1
|
Bridger CA, Caraça Santos AM, Reich PD, Douglass MJJ. An evaluation of consumer smartphones for generating bolus and surface mould applicators for radiation oncology. Med Phys 2024; 51:4447-4457. [PMID: 38709978 DOI: 10.1002/mp.17103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/21/2023] [Accepted: 03/30/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The use of Computed Tomography (CT) imaging data to create 3D printable patient-specific devices for radiation oncology purposes is already well established in the literature and has shown to have superior conformity than conventional methods. Using non-ionizing radiation imaging techniques such as photogrammetry or laser scanners in-lieu of a CT scanner presents many desirable benefits including reduced imaging dose and fabrication of the device can be completed prior to simulation. With recent advancements in smartphone-based technology, photographic and LiDAR-based technologies are more readily available than ever before and to a high level of quality. As a result, these non-ionizing radiation imaging methods are now able to generate patient-specific devices that can be acceptable for clinical use. PURPOSE In this work, we aim to determine if smartphones can be used by radiation oncologists or other radiation oncology staff to generate bolus or brachytherapy surface moulds instead of conventional CT with equivalent or comparable accuracy. METHODS This work involved two separate studies: a phantom and participant study. For the phantom study, a RANDO anthropomorphic phantom (limited to the nose region) was used to generate 3D models based on three different imaging techniques: conventional CT, photogrammetry & LiDAR which were both acquired on a smartphone. Virtual boli were designed in Blender and 3D printed from PLA plastic material. The conformity of each printed boli was assessed by measuring the air gap volume and approximate thickness between the phantom & bolus acquired together on a CT. For the participant study, photographs, and a LiDAR scan of four volunteers were captured using an iPhone 13 Pro™ to assess their feasibility for generating human models. Each virtual 3D model was visually assessed to identify any issues in their reconstruction. The LiDAR models were registered to the photogrammetry models where a distance to agreement analysis was performed to assess their level of similarity. Additionally, a 3D virtual bolus was designed and printed using ABS material from all models to assess their conformity onto the participants skin surface using a verbal feedback method. RESULTS The photogrammetry derived bolus showed comparable conformity to the CT derived bolus while the LiDAR derived bolus showed poorer conformity as shown by their respective air gap volume and thickness measurements. The reconstruction quality of both the photogrammetry and LiDAR models of the volunteers was inadequate in regions of facial hair and occlusion, which may lead to clinically unacceptable patient-specific device that are created from these areas. All participants found the photogrammetry 3D printed bolus to conform to their nose region with minimal room to move while three of the four participants found the LiDAR was acceptable and could be positioned comfortably over their entire nose. CONCLUSIONS Smartphone-based photogrammetry and LiDAR software show great potential for future use in generating 3D reference models for radiation oncology purposes. Further investigations into whether they can be used to fabricate clinically acceptable patient-specific devices on a larger and more diverse cohort of participants and anatomical locations is required for a thorough validation of their clinical usefulness.
Collapse
Affiliation(s)
- Corey A Bridger
- School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Alexandre M Caraça Santos
- School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Australian Bragg Centre for Proton Therapy and Research, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Paul D Reich
- School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael J J Douglass
- School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Australian Bragg Centre for Proton Therapy and Research, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Sourvanos D, Sun H, Zhu TC, Dimofte A, Byrd B, Busch TM, Cengel KA, Neiva R, Fiorellini JP. Three-dimensional printing of the human lung pleural cavity model for PDT malignant mesothelioma. Photodiagnosis Photodyn Ther 2024; 46:104014. [PMID: 38346466 DOI: 10.1016/j.pdpdt.2024.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE The primary aim was to investigate emerging 3D printing and optical acquisition technologies to refine and enhance photodynamic therapy (PDT) dosimetry in the management of malignant pleural mesothelioma (MPM). MATERIALS AND METHODS A rigorous digital reconstruction of the pleural lung cavity was conducted utilizing 3D printing and optical scanning methodologies. These reconstructions were systematically assessed against CT-derived data to ascertain their accuracy in representing critical anatomic features and post-resection topographical variations. RESULTS The resulting reconstructions excelled in their anatomical precision, proving instrumental translation for precise dosimetry calculations for PDT. Validation against CT data confirmed the utility of these models not only for enhancing therapeutic planning but also as critical tools for educational and calibration purposes. CONCLUSION The research outlined a successful protocol for the precise calculation of light distribution within the complex environment of the pleural cavity, marking a substantive advance in the application of PDT for MPM. This work holds significant promise for individualizing patient care, minimizing collateral radiation exposure, and improving the overall efficiency of MPM treatments.
Collapse
Affiliation(s)
- Dennis Sourvanos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA; Center for Innovation and Precision Dentistry (CiPD), School of Dental Medicine, School of Engineering, University of Pennsylvania, PA, USA.
| | - Hongjing Sun
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Timothy C Zhu
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Andreea Dimofte
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Brook Byrd
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Rodrigo Neiva
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Joseph P Fiorellini
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| |
Collapse
|
3
|
Dąbrowska-Szewczyk E, Zawadzka A, Kowalczyk P, Podgórski R, Saworska G, Głowacki M, Kukołowicz P, Brzozowska B. Low-density 3D-printed boluses with honeycomb infill 3D-printed boluses in radiotherapy. Phys Med 2023; 110:102600. [PMID: 37167778 DOI: 10.1016/j.ejmp.2023.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023] Open
Abstract
PURPOSE Dosimetric characteristics of 3D-printed plates using different infill percentage and materials was the purpose of our study. METHODS Test plates with 5%, 10%, 15% and 20% honeycomb structure infill were fabricated using TPU and PLA polymers. The Hounsfield unit distribution was determined using a Python script. Percentage Depth Dose (PDD) distribution in the build-up region was measured with the Markus plane-parallel ionization chamber for an open 10x10 cm2 field of 6 MV. PDD was measured at a depth of 1 mm, 5 mm, 10 mm and 15 mm. Measurements were compared with Eclipse treatment planning system calculations using AAA and Acuros XB algorithms. RESULTS The mean HU for CT scans of 3D-printed TPU plates increased with percentage infill increase from -739 HU for 5% to -399 HU for 20%. Differences between the average HU for TPU and PLA did not exceed 2% for all percentage infills. Even using a plate with the lowest infill PDD at 1 mm depth increase from 44.7% (without a plate) to 76.9% for TPU and 76.6% for PLA. Infill percentage did not affect the dose at depths greater than 5 mm. Differences between measurements and TPS calculations were less than 4.1% for both materials, regardless of the infill percentage and depth. CONCLUSIONS The use of 3D-printed light boluses increases the dose in the build-up region, which was shown based on the dosimetric measurements and TPS calculations.
Collapse
Affiliation(s)
- Edyta Dąbrowska-Szewczyk
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 L. Pasteur Street, 02-093 Warsaw, Poland; Medical Physics Department, The Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, 5 WK Roentgen Street, 02-781 Warsaw, Poland
| | - Anna Zawadzka
- Medical Physics Department, The Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, 5 WK Roentgen Street, 02-781 Warsaw, Poland
| | - Piotr Kowalczyk
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland; Centre of Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Rafał Podgórski
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Gabriela Saworska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 L. Pasteur Street, 02-093 Warsaw, Poland
| | - Maksymilian Głowacki
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 L. Pasteur Street, 02-093 Warsaw, Poland
| | - Paweł Kukołowicz
- Medical Physics Department, The Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, 5 WK Roentgen Street, 02-781 Warsaw, Poland
| | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 L. Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
4
|
Crowe S, Luscombe J, Maxwell S, Simpson‐Page E, Poroa T, Wilks R, Li W, Cleland S, Chan P, Lin C, Kairn T. Evaluation of optical 3D scanning system for radiotherapy use. J Med Radiat Sci 2022; 69:218-226. [PMID: 34877819 PMCID: PMC9163482 DOI: 10.1002/jmrs.562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Optical three-dimensional scanning devices can produce geometrically accurate, high-resolution models of patients suitable for clinical use. This article describes the use of a metrology-grade structured light scanner for the design and production of radiotherapy medical devices and synthetic water-equivalent computer tomography images. METHODS Following commissioning of the device by scanning objects of known properties, 173 scans were performed on 26 volunteers, with observations of subjects and operators collected. RESULTS The fit of devices produced using these scans was assessed, and a workflow for the design of complex devices using a treatment planning system was identified. CONCLUSIONS Recommendations are provided on the use of the device within a radiation oncology department.
Collapse
Affiliation(s)
- Scott Crowe
- Cancer Care ServicesRoyal Brisbane and Women’s HospitalHerstonQueenslandAustralia
- Herston Biofabrication InstituteMetro North Hospital and Health ServiceHerstonQueenslandAustralia
- School of Information Technology and Electrical EngineeringUniversity of QueenslandSt. LuciaQueenslandAustralia
- School of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Jenna Luscombe
- Cancer Care ServicesRoyal Brisbane and Women’s HospitalHerstonQueenslandAustralia
| | - Sarah Maxwell
- Cancer Care ServicesRoyal Brisbane and Women’s HospitalHerstonQueenslandAustralia
| | - Emily Simpson‐Page
- Cancer Care ServicesRoyal Brisbane and Women’s HospitalHerstonQueenslandAustralia
| | - Tania Poroa
- Cancer Care ServicesRoyal Brisbane and Women’s HospitalHerstonQueenslandAustralia
| | - Rachael Wilks
- Cancer Care ServicesRoyal Brisbane and Women’s HospitalHerstonQueenslandAustralia
- Herston Biofabrication InstituteMetro North Hospital and Health ServiceHerstonQueenslandAustralia
- School of Information Technology and Electrical EngineeringUniversity of QueenslandSt. LuciaQueenslandAustralia
| | - Weizheng Li
- School of Information Technology and Electrical EngineeringUniversity of QueenslandSt. LuciaQueenslandAustralia
| | - Susannah Cleland
- Radiation Oncology Princess Alexandra Raymond TerraceSouth BrisbaneQueenslandAustralia
| | - Philip Chan
- Cancer Care ServicesRoyal Brisbane and Women’s HospitalHerstonQueenslandAustralia
- School of MedicineUniversity of QueenslandSt. LuciaQueenslandAustralia
| | - Charles Lin
- Cancer Care ServicesRoyal Brisbane and Women’s HospitalHerstonQueenslandAustralia
- School of MedicineUniversity of QueenslandSt. LuciaQueenslandAustralia
| | - Tanya Kairn
- Cancer Care ServicesRoyal Brisbane and Women’s HospitalHerstonQueenslandAustralia
- Herston Biofabrication InstituteMetro North Hospital and Health ServiceHerstonQueenslandAustralia
- School of Information Technology and Electrical EngineeringUniversity of QueenslandSt. LuciaQueenslandAustralia
- School of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Douglass MJJ. Can optical scanning technologies replace CT for 3D printed medical devices in radiation oncology? J Med Radiat Sci 2022; 69:139-142. [PMID: 35366049 PMCID: PMC9163457 DOI: 10.1002/jmrs.579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Affiliation(s)
- Michael John James Douglass
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Australian Bragg Centre for Proton Therapy and Research, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,School of Physical Sciences - University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Cheng JC, Dubey A, Beck J, Sasaki D, Leylek A, Rathod S. Optical scan and 3D printing guided radiation therapy - an application and provincial experience in cutaneous nasal carcinoma. 3D Print Med 2022; 8:8. [PMID: 35348934 PMCID: PMC8966238 DOI: 10.1186/s41205-022-00136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Single field Orthovoltage radiation is an acceptable modality used for the treatment of nasal cutaneous cancer. However, this technique has dosimetric pitfalls and unnecessary excessive exposure of radiation to organs at risk (OAR). We present the clinical outcome of a case series of cutaneous nasal tumours using a novel technique incorporating an optical scanner and a 3-dimensional (3D) printer to deliver treatments using parallel opposed (POP) fields. Materials and methods The POP delivery method was validated using ion chamber and phantom measurements before implementation. A retrospective chart review of 26 patients treated with this technique between 2015 and 2019 was conducted. Patients’ demographics and treatment outcomes were gathered and tabulated. These patients first underwent an optical scan of their faces to collect topographical data. The data were then transcribed into 3D printing algorithms, and positive impressions of the faces were printed. Custom nose block bolus was made with wax encased in an acrylic shell; 4 cm thick using the printed face models. Custom lead shielding was also generated. Treatments were delivered using 250 KeV photons POP arrangement with 4 cm diameter circle applicator cone and prescribed to the midplane. Dose and fractionation were as per physician discretion. Results Phantom measurements at mid-plane were found to match the prescribed dose within ±0.5%. For the 26 cases in this review, the median age was 78.5 years, with 15 females and 11 males. 85% of cases had Basal cell carcinoma (BCC); 1 had squamous cell carcinoma (SCC), one had synchronous BCC + SCC, and 1 had Merkel cell carcinoma. Twenty-one cases had T1N0 disease, 4 had T2N0, and 1 had T3N0. Dose and fractionation delivered were 40Gy in 10 fractions for the majority of cases. The complete response rate at a median follow-up of 6 months was 88%; 1 patient had a refractory tumour, and one patient had a recurrence. Toxicities were minor with 81% with no reported side effects. Three patients experienced grade 3 skin toxicity. Conclusions Utilization of optic scanner and 3D printing technology, with the innovative approach of using POP orthovoltage beams, allows an effective and efficient way of treatment carcinomas of the nose with a high control rate and low toxicity profiles.
Collapse
Affiliation(s)
- Jui Chih Cheng
- Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Arbind Dubey
- Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - James Beck
- Department of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - David Sasaki
- Department of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Ahmet Leylek
- Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Shrinivas Rathod
- Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
7
|
Larochelle RD, Mann SE, Ifantides C. 3D Printing in Eye Care. Ophthalmol Ther 2021; 10:733-752. [PMID: 34327669 PMCID: PMC8320416 DOI: 10.1007/s40123-021-00379-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional printing enables precise modeling of anatomical structures and has been employed in a broad range of applications across medicine. Its earliest use in eye care included orbital models for training and surgical planning, which have subsequently enabled the design of custom-fit prostheses in oculoplastic surgery. It has evolved to include the production of surgical instruments, diagnostic tools, spectacles, and devices for delivery of drug and radiation therapy. During the COVID-19 pandemic, increased demand for personal protective equipment and supply chain shortages inspired many institutions to 3D-print their own eye protection. Cataract surgery, the most common procedure performed worldwide, may someday make use of custom-printed intraocular lenses. Perhaps its most alluring potential resides in the possibility of printing tissues at a cellular level to address unmet needs in the world of corneal and retinal diseases. Early models toward this end have shown promise for engineering tissues which, while not quite ready for transplantation, can serve as a useful model for in vitro disease and therapeutic research. As more institutions incorporate in-house or outsourced 3D printing for research models and clinical care, ethical and regulatory concerns will become a greater consideration. This report highlights the uses of 3D printing in eye care by subspecialty and clinical modality, with an aim to provide a useful entry point for anyone seeking to engage with the technology in their area of interest.
Collapse
Affiliation(s)
- Ryan D Larochelle
- Department of Ophthalmology, University of Colorado, Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, F731, Aurora, CO, 80045, USA
| | - Scott E Mann
- Department of Otolaryngology, University of Colorado, Aurora, CO, USA
- Department of Surgery, Denver Health Medical Center, Denver, CO, USA
| | - Cristos Ifantides
- Department of Ophthalmology, University of Colorado, Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, F731, Aurora, CO, 80045, USA.
- Department of Surgery, Denver Health Medical Center, Denver, CO, USA.
| |
Collapse
|
8
|
Additive manufacturing (3D printing) in superficial brachytherapy. J Contemp Brachytherapy 2021; 13:468-482. [PMID: 34484363 PMCID: PMC8407265 DOI: 10.5114/jcb.2021.108602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this work is to provide an overview of the current state of additive manufacturing (AM), commonly known as 3D printing, within superficial brachytherapy (BT). Several comprehensive database searches were performed to find publications linked to AM in superficial BT. Twenty-eight core publications were found, which can be grouped under general categories of clinical cases, physical and dosimetric evaluations, proof-of-concept cases, design process assessments, and economic feasibility studies. Each study demonstrated a success regarding AM implementation and collectively, they provided benefits over traditional applicator fabrication techniques. Publications of AM in superficial BT have increased significantly in the last 5 years. This is likely due to associated efficiency and consistency benefits; though, more evidences are needed to determine the true extent of these benefits.
Collapse
|
9
|
Singh A, Rosen EB, Randazzo JD, Estilo CL, Gelblum DY, Huryn JM. Intraoral radiation stents-Primer for clinical use in head and neck cancer therapy. Head Neck 2021; 43:4010-4017. [PMID: 34480818 DOI: 10.1002/hed.26848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
Intraoral radiation stents (IRS) are prosthetic devices that assist in the effective delivery of radiation to tumor tissues and aim to avoid unnecessary radiation to adjacent healthy tissues, thus limiting postradiotherapy toxicities. They are used to protect or displace vital structures, assist in positioning of the treatment beam for effective administration of radiotherapy, carry a radioactive material, shield healthy tissues of the oral cavity, and/or maintain the desired mouth opening during radiotherapy. With close collaboration between radiation oncologist and oral health care provider, several IRS can be fabricated by the latter for appropriate targeting and delivery of planned radiation dose and optimized treatment results. Modification of these IRS based on individual patient need is recommended to maximize prosthesis utility. The purpose of this review is to discuss the various types of IRS and highlight their clinical utility and benefits in patients receiving radiation therapy in the head and neck cancers.
Collapse
Affiliation(s)
- Annu Singh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Evan B Rosen
- Dental Oncology and Maxillofacial Prosthetics, Miami Cancer Institute, Miami, Florida, USA
| | - Joseph D Randazzo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cherry L Estilo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daphna Y Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joseph M Huryn
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
10
|
Breitkreutz DY, Skinner L, Lo S, Yu A. Nontoxic electron collimators. J Appl Clin Med Phys 2021; 22:73-81. [PMID: 34480841 PMCID: PMC8504586 DOI: 10.1002/acm2.13398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/16/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose The goal of this work was to develop and test nontoxic electron collimation technologies for clinical use. Methods Two novel technologies were investigated: tungsten‐silicone composite and 3D printed electron cutouts. Transmission, dose uniformity, and profiles were measured for the tungsten‐silicone. Surface dose, relative dose output, and field size were measured for the 3D printed cutouts and compared with the standard cerrobend cutouts in current clinical use. Quality assurance tests including mass measurements, Megavoltage (MV) imaging, and drop testing were developed for the 3D printed cutouts as a guide to safe clinical implementation. Results Dose profiles of the flexible tungsten‐silicone skin shields had an 80–20 penumbra values of 2–3 mm compared to 7–8 mm for cerrobend. In MV transmission image measurements of the tungsten‐silicone, 80% of the pixels had a transmission value within 2% of the mean. An ∼90% reduction in electron intensity was measured for 6 MeV and a 6.4 mm thickness of tungsten‐silicone and 12.7 mm thickness for 16 MeV. The maximum difference in 3D printed cutout versus cerrobend output, surface dose, and full width at half‐maximum (FWHM) was 1.7%, 1.2%, and 1.5%, respectively, for the 10 cm × 10 cm cutouts. Conclusions Both flexible tungsten‐silicone and 3D printed cutouts were found to be feasible for clinical use. The flexible tungsten‐silicone was of adequate density, flexibility, and uniformity to serve as skin shields for electron therapy. The 3D printed cutouts were dosimetrically equivalent to standard cerrobend cutouts and were robust enough for handling in the clinical environment.
Collapse
Affiliation(s)
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Stephanie Lo
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Amy Yu
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| |
Collapse
|
11
|
Rahimy E, Skinner L, Kim YH, Hoppe RT. Technical report: 3D-printed patient-specific scalp shield for hair preservation in total skin electron beam therapy. Tech Innov Patient Support Radiat Oncol 2021; 18:12-15. [PMID: 33997322 PMCID: PMC8091539 DOI: 10.1016/j.tipsro.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
•Techniques for non-lead scalp-shielding in total skin therapy are lacking.•3D-printing is a promising technique for patient-specific conformal shielding.•We present a case of effective scalp shielding with 3D-printing.
Collapse
Affiliation(s)
- Elham Rahimy
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Youn H Kim
- Department of Dermatology, Stanford University, Stanford, CA, USA
| | - Richard T Hoppe
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Esmaeili J, Barati A, Ai J, Nooshabadi VT, Mirzaei Z. Employing hydrogels in tissue engineering approaches to boost conventional cancer-based research and therapies. RSC Adv 2021; 11:10646-10669. [PMID: 35423538 PMCID: PMC8695814 DOI: 10.1039/d1ra00855b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a complicated disease that involves the efforts of researchers to introduce and investigate novel successful treatments. Traditional cancer therapy approaches, especially chemotherapy, are prone to possible systemic side effects, such as the dysfunction of liver or kidney, neurological side effects and a decrease of bone marrow activity. Hydrogels, along with tissue engineering techniques, provide tremendous potential for scientists to overcome these issues through the release of drugs at the site of tumor. Hydrogels demonstrated competency as potent and stimulus-sensitive drug delivery systems for tumor removal, which is attributed to their unique features, including high water content, biocompatibility, and biodegradability. In addition, hydrogels have gained more attention as 3D models for easier and faster screening of cancer and tumors due to their potential in mimicking the extracellular matrix. Hydrogels as a reservoir can be loaded by an effective dosage of chemotherapeutic agents, and then deliver them to targets. In comparison to conventional procedures, hydrogels considerably decreased the total cost, duration of research, and treatment time. This study provides a general look into the potential role of hydrogels as a powerful tool to augment cancer studies for better analysis of cancerous cell functions, cell survival, angiogenesis, metastasis, and drug screening. Moreover, the upstanding application of drug delivery systems related to the hydrogel in order to sustain the release of desired drugs in the tumor cell-site were explored.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University Arak Iran
- Department of Tissue Engineering, TISSUEHUB CO. Tehran Iran
| | - Abolfazl Barati
- Department of Chemical Engineering, Faculty of Engineering, Arak University Arak Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies, Tehran University of Medical Sciences Tehran 14177-55469 Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies, Tehran University of Medical Sciences Tehran 14177-55469 Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences Semnan Iran
| | - Zeynab Mirzaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology Hafez str. 424 Tehran Iran
- Department of Tissue Engineering, TISSUEHUB CO. Tehran Iran
| |
Collapse
|
13
|
Predicting the required thickness of custom shielding materials in kilovoltage radiotherapy beams. Phys Med 2021; 81:94-101. [DOI: 10.1016/j.ejmp.2020.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
|
14
|
Craft DF, Lentz J, Armstrong M, Foster M, Gagneur J, Harrington D, Schild SE, Fatyga M. Three-Dimensionally Printed On-Skin Radiation Shields Using High-Density Filament. Pract Radiat Oncol 2020; 10:e543-e550. [DOI: 10.1016/j.prro.2020.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 11/28/2022]
|
15
|
Beaulieu K, Alkins R, Ellis RE, Kunz M. Technical report: Rapid intraoperative reconstruction of cranial implants using additively manufactured moulds. Proc Inst Mech Eng H 2020; 234:1011-1017. [PMID: 32627709 DOI: 10.1177/0954411920936051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During craniotomies, a portion of the calvarium or skull is removed to gain access to the intracranial space. When it is not possible to re-implant the flap, surgeons may repair the defect intraoperatively or at a later date. With larger defects being more difficult to repair intraoperatively, we investigated a method for the creation of patient-specific moulds for ad hoc bone flap reconstruction using rapid prototyping. Patient-specific moulds were created based on light scanned models of the defect, using custom software and rapid prototyping. Polymethylmethacrylate bone implants were created for three retrospective craniotomy cases and evaluated based on original flap and skull reconstruction accuracy. Bone implants created using our moulding method reconstruct the original flap and skull with an average reconstruction accuracy of 0.82 and 1.3 mm, respectively. Average skull reconstruction accuracy obtained by surgeons performing freehand implant reconstruction was 1.49 mm. Time needed to generate moulds was between 2 h and 45 min and 6 h and 20 min. Improvements to current printing technology will make this procedure technically feasible for future cranial procedures.
Collapse
Affiliation(s)
| | - Ryan Alkins
- Department of Surgery, Kingston Health Sciences Center, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Randy E Ellis
- School of Computing, Queen's University, Kingston, ON, Canada.,Department of Surgery, Kingston Health Sciences Center, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada
| | - Manuela Kunz
- School of Computing, Queen's University, Kingston, ON, Canada.,Department of Surgery, Kingston Health Sciences Center, Queen's University, Kingston, ON, Canada
| |
Collapse
|
16
|
Rooney MK, Rosenberg DM, Braunstein S, Cunha A, Damato AL, Ehler E, Pawlicki T, Robar J, Tatebe K, Golden DW. Three-dimensional printing in radiation oncology: A systematic review of the literature. J Appl Clin Med Phys 2020; 21:15-26. [PMID: 32459059 PMCID: PMC7484837 DOI: 10.1002/acm2.12907] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose/objectives Three‐dimensional (3D) printing is recognized as an effective clinical and educational tool in procedurally intensive specialties. However, it has a nascent role in radiation oncology. The goal of this investigation is to clarify the extent to which 3D printing applications are currently being used in radiation oncology through a systematic review of the literature. Materials/methods A search protocol was defined according to preferred reporting items for systematic reviews and meta‐analyses (PRISMA) guidelines. Included articles were evaluated using parameters of interest including: year and country of publication, experimental design, sample size for clinical studies, radiation oncology topic, reported outcomes, and implementation barriers or safety concerns. Results One hundred and three publications from 2012 to 2019 met inclusion criteria. The most commonly described 3D printing applications included quality assurance phantoms (26%), brachytherapy applicators (20%), bolus (17%), preclinical animal irradiation (10%), compensators (7%), and immobilization devices (5%). Most studies were preclinical feasibility studies (63%), with few clinical investigations such as case reports or series (13%) or cohort studies (11%). The most common applications evaluated within clinical settings included brachytherapy applicators (44%) and bolus (28%). Sample sizes for clinical investigations were small (median 10, range 1–42). A minority of articles described basic or translational research (11%) and workflow or cost evaluation studies (3%). The number of articles increased over time (P < 0.0001). While outcomes were heterogeneous, most studies reported successful implementation of accurate and cost‐effective 3D printing methods. Conclusions Three‐dimensional printing is rapidly growing in radiation oncology and has been implemented effectively in a diverse array of applications. Although the number of 3D printing publications has steadily risen, the majority of current reports are preclinical in nature and the few clinical studies that do exist report on small sample sizes. Further dissemination of ongoing investigations describing the clinical application of developed 3D printing technologies in larger cohorts is warranted.
Collapse
Affiliation(s)
- Michael K Rooney
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - David M Rosenberg
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Steve Braunstein
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Adam Cunha
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Antonio L Damato
- Department Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Ehler
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Todd Pawlicki
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA, USA
| | - James Robar
- Department of Radiation Oncology, Dalhousie University, Halifax, Canada.,Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada.,Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Ken Tatebe
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Daniel W Golden
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Low-Cost iPhone-Assisted Processing to Obtain Radiotherapy Bolus Using Optical Surface Reconstruction and 3D-Printing. Sci Rep 2020; 10:8016. [PMID: 32415217 PMCID: PMC7228923 DOI: 10.1038/s41598-020-64967-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/27/2020] [Indexed: 11/08/2022] Open
Abstract
Patient specific boluses can increase the skin dose distribution better for treating tumors located just beneath the skin with high-energy radiation than a flat bolus. We introduce a low-cost, 3D-printed, patient-specific bolus made of commonly available materials and easily produced using the "structure from motion" and a simple desktop 3D printing technique. Nine pictures were acquired with an iPhone camera around a head phantom. The 3D surface of the phantom was generated using these pictures and the "structure from motion" algorithm, with a scale factor calculated by a sphere fitting algorithm. A bolus for the requested position and shape based on the above generated surface was 3D-printed using ABS material. Two intensity modulated radiation therapy plans were designed to simulate clinical treatment for a tumor located under the skin surface with a flat bolus and a printed bolus, respectively. The planned parameters of dose volume histogram, conformity index (CI) and homogeneity index (HI) were compared. The printed bolus plan gave a dose coverage to the tumor with a CI of 0.817 compared to the CI of 0.697 for the plan with flat bolus. The HIs of the plan with printed bolus and flat bolus were 0.910 and 0.887, respectively.
Collapse
|
18
|
Chan B, Rudan JF, Mousavi P, Kunz M. Intraoperative integration of structured light scanning for automatic tissue classification: a feasibility study. Int J Comput Assist Radiol Surg 2020; 15:641-649. [PMID: 32144629 DOI: 10.1007/s11548-020-02129-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/17/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE Structured light scanning is a promising inexpensive and accurate intraoperative imaging modality. Integration of these scanners in surgical workflows has the potential to enable rapid registration and augment preoperative imaging, in a practical and timely manner in the operating theatre. Previously, we have demonstrated the intraoperative feasibility of such scanners to capture anatomical surface information with high accuracy. The purpose of this study was to investigate the feasibility of automatically characterizing anatomical tissues from textural and spatial information captured by such scanners using machine learning. Assisted or automatic identification of relevant components of a captured scan is essential for effective integration of the technology in surgical workflow. METHODS During a clinical study, 3D surface scans for seven total knee arthroplasty patients were collected, and textural and spatial features for cartilage, bone, and ligament tissue were collected and annotated. These features were used to train and evaluate machine learning models. As part of our preliminary preparation, three fresh-frozen knee cadaver specimens were also used where 3D surface scans with texture information were collected during different dissection stages. The resulting models were manually segmented to isolate texture information for muscles, tendon, cartilage, and bone. This information, and detailed labels from dissections, provided an in-depth, finely annotated dataset for building machine learning classifiers. RESULTS For characterizing bone, cartilage, and ligament in the intraoperative surface models, random forest and neural network-based models achieved an accuracy of close to 80%, whereas an accuracy of close to 90% was obtained when only characterizing bone and cartilage. Average accuracy of 76-82% was reached for cadaver data in two-, three-, and four-class tissue separation. CONCLUSIONS The results of this project demonstrate the feasibility of machine learning methods to accurately classify multiple types of anatomical tissue. The ability to automatically characterize tissues in intraoperatively collected surface models would streamline the surgical workflow of using structured light scanners-paving the way to applications such as 3D documentation of surgery in addition to rapid registration and augmentation of preoperative imaging.
Collapse
Affiliation(s)
- Brandon Chan
- School of Computing, Queen's University, 557 Goodwin Hall, Kingston, ON, K7L 2N8, Canada
| | - John F Rudan
- Department of Surgery, Kingston Health Sciences Centre, Queen's University, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada
| | - Parvin Mousavi
- School of Computing, Queen's University, 557 Goodwin Hall, Kingston, ON, K7L 2N8, Canada.
| | - Manuela Kunz
- School of Computing, Queen's University, 557 Goodwin Hall, Kingston, ON, K7L 2N8, Canada.
- National Research Council Canada, 1200 Montreal Rd, Building M-50, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
19
|
Ruiters S, Mombaerts I. Applications of three-dimensional printing in orbital diseases and disorders. Curr Opin Ophthalmol 2019; 30:372-379. [PMID: 31261186 DOI: 10.1097/icu.0000000000000586] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW To comprehensively review the applications of advanced three-dimensional printing technology in the management of orbital abnormalities. RECENT FINDINGS Three-dimensional printing has added value in the preoperative planning and manufacturing of patient-specific implants and surgical guides in the reconstruction of orbital trauma, congenital defects and tumor resection. In view of the costs and time, it is reserved as strategy for large and complex craniofacial cases, in particular those including the bony contour. There is anecdotal evidence of a benefit of three-dimensional printing in the manufacturing of prostheses for the exenterated and anophthalmic socket, and in the fabrication of patient-specific boluses, applicators and shielding devices for orbital radiation therapy. In addition, three-dimensional printed healthy and diseased orbits as phantom tangible models may augment the teaching and learning process of orbital surgery. SUMMARY Three-dimensional printing allows precision treatment tailored to the unique orbital anatomy of the patient. Advancement in technology and further research are required to support its wider use in orbital clinical practice.
Collapse
Affiliation(s)
- Sébastien Ruiters
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
20
|
Sasaki DK, McGeachy P, Alpuche Aviles JE, McCurdy B, Koul R, Dubey A. A modern mold room: Meshing 3D surface scanning, digital design, and 3D printing with bolus fabrication. J Appl Clin Med Phys 2019; 20:78-85. [PMID: 31454148 PMCID: PMC6753733 DOI: 10.1002/acm2.12703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 11/28/2022] Open
Abstract
Purpose This case series represents an initial experience with implementing 3‐dimensional (3D) surface scanning, digital design, and 3D printing for bolus fabrication for patients with complex surface anatomy where traditional approaches are challenging. Methods and Materials For 10 patients requiring bolus in regions with complex contours, bolus was designed digitally from 3D surface scanning data or computed tomography (CT) images using either a treatment planning system or mesh editing software. Boluses were printed using a fused deposition modeling printer with polylactic acid. Quality assurance tests were performed for each printed bolus to verify density and shape. Results For 9 of 10 patients, digitally designed boluses were used for treatment with no issues. In 1 case, the bolus was not used because dosimetric requirements were met without the bolus. QA tests revealed that the bulk density was within 3% of the reference value for 9 of 12 prints, and with more judicious selection of print settings this could be increased. For these 9 prints, density uniformity was as good as or better than our traditional sheet bolus material. The average shape error of the pieces was less than 0.5 mm, and no issues with fit or comfort were encountered during use. Conclusions This study demonstrates that new technologies such as 3D surface scanning, digital design and 3D printing can be safely and effectively used to modernize bolus fabrication.
Collapse
Affiliation(s)
- David Kiyoshi Sasaki
- Department of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Philip McGeachy
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Jorge E Alpuche Aviles
- Department of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Boyd McCurdy
- Department of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rashmi Koul
- Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Arbind Dubey
- Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
21
|
Novel intraoperative radiotherapy utilizing prefabricated custom three-dimensionally printed high-dose-rate applicators. Brachytherapy 2019; 18:277-284. [PMID: 30803923 DOI: 10.1016/j.brachy.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Intraoperative radiotherapy (IORT) is an effective strategy for the delivery of high doses of radiotherapy to a residual tumor or resection cavity with relative sparing of nearby healthy tissues. This strategy is an important component of the multimodality management of pediatric soft tissue sarcomas, particularly in cases where patients have received prior courses of external beam radiotherapy. PURPOSE Tumor beds with significant topographic irregularity remain a therapeutic challenge because existing IORT technologies are typically most reliable with flat surfaces. To address this limitation, we have developed a novel strategy to create custom, prefabricated high-dose-rate (HDR)-IORT applicators designed to match the shape of an anticipated surgical cavity. METHODS AND MATERIALS Silastic applicators are constructed using three-dimensional (3D) printing and are derived from volumetric segmentation of preoperative imaging. RESULTS HDR preplanning with the applicators improves dosimetric accuracy and minimizes incremental operative time. In this report, we describe the fabrication process for the 3D-printed applicators and detail our experience utilizing this strategy in two pediatric patients who underwent HDR-IORT as part of complex base of skull sarcoma resections. CONCLUSIONS Early experience suggests that usage of the custom applicators is feasible, versatile for a variety of clinical situations, and enables the uniform delivery of high superficial doses of radiotherapy to irregularly shaped surgical cavities.
Collapse
|
22
|
Dipasquale G, Poirier A, Sprunger Y, Uiterwijk JWE, Miralbell R. Improving 3D-printing of megavoltage X-rays radiotherapy bolus with surface-scanner. Radiat Oncol 2018; 13:203. [PMID: 30340612 PMCID: PMC6194575 DOI: 10.1186/s13014-018-1148-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Computed tomography (CT) data used for patient radiotherapy planning can nowadays be used to create 3D-printed boluses. Nevertheless, this methodology requires a second CT scan and planning process when immobilization masks are used in order to fit the bolus under it for treatment. This study investigates the use of a high-grade surface-scanner to produce, prior to the planning CT scan, a 3D-printed bolus in order to increase the workflow efficiency, improve treatment quality and avoid extra radiation dose to the patient. METHODS The scanner capabilities were tested on a phantom and on volunteers. A phantom was used to produce boluses in the orbital region either from CT data (resolution ≈1 mm), or from surface-scanner images (resolution 0.05 mm). Several 3D-printing techniques and materials were tested. To quantify which boluses fit best, they were placed on the phantom and scanned by CT. Hounsfield Unit (HU) profiles were traced perpendicular to the phantom's surface. The minimum HU in the profiles was compared to the HU values for calibrated air-gaps. Boluses were then created from surface images of volunteers to verify the feasibility of surface-scanner use in-vivo. RESULTS Phantom based tests showed a better fit of boluses modeled from surface-scanner than from CT data. Maximum bolus-to-skin air gaps were 1-2 mm using CT models and always < 0.6 mm using surface-scanner models. Tests on volunteers showed good and comfortable fit of boluses produced from surface-scanner images acquired in 0.6 to 7 min. Even in complex surface regions of the body such as ears and fingers, the high-resolution surface-scanner was able to acquire good models. A breast bolus model generated from images acquired in deep inspiration breath hold was also successful. None of the 3D-printed bolus using surface-scanner models required enlarging or shrinking of the initial model acquired in-vivo. CONCLUSIONS Regardless of the material or printing technique, 3D-printed boluses created from high-resolution surface-scanner images proved to be superior in fitting compared to boluses created from CT data. Tests on volunteers were promising, indicating the possibility to improve overall radiotherapy treatments, primarily for megavoltage X-rays, using bolus modeled from a high-resolution surface-scanner even in regions of complex surface anatomy.
Collapse
Affiliation(s)
- Giovanna Dipasquale
- Department of Radiation Oncology, Geneva University Hospital, CH-1211, 14, Geneva, Switzerland.
| | | | | | | | - Raymond Miralbell
- Department of Radiation Oncology, Geneva University Hospital, CH-1211, 14, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|