered significant attention in antimicrobial applications, owing to their intricate three-dimensional network that confers an interconnected porous structure, high specific surface area, and tunable physicochemical properties, as well as their notable capacity for loading and sustained release of antimicrobial agents. Tailoring polymer or hybrid-based nanofibrous membranes with stimuli-responsive characteristics further enhances their versatility, enabling them to exhibit broad-spectrum or specific activity against diverse microorganisms. In this review, we elucidate the pivotal advancements achieved in the realm of stimuli-responsive antimicrobial electrospun nanofibers operating by light, temperature, pH, humidity, and electric field, among others. We provide a concise introduction to the strategies employed to design smart electrospun nanofibers with antimicrobial properties. The core section of our review spotlights recent progress in electrospun nanofiber-based systems triggered by single- and multi-stimuli. Within each stimulus category, we explore recent examples of nanofibers based on different polymers and antimicrobial agents. Finally, we delve into the constraints and future directions of stimuli-responsive nanofibrous materials, paving the way for their wider application spectrum and catalyzing progress toward industrial utilization.
Collapse
Affiliation(s)
- Luiza A. Mercante
- Institute of Chemistry, Federal University of Bahia (UFBA), Salvador 40170-280, BA, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Danilo M. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Camilo A. S. Ballesteros
- Bachelor in Natural Sciences and Environmental Education, Pedagogical and Technological University of Colombia (UPTC), Tunja 150003, Colombia;
| | - Tian Ju
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| |
Collapse
|
43
|
Wang W, Gu L, Wang J, Hu X, Wei B, Zhang H, Wang H, Chen J. Recent Advances in Polypeptide Antibiotics Derived from Marine Microorganisms. Mar Drugs 2023; 21:547. [PMID: 37888482 PMCID: PMC10608164 DOI: 10.3390/md21100547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
In the post-antibiotic era, the rapid development of antibiotic resistance and the shortage of available antibiotics are triggering a new health-care crisis. The discovery of novel and potent antibiotics to extend the antibiotic pipeline is urgent. Small-molecule antimicrobial peptides have a wide variety of antimicrobial spectra and multiple innovative antimicrobial mechanisms due to their rich structural diversity. Consequently, they have become a new research hotspot and are considered to be promising candidates for next-generation antibiotics. Therefore, we have compiled a collection of small-molecule antimicrobial peptides derived from marine microorganisms from the last fifteen years to show the recent advances in this field. We categorize these compounds into three classes-cyclic oligopeptides, cyclic depsipeptides, and cyclic lipopeptides-according to their structural features, and present their sources, structures, and antimicrobial spectrums, with a discussion of the structure activity relationships and mechanisms of action of some compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianwei Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
44
|
Huang X, Chen L, Zhi W, Zeng R, Ji G, Cai H, Xu J, Wang J, Chen S, Tang Y, Zhang J, Zhou H, Sun P. Urchin-Shaped Au-Ag@Pt Sensor Integrated Lateral Flow Immunoassay for Multimodal Detection and Specific Discrimination of Clinical Multiple Bacterial Infections. Anal Chem 2023; 95:13101-13112. [PMID: 37526338 DOI: 10.1021/acs.analchem.3c01631] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A new lateral flow immunoassay strip (LFIA) combining sensitive detection and identification of multiple bacteria remains a huge challenge. In this study, we first developed multifunctional urchin-shaped Au-Ag@Pt nanoparticles (UAA@P NPs) with a unique combination of colorimetric-SERS-photothermal-catalytic (CM/SERS/PT/CL) properties and integrated them with LFIA for multiplexed detection and specific discrimination of pathogenic bacteria in blood samples. Unlike the conventional LFIA that relied on antibody (Ab), this novel LFIA introduced 4-mercaptophenylboronic acid (4-MPBA) as an ideal Ab replacer that was functionalized on UAA@P NPs (UAA@P/M NPs) with outstanding binding and enrichment capacities toward bacteria. Taking Staphylococcus aureus (S. aureus) as model bacteria, the limit of detection (LOD) was 3 CFU/mL for SERS-LFIA, 27 CFU/mL for PT-LFIA, and 18 CFU/mL for CL-LFIA, three of which were over 330-fold, 37-fold, and 55-fold more sensitive than ordinary visual CM-LFIA, respectively. Besides, this SERS-LFIA is capable of identifying three types of bacterial spiked blood samples (E. coli, S. aureus, and P. aeruginosa) effectively according to specific bacterial Raman "fingerprints" by partial least-squares-discriminant analysis (PLS-DA). More importantly, this LFIA was successfully applied to blood samples with satisfactory recoveries from 90.3% to 108.8% and capable of identifying the infected patients (N = 4) from healthy subjects (N = 2) with great accuracy. Overall, the multimodal LFIA incorporates bacteria discrimination and quantitative detection, offering an avenue for early warning and diagnosis of bacterial infection.
Collapse
Affiliation(s)
- Xueqin Huang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lingzhi Chen
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Weixia Zhi
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Runmin Zeng
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guanxu Ji
- Oncology Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jun Xu
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jinyong Wang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Shanze Chen
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yong Tang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianglin Zhang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Haibo Zhou
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Pinghua Sun
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
45
|
Goel A, Halami PM. Structural and biosynthetic diversity of plantaricins from Lactiplantibacillus. Appl Microbiol Biotechnol 2023; 107:5635-5649. [PMID: 37493805 DOI: 10.1007/s00253-023-12692-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Lactiplantibacillus plantarum (L. plantarum) produces an antimicrobial peptide known as plantaricin. Plantaricin-producing L. plantarum is of interest for its gut-friendly nature, wide range of sugar utilization, palatability, and probiotic attributes, making it a better candidate for the food industry. Numerous strains of plantaricin-producing L. plantarum have been isolated from different ecological niches and found to follow different mechanisms for plantaricin production. The mechanism of plantaricin production is sensitive to environmental factors; therefore, any alteration in the optimum conditions can inhibit/halt bacteriocin production. To regain the lost or hidden plantaricin-producing character of the L. plantarum strains under ideal laboratory conditions, it is essential to understand the mechanism of plantaricin production. Previously, discrete information on various mechanisms of plantaricin production has been elaborated. However, based on the literature analysis, we observed that a systematic classification of plantaricins produced by L. plantarum is not explored. Hence, we aim to collect information about rapidly emerging plantaricins and distribute them among the different classes of bacteriocin, followed by classifying them based on different mechanisms of plantaricin production. This may help scaleup the bacteriocin production at industrial levels, which is otherwise challenging to achieve. This will also help the reader understand plantaricins and their mechanism of plantaricin production to a deeper extent and to characterize/reproduce the peptide where plantaricin production is a hidden character. KEY POINTS: • L. plantarum produces the antimicrobial compound plantaricin. • L. plantarum has different regulatory operons which control plantaricin production. • Based on the regulatory operon, the mechanism of plantaricin production is different.
Collapse
Affiliation(s)
- Aditi Goel
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India
| | - Prakash Motiram Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India.
| |
Collapse
|
46
|
Lu W, Lu H, Wang C, Wang G, Dong W, Tan C. Effectors of the Type VI Secretion System Have the Potential to Be Modified into Antimicrobial Peptides. Microbiol Spectr 2023; 11:e0030823. [PMID: 37470717 PMCID: PMC10434152 DOI: 10.1128/spectrum.00308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 07/21/2023] Open
Abstract
The use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, and there is an urgent need to find alternative treatments to alleviate this pressure. The type VI secretion system (T6SS) is a protein delivery system present in bacterial cells that secretes effectors that participate in bacterial virulence. Given the potential for the transformation of these effectors into antimicrobial peptides (AMPs), we designed T6SS effectors into AMPs that have a membrane-disrupting effect. These effectors kill bacteria by altering the membrane potential and increasing the intracellular reactive oxygen species (ROS) content. Moreover, AMPs also have a significant therapeutic effect both in vivo and in vitro. This finding suggests that it is possible to modify bacterial components of bacteria themselves to create compounds that fight bacteria. IMPORTANCE This study first identified and modified the T6SS effector into positively charged alpha-helical peptides. These peptides have good antibacterial and bactericidal effects on G+ bacteria and G- bacteria. This study broadens the source of AMPs and makes T6SS effectors more useful.
Collapse
Affiliation(s)
- Wenjia Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Hao Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Gaoyan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wenqi Dong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
47
|
Kolypetri S, Kostoglou D, Nikolaou A, Kourkoutas Y, Giaouris E. Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano ( Origanum vulgare subsp. hirtum) Essential Oil against Salmonella Typhimurium and Listeria monocytogenes. Foods 2023; 12:2893. [PMID: 37569162 PMCID: PMC10418746 DOI: 10.3390/foods12152893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Essential oils (EOs) are plant mixtures that are known to present strong bioactivities, including a wide antimicrobial action. Biofilms are microbial sessile structures that represent the default mode of growth of microorganisms in most environments. This study focused on the antimicrobial action of the EO extracted from one of the most representative oregano species, that is, Origanum vulgare (subsp. hirtum), against two important foodborne pathogens, Salmonella enterica (serovar Typhimurium) and Listeria monocytogenes. For this, the minimum inhibitory concentrations of the EO against the planktonic and biofilm growth of each bacterium were determined (MICs, MBICs), together with the minimum bactericidal and biofilm eradication concentrations (MBCs, MBECs). The EO was also analyzed for its chemical composition by gas chromatography-mass spectrometry analysis (GC-MS). The influence of EO exposure on the expression of some important virulence genes (hly, inlA, inlB and prfA) was also studied in L. monocytogenes. Results revealed a strong antibacterial and antibiofilm action with MICs and MBICs ranging from 0.03% to 0.06% (v/v) and from 0.06% to 0.13% (v/v), respectively. The application of the EO at 6.25% (v/v) for 15 min resulted in the total eradication of the biofilm cells of both pathogens. The EO was mainly composed of thymol, p-cymene, γ-terpinene and carvacrol. The 3 h exposure of L. monocytogenes planktonic cells to the EO at its MBIC (0.06% v/v) resulted in the significant downregulation of all the studied genes (p < 0.05). To sum, the results obtained advocate for the further exploitation of the antimicrobial action of oregano EO in food and health applications.
Collapse
Affiliation(s)
- Sonia Kolypetri
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Dimitra Kostoglou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Anastasios Nikolaou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| |
Collapse
|
48
|
Shin MK, Hwang IW, Jang BY, Bu KB, Yoo JS, Sung JS. In silico identification of novel antimicrobial peptides from the venom gland transcriptome of the spider Argiope bruennichi (Scopoli, 1772). Front Microbiol 2023; 14:1249175. [PMID: 37577428 PMCID: PMC10416796 DOI: 10.3389/fmicb.2023.1249175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
As the emergence and prevalence of antibiotic-resistant strains have resulted in a global crisis, there is an urgent need for new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit inhibitory activity against a wide spectrum of pathogens and can be utilized as an alternative to conventional antibiotics. In this study, two novel AMPs were identified from the venom transcriptome of the spider Argiope bruennichi (Scopoli, 1772) using in silico methods, and their antimicrobial activity was experimentally validated. Aranetoxin-Ab2a (AATX-Ab2a) and Aranetoxin-Ab3a (AATX-Ab3a) were identified by homology analysis and were predicted to have high levels of antimicrobial activity based on in silico analysis. Both peptides were found to have antibacterial effect against Gram-positive and -negative strains, and, in particular, showed significant inhibitory activity against multidrug-resistant Pseudomonas aeruginosa isolates. In addition, AATX-Ab2a and AATX-Ab3a inhibited animal and vegetable fungal strains, while showing low toxicity to normal human cells. The antimicrobial activity of the peptides was attributed to the increased permeability of microbial membranes. The study described the discovery of novel antibiotic candidates, AATX-Ab2a and AATX-Ab3a, using the spider venom gland transcriptome, and validated an in silico-based method for identifying functional substances from biological resources.
Collapse
Affiliation(s)
- Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - In-Wook Hwang
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Bo-Young Jang
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kyung-Bin Bu
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Jung Sun Yoo
- Species Diversity Research Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
49
|
Umarje SC, Banerjee SK. Non-traditional approaches for control of antibiotic resistance. Expert Opin Biol Ther 2023; 23:1113-1135. [PMID: 38007617 DOI: 10.1080/14712598.2023.2279644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION The drying up of antibiotic pipeline has necessitated the development of alternative therapeutic strategies to control the problem of antimicrobial resistance (AMR) that is expected to kill 10-million people annually by 2050. Newer therapeutic approaches address the shortcomings of traditional small-molecule antibiotics - the lack of specificity, evolvability, and susceptibility to mutation-based resistance. These 'non-traditional' molecules are biologicals having a complex structure and mode(s) of action that makes them resilient to resistance. AREAS COVERED This review aims to provide information about the non-traditional drug development approaches to tackle the problem of antimicrobial resistance, from the pre-antibiotic era to the latest developments. We have covered the molecules under development in the clinic with literature sourced from reviewed scholarly articles, official company websites involved in innovation of concerned therapeutics, press releases from the regulatory bodies, and clinical trial databases. EXPERT OPINION Formal introduction of non-traditional therapies in general practice can be quick and feasible only if supported with companion diagnostics and used in conjunction with established therapies. Owing to relatively higher development costs, non-traditional therapeutics require more funding as well as well as clarity in regulatory and clinical path. We are hopeful these issues are adequately addressed before AMR develops into a pandemic.
Collapse
Affiliation(s)
- Siddharth C Umarje
- Department of Proteomics, AbGenics Life Sciences Pvt. Ltd., Pune, India
- AbGenics Life Sciences Pvt. Ltd., Pune, India
| | | |
Collapse
|
50
|
Xin Z, Yang W, Niu L, Zhang Y. Comprehensive Metabolite Profile Uncovers the Bioactive Components, Antioxidant and Antibacterial Activities in Wild Tree Peony Leaves. Int J Mol Sci 2023; 24:10609. [PMID: 37445786 PMCID: PMC10342129 DOI: 10.3390/ijms241310609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Tree peonies (Paeonia Section Moutan)-including nine wild species, which belong to subsections Vaginatae and Delavayanae-are economically important plants with ornamental, nutritional, and medicinal applications. In this study, for the first time, we determined the bioactive components and antioxidant activities and antibacterial activities of the newly grown leaves of nine wild tree peony species (WTPS). A total of 276 bioactive components were identified through non-targeted metabolomics; more than 80% of the 276 metabolites identified are terpenoids and flavonoids. A total of 42 differential metabolites were quantitatively determined. The main differential metabolites were Paeoniflorin, Luteoloside, Hyperin, Apigenin-7-glucoside, Rhoifolin, and Cantharidin. Such a high terpenoid and flavonoid content of the leaf extracts renders them as species with strong antibacterial capacities, and most of the bacteria tested showed greater sensitivity derived from the members of subsection Vaginatae than those of subsection Delavayanae. All WTPS have significant antioxidant activity; this activity is attributed to high levels of the total phenolic content (TPC) and total flavonoid content (TFC), of which, among the nine WTPS, P. lutea has the strongest antioxidant capacity. Our results provided a theoretical basis for the in-deep application of tree peony leaves for food, medical, and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China; (Z.X.); (W.Y.)
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China; (Z.X.); (W.Y.)
| |
Collapse
|