1
|
Kutuk T, Zhang Y, Akdemir EY, Yarlagadda S, Tolakanahalli R, Hall MD, La Rosa A, Wieczorek DJJ, Lee YC, Press RH, Appel H, McDermott MW, Odia Y, Ahluwalia MS, Gutierrez AN, Mehta MP, Kotecha R. Comparative evaluation of outcomes amongst different radiosurgery management paradigms for patients with large brain metastasis. J Neurooncol 2024; 169:105-117. [PMID: 38837019 DOI: 10.1007/s11060-024-04706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION This study compares four management paradigms for large brain metastasis (LMB): fractionated SRS (FSRS), staged SRS (SSRS), resection and postoperative-FSRS (postop-FSRS) or preoperative-SRS (preop-SRS). METHODS Patients with LBM (≥ 2 cm) between July 2017 and January 2022 at a single tertiary institution were evaluated. Primary endpoints were local failure (LF), radiation necrosis (RN), leptomeningeal disease (LMD), a composite of these variables, and distant intracranial failure (DIF). Gray's test compared cumulative incidence, treating death as a competing risk with a random survival forests (RSF) machine-learning model also used to evaluate the data. RESULTS 183 patients were treated to 234 LBMs: 31.6% for postop-FSRS, 28.2% for SSRS, 20.1% for FSRS, and 20.1% for preop-SRS. The overall 1-year composite endpoint rates were comparable (21 vs 20%) between nonoperative and operative strategies, but 1-year RN rate was 8 vs 4% (p = 0.012), 1-year overall survival (OS) was 48 vs. 69% (p = 0.001), and 1-year LMD rate was 5 vs 10% (p = 0.052). There were differences in the 1-year RN rates (7% FSRS, 3% postop-FSRS, 5% preop-SRS, 10% SSRS, p = 0.037). With RSF analysis, the out-of-bag error rate for the composite endpoint was 47%, with identified top-risk factors including widespread extracranial disease, > 5 total lesions, and breast cancer histology. CONCLUSION This is the first study to conduct a head-to-head retrospective comparison of four SRS methods, addressing the lack of randomized data in LBM literature amongst treatment paradigms. Despite patient characteristic trends, no significant differences were found in LF, composite endpoint, and DIF rates between non-operative and operative approaches.
Collapse
Affiliation(s)
- Tugce Kutuk
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Yanjia Zhang
- TD - Artificial Intelligence and Machine Learning, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Eyub Yasar Akdemir
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Sreenija Yarlagadda
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Matthew D Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - DJay J Wieczorek
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Yongsook C Lee
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Robert H Press
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Haley Appel
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Michael W McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL, USA
| | - Yazmin Odia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Neuro Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Manmeet S Ahluwalia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA.
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
2
|
Zoghbi M, Moussa MJ, Dagher J, Haroun E, Qdaisat A, Singer ED, Karam YE, Yeung SCJ, Chaftari P. Brain Metastasis in the Emergency Department: Epidemiology, Presentation, Investigations, and Management. Cancers (Basel) 2024; 16:2583. [PMID: 39061222 PMCID: PMC11274762 DOI: 10.3390/cancers16142583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Brain metastases (BMs) are the most prevalent type of cerebral tumor, significantly affecting survival. In adults, lung cancer, breast cancer, and melanoma are the primary cancers associated with BMs. Symptoms often result from brain compression, and patients may present to the emergency department (ED) with life-threatening conditions. The goal of treatment of BMs is to maximize survival and quality of life by choosing the least toxic therapy. Surgical resection followed by cavity radiation or definitive stereotactic radiosurgery remains the standard approach, depending on the patient's condition. Conversely, whole brain radiation therapy is becoming more limited to cases with multiple inoperable BMs and is less frequently used for postoperative control. BMs often signal advanced systemic disease, and patients usually present to the ED with poorly controlled symptoms, justifying hospitalization. Over half of patients with BMs in the ED are admitted, making effective ED-based management a challenge. This article reviews the epidemiology, clinical manifestations, and current treatment options of patients with BMs. Additionally, it provides an overview of ED management and highlights the challenges faced in this setting. An improved understanding of the reasons for potentially avoidable hospitalizations in cancer patients with BMs is needed and could help emergency physicians distinguish patients who can be safely discharged from those who require observation or hospitalization.
Collapse
Affiliation(s)
- Marianne Zoghbi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Mohammad Jad Moussa
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jim Dagher
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut 1100, Lebanon
| | - Elio Haroun
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut 1100, Lebanon
| | - Aiham Qdaisat
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emad D. Singer
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yara E. Karam
- Department of Behavioral Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick Chaftari
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Kanakarajan H, De Baene W, Gehring K, Eekers DBP, Hanssens P, Sitskoorn M. Factors associated with the local control of brain metastases: a systematic search and machine learning application. BMC Med Inform Decis Mak 2024; 24:177. [PMID: 38907265 PMCID: PMC11191176 DOI: 10.1186/s12911-024-02579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Enhancing Local Control (LC) of brain metastases is pivotal for improving overall survival, which makes the prediction of local treatment failure a crucial aspect of treatment planning. Understanding the factors that influence LC of brain metastases is imperative for optimizing treatment strategies and subsequently extending overall survival. Machine learning algorithms may help to identify factors that predict outcomes. METHODS This paper systematically reviews these factors associated with LC to select candidate predictor features for a practical application of predictive modeling. A systematic literature search was conducted to identify studies in which the LC of brain metastases is assessed for adult patients. EMBASE, PubMed, Web-of-Science, and the Cochrane Database were searched up to December 24, 2020. All studies investigating the LC of brain metastases as one of the endpoints were included, regardless of primary tumor type or treatment type. We first grouped studies based on primary tumor types resulting in lung, breast, and melanoma groups. Studies that did not focus on a specific primary cancer type were grouped based on treatment types resulting in surgery, SRT, and whole-brain radiotherapy groups. For each group, significant factors associated with LC were identified and discussed. As a second project, we assessed the practical importance of selected features in predicting LC after Stereotactic Radiotherapy (SRT) with a Random Forest machine learning model. Accuracy and Area Under the Curve (AUC) of the Random Forest model, trained with the list of factors that were found to be associated with LC for the SRT treatment group, were reported. RESULTS The systematic literature search identified 6270 unique records. After screening titles and abstracts, 410 full texts were considered, and ultimately 159 studies were included for review. Most of the studies focused on the LC of the brain metastases for a specific primary tumor type or after a specific treatment type. Higher SRT radiation dose was found to be associated with better LC in lung cancer, breast cancer, and melanoma groups. Also, a higher dose was associated with better LC in the SRT group, while higher tumor volume was associated with worse LC in this group. The Random Forest model predicted the LC of brain metastases with an accuracy of 80% and an AUC of 0.84. CONCLUSION This paper thoroughly examines factors associated with LC in brain metastases and highlights the translational value of our findings for selecting variables to predict LC in a sample of patients who underwent SRT. The prediction model holds great promise for clinicians, offering a valuable tool to predict personalized treatment outcomes and foresee the impact of changes in treatment characteristics such as radiation dose.
Collapse
Affiliation(s)
- Hemalatha Kanakarajan
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.
| | - Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Karin Gehring
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Patrick Hanssens
- Gamma Knife Center, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Margriet Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.
| |
Collapse
|
4
|
Gutierrez-Valencia E, Kalyvas A, Jamora K, Yang K, Lau R, Khan B, Millar BA, Laperriere N, Conrad T, Berlin A, Weiss J, Li X, Zadeh G, Bernstein M, Kongkham P, Shultz DB. Rate of pachymeningeal failure following adjuvant WBRT vs SRS in patients with brain metastases. Clin Transl Radiat Oncol 2024; 45:100723. [PMID: 38282910 PMCID: PMC10821534 DOI: 10.1016/j.ctro.2023.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Background Stereotactic radiosurgery (SRS) has supplanted whole brain radiotherapy (WBRT) as standard-of-care adjuvant treatment following surgery for brain metastasis (BrM). Concomitant with the adoption of adjuvant SRS, a new pattern of failure termed "Pachymeningeal failure" (PMF) has emerged. Methods We reviewed a prospective registry of 264 BrM patients; 145 and 119 were treated adjuvantly with WBRT and SRS, respectively. The Cox proportional hazards model was used to identify variables correlating to outcomes. Outcomes were calculated using the cumulative incidence (CI) method. Univariate (UVA) and multivariate analyses (MVA) were done to identify factors associated with PMF. Results CI of PMF was 2 % and 18 % at 12 months, and 2 % and 23 % at 24 months for WRBT and SRS, respectively (p < 0.001). The CI of classic leptomeningeal disease (LMD) was 3 % and 4 % at 12 months, and 6 % and 6 % at 24 months for WBRT and SRS, respectively (P = 0.67). On UVA, adjuvant SRS [HR 9.75 (3.43-27.68) (P < 0.001)]; preoperative dural contact (PDC) [HR 6.78 (1.64-28.10) (P = 0.008)]; GPA score [HR 1.64 (1.11-2.42) (P = 0.012)]; and lung EGFR/ALK status [HR 3.11 (1.02-9.45) (P = 0.045)]; were associated with PMF risk. On MVA, adjuvant SRS [HR 8.15 (2.69-24.7) (P < 0.001)]; and PDC [HR 6.28 (1.51-26.1) (P = 0.012)] remained associated with PMF. Conclusions Preoperative dural contact and adjuvant SRS instead of adjuvant WBRT were associated with an increased risk of PMF. Strategies to improve pachymeningeal radiation coverage to sterilize at risk pachymeninges should be investigated.
Collapse
Affiliation(s)
- Enrique Gutierrez-Valencia
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aristotelis Kalyvas
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - Kurl Jamora
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kaiyun Yang
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - Ruth Lau
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - Benazir Khan
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Barbara-Ann Millar
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Normand Laperriere
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tatiana Conrad
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jessica Weiss
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Xuan Li
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - Paul Kongkham
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - David B. Shultz
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
5
|
Ostapenko MY, Lukshin VA, Usachev DY, Golanov AV, Vetlova ER, Durgaryan AA, Kobyakov NG. [Comparative analysis of combined treatment methods for patients with single brain lesions]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:13-21. [PMID: 39169577 DOI: 10.17116/neiro20248804113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Primary brain metastases are common in oncology. Preoperative stereotactic radiosurgery followed by surgical resection is a perspective approach. OBJECTIVE To evaluate own experience of preoperative radiosurgery followed by surgical resection (RS+S) of metastasis regarding local control, leptomeningeal progression, surgical and radiation-induced complications; to compare treatment outcomes with surgical resection and subsequent radiotherapy (S+SRT). MATERIAL AND METHODS. A Retrospective study included 66 patients with solitary brain metastasis. Two groups of patients were distinguished: group 1 (n=34) - postoperative irradiation, group 2 (n=32) - preoperative irradiation. The median age was 49.5 years (range 36-75). RESULTS Local 3-, 6- and 12-month control among patients with postoperative irradiation was 88.2%, 79.4% and 42.9%, in the group of preoperative irradiation - 100%, 93.3% and 66.7%, respectively (p=0.021). Leptomeningeal progression developed in 11 patients (8 and 3 ones, respectively). The one-year survival rate was 73.5% and 84.4%, respectively (p=0.33). Long-term surgical and radiation-induced complications occurred in 12 (18.2%) patients. CONCLUSION Preoperative radiosurgery with subsequent resection provides higher local control and lower incidence of leptomeningeal progression in patients with single brain metastases.
Collapse
Affiliation(s)
| | - V A Lukshin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - D Yu Usachev
- Burdenko Neurosurgical Center, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - A V Golanov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E R Vetlova
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - N G Kobyakov
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
6
|
Jiani SL, Karlsson B, Vellayappan B, Ang Y, Wu P, Yeo TT, Nga V. Is Gamma Knife surgery, omitting adjunct whole brain radiation treatment, feasible for patients with 20 or more brain metastases? Neurooncol Adv 2024; 6:vdae047. [PMID: 38873531 PMCID: PMC11170483 DOI: 10.1093/noajnl/vdae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Background The importance of the number of brain metastases (BM) when deciding between whole brain radiation treatment (WBRT) and radiosurgery is controversial. We hypothesized that the number of BM is of limited importance when deciding radiation strategy, and offered Gamma Knife surgery (GKS) also for selected patients with 20 or more BM. Methods The outcome following single session GKS for 75 consecutive patients harboring 20 or more (20+) BM was analyzed. Data was collected both retro- and prospectively. Results The median survival time was 9 months. Two grade 3 complications occurred, 1 resolved and 1 did not. Sex and clinical condition at the time of GKS (ECOG value) were the only parameters significantly related to survival time. Eighteen patients developed leptomeningeal dissemination with or without distant recurrences (DR), and another 32 patients developed DR a total of 73 times. DR was managed with GKS 24 times, with WBRT 3 times and with systemic treatment or best supportive care 46 times. The median time to developing DR was unrelated to the number of BM, but significantly longer for patients older than 65 years, as well as for patients with NSCLC. Conclusions GKS is a reasonable treatment option for selected patients with 20 or more BM. It is better to decide the optimal management of post-GKS intracranial disease progression once it occurs rather than trying to prevent it by using adjunct WBRT.
Collapse
Affiliation(s)
- Sherry Liu Jiani
- Department of Surgery, Division of Neurosurgery, National University Hospital, Singapore, Singapore
| | - Bengt Karlsson
- Department of Surgery, Division of Neurosurgery, National University Hospital, Singapore, Singapore
| | | | - Yvonne Ang
- Department of Medical Oncology, National University Hospital, Singapore, Singapore
| | - Peng Wu
- Department of Radiology, National University Hospital, Singapore, Singapore
| | - Tseng Tsai Yeo
- Department of Surgery, Division of Neurosurgery, National University Hospital, Singapore, Singapore
| | - Vincent Nga
- Department of Surgery, Division of Neurosurgery, National University Hospital, Singapore, Singapore
| |
Collapse
|
7
|
Bhave VM, Lamba N, Aizer AA, Bi WL. Minimizing Intracranial Disease Before Stereotactic Radiation in Single or Solitary Brain Metastases. Neurosurgery 2023; 93:782-793. [PMID: 37036442 DOI: 10.1227/neu.0000000000002491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Stereotactic radiotherapy (SRT) in multiple fractions (typically ≤5) can effectively treat a wide range of brain metastases, including those less suitable for single-fraction stereotactic radiosurgery (SRS). Prior prospective studies on surgical resection with stereotactic radiation have focused exclusively on SRS, and retrospective studies have shown equivocal results regarding whether surgery is associated with improved outcomes compared with SRT alone. We compared resection with postoperative cavity SRT or SRS to SRT alone in patients with 1 brain metastasis, while including patients receiving SRS alone as an additional reference group. METHODS We studied 716 patients in a retrospective, single-institution cohort diagnosed with single or solitary brain metastases from 2007 to 2020. Patients receiving whole-brain radiotherapy were excluded. Cox proportional hazards models were constructed for overall survival and additional intracranial outcomes. RESULTS After adjustment for potential confounders, surgery with cavity SRT/SRS was associated with decreased all-cause mortality (hazard ratio [HR]: 0.39, 95% CI [0.27-0.57], P = 1.52 × 10 -6 ) compared with SRT alone, along with lower risk of neurological death attributable to intracranial tumor progression (HR: 0.46, 95% CI [0.22-0.94], P = 3.32 × 10 -2 ) and radiation necrosis (HR: 0.15, 95% CI [0.06-0.36], P = 3.28 × 10 -5 ). Surgery with cavity SRS was also associated with decreased all-cause mortality (HR: 0.52, 95% CI [0.35-0.78], P = 1.46 × 10 -3 ), neurological death (HR: 0.30, 95% CI [0.10-0.88], P = 2.88 × 10 -2 ), and radiation necrosis (HR: 0.14, 95% CI [0.03-0.74], P = 2.07 × 10 -2 ) compared with SRS alone. Surgery was associated with lower risk of all-cause mortality and neurological death in cardinality-matched subsets of the cohort. Among surgical patients, gross total resection was associated with extended overall survival (HR: 0.62, 95% CI [0.40-0.98], P = 4.02 × 10 -2 ) along with lower risk of neurological death (HR: 0.31, 95% CI [0.17-0.57], P = 1.84 × 10 -4 ) and local failure (HR: 0.34, 95% CI [0.16-0.75], P = 7.08 × 10 -3 ). CONCLUSION In patients with 1 brain metastasis, minimizing intracranial disease specifically before stereotactic radiation is associated with improved oncologic outcomes.
Collapse
Affiliation(s)
- Varun M Bhave
- Harvard Medical School, Boston , Massachusetts , USA
| | - Nayan Lamba
- Harvard Radiation Oncology Program, Harvard University, Boston , Massachusetts , USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston , Massachusetts , USA
| | - Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston , Massachusetts , USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston , Massachusetts , USA
| |
Collapse
|
8
|
Crompton D, Koffler D, Fekrmandi F, Lehrer EJ, Sheehan JP, Trifiletti DM. Preoperative stereotactic radiosurgery as neoadjuvant therapy for resectable brain tumors. J Neurooncol 2023; 165:21-28. [PMID: 37889441 DOI: 10.1007/s11060-023-04466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE Stereotactic radiosurgery (SRS) is a method of delivering conformal radiation, which allows minimal radiation damage to surrounding healthy tissues. Adjuvant radiation therapy has been shown to improve local control in a variety of intracranial neoplasms, such as brain metastases, gliomas, and benign tumors (i.e., meningioma, vestibular schwannoma, etc.). For brain metastases, adjuvant SRS specifically has demonstrated positive oncologic outcomes as well as preserving cognitive function when compared to conventional whole brain radiation therapy. However, as compared with neoadjuvant SRS, larger post-operative volumes and greater target volume uncertainty may come with an increased risk of local failure and treatment-related complications, such as radiation necrosis. In addition to its role in brain metastases, neoadjuvant SRS for high grade gliomas may enable dose escalation and increase immunogenic effects and serve a purpose in benign tumors for which one cannot achieve a gross total resection (GTR). Finally, although neoadjuvant SRS has historically been delivered with photon therapy, there are high LET radiation modalities such as carbon-ion therapy which may allow radiation damage to tissue and should be further studied if done in the neoadjuvant setting. In this review we discuss the evolving role of neoadjuvant radiosurgery in the treatment for brain metastases, gliomas, and benign etiologies. We also offer perspective on the evolving role of high LET radiation such as carbon-ion therapy. METHODS PubMed was systemically reviewed using the search terms "neoadjuvant radiosurgery", "brain metastasis", and "glioma". ' Clinicaltrials.gov ' was also reviewed to include ongoing phase III trials. RESULTS This comprehensive review describes the evolving role for neoadjuvant SRS in the treatment for brain metastases, gliomas, and benign etiologies. We also discuss the potential role for high LET radiation in this setting such as carbon-ion radiotherapy. CONCLUSION Early clinical data is very promising for neoadjuvant SRS in the setting of brain metastases. There are three ongoing phase III trials that will be more definitive in evaluating the potential benefits. While there is less data available for neoadjuvant SRS for gliomas, there remains a potential role, particularly to enable dose escalation and increase immunogenic effects.
Collapse
Affiliation(s)
- David Crompton
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Daniel Koffler
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Fatemeh Fekrmandi
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, USA
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
9
|
Kalyvas A, Gutierrez-Valencia E, Lau R, Ye XY, O'Halloran PJ, Mohan N, Wong C, Millar BA, Laperriere N, Conrad T, Berlin A, Bernstein M, Zadeh G, Shultz DB, Kongkham P. Anatomical and surgical characteristics correlate with pachymeningeal failure in patients with brain metastases after neurosurgical resection and adjuvant stereotactic radiosurgery. J Neurooncol 2023; 163:269-279. [PMID: 37165117 DOI: 10.1007/s11060-023-04325-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Neurosurgery (NS) is an essential modality for large brain metastases (BM). Postoperative stereotactic radiosurgery (SRS) is the standard of care adjuvant treatment. Pachymeningeal failure (PMF) is a newly described entity, distinct from classical leptomeningeal failure (LMF), that is uniquely observed in postoperative patients treated with adjuvant SRS. We sought to identify risk factors for PMF in patients treated with NS + SRS. METHODS From a prospective registry (2009 to 2021), we identified all patients treated with NS + SRS. Clinical, imaging, pathological, and treatment factors were analyzed. PMF incidence was evaluated using a competing risks model. RESULTS 144 Patients were identified. The median age was 62 (23-90). PMF occurred in 21.5% (31/144). Female gender [Hazard Ratio (HR) 2.65, p = 0.013], higher Graded Prognostic Assessment (GPA) index (HR 2.4, p < 0.001), absence of prior radiation therapy (HR N/A, p = 0.018), controlled extracranial disease (CED) (HR 3.46, p = 0.0038), and pia/dura contact (PDC) (HR 3.30, p = 0.0053) were associated with increased risk for PMF on univariate analysis. In patients with PDC, wider target volumes correlated with reduced risk of PMF. Multivariate analysis indicated PDC (HR 3.51, p = 0.0053), piecemeal resection (HR 2.38, p = 0.027), and CED (HR 3.97, p = 0.0016) independently correlated with PMF risk. PMF correlated with reduced OS (HR 2.90, p < 0.001) at a lower rate compared to LMF (HR 10.15, p < 0.001). CONCLUSION PMF correlates with tumor PDC and piecemeal resection in patients treated with NS + SRS. For unclear reasons, it is also associated with CED. In tumors with PDC, wider dural radiotherapy coverage was associated with a lower risk of PMF.
Collapse
Affiliation(s)
- Aristotelis Kalyvas
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| | - Enrique Gutierrez-Valencia
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ruth Lau
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Xiang Y Ye
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philip J O'Halloran
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Nilesh Mohan
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Christine Wong
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Barbara-Ann Millar
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Normand Laperriere
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tatiana Conrad
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - David B Shultz
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Paul Kongkham
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| |
Collapse
|
10
|
Vetlova ER, Banov SM, Golanov AV, Pronin IN, Antipina NA, Galkin MV. [Results of hypofractionated stereotactic radiotherapy for resected and intact large brain metastases]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:67-75. [PMID: 38054229 DOI: 10.17116/neiro20238706167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Post-resection or isolated hypofractionated stereotactic radiotherapy (HF-SRT) is a therapeutic option for large brain metastases (>2 cm, LBMs). OBJECTIVE To compare the results of post-resection or isolated HF-SRT in patients with LBMs. MATERIAL AND METHODS A prospective study included 115 patients with 129 intact LBMs and 133 patients with 149 resected LBMs who underwent HF-SRT. Median baseline focal size was 22.5 and 28 mm, median target volume - 8.3 and 23.7 cm3, respectively. RESULTS Median follow-up was 13.9 months, median overall survival - 19.1 months. After 12 months, local recurrences developed in 17 and 31% of patients, respectively (p=0.0078). Local recurrence after 12 months developed in 23% of patients with residual tumor in postoperative cavity compared to 16% of patients after total resection (p=0.0073). After 12 months, incidence of leptomeningeal progression was 27 and 11%, respectively (p=0.033), incidence of symptomatic radiation-induced necrosis - 4 and 23%, respectively (p=0.0006). CONCLUSION Post-resection HF-SRT demonstrated better local control and less severe symptomatic radiation-induced necrosis compared to patients with intact LBMs. Incidence of leptomeningeal progression is significantly higher after resection of LBMs.
Collapse
Affiliation(s)
- E R Vetlova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - S M Banov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A V Golanov
- Burdenko Neurosurgical Center, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - M V Galkin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
11
|
Das S, Faruqi S, Nordal R, Starreveld Y, Kelly J, Bowden G, Amanie J, Fairchild A, Lim G, Loewen S, Rowe L, Wallace C, Ghosh S, Patel S. A phase III, multicenter, randomized controlled trial of preoperative versus postoperative stereotactic radiosurgery for patients with surgically resectable brain metastases. BMC Cancer 2022; 22:1368. [PMID: 36585629 PMCID: PMC9805276 DOI: 10.1186/s12885-022-10480-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Postoperative stereotactic radiosurgery (SRS) is a standard management option for patients with resected brain metastases. Preoperative SRS may have certain advantages compared to postoperative SRS, including less uncertainty in delineation of the intact tumor compared to the postoperative resection cavity, reduced rate of leptomeningeal dissemination postoperatively, and a lower risk of radiation necrosis. The recently published ASCO-SNO-ASTRO consensus statement provides no recommendation for the preferred sequencing of radiotherapy and surgery for patients receiving both treatments for their brain metastases. METHODS This multicenter, randomized controlled trial aims to recruit 88 patients with resectable brain metastases over an estimated three-year period. Patients with ten or fewer brain metastases with at least one resectable, fulfilling inclusion criteria will be randomized to postoperative SRS (standard arm) or preoperative SRS (investigational arm) in a 1:1 ratio. Randomization will be stratified by age (< 60 versus ≥60 years), histology (melanoma/renal cell carcinoma/sarcoma versus other), and number of metastases (one versus 2-10). In the standard arm, postoperative SRS will be delivered within 3 weeks of surgery, and all unresected metastases will receive primary SRS. In the investigational arm, enrolled patients will receive SRS of all brain metastases followed by surgery of resectable metastases within one week of SRS. In either arm, single fraction or hypofractionated SRS in three or five fractions is permitted. The primary endpoint is to assess local control at 12 months in both arms. Secondary endpoints include local control at other time points, regional/distant brain recurrence rates, leptomeningeal recurrence rates, overall survival, neurocognitive outcomes, and adverse radiation events including radiation necrosis rates in both arms. DISCUSSION This trial addresses the unanswered question of the optimal sequencing of surgery and SRS in the management of patients with resectable brain metastases. No randomized data comparing preoperative and postoperative SRS for patients with brain metastases has been published to date. TRIAL REGISTRATION Clinicaltrials.gov , NCT04474925; registered on July 17, 2020. Protocol version 1.0 (January 31, 2020). SPONSOR Alberta Health Services, Edmonton, Canada (Samir Patel, MD).
Collapse
Affiliation(s)
- Subhadip Das
- grid.413574.00000 0001 0693 8815Division of Radiation Oncology, Department of Oncology, Tom Baker Cancer Center, Calgary, Alberta Canada
| | - Salman Faruqi
- grid.413574.00000 0001 0693 8815Division of Radiation Oncology, Department of Oncology, Tom Baker Cancer Center, Calgary, Alberta Canada
| | - Robert Nordal
- grid.413574.00000 0001 0693 8815Division of Radiation Oncology, Department of Oncology, Tom Baker Cancer Center, Calgary, Alberta Canada
| | - Yves Starreveld
- grid.22072.350000 0004 1936 7697Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta Canada
| | - John Kelly
- grid.22072.350000 0004 1936 7697Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta Canada
| | - Gregory Bowden
- grid.17089.370000 0001 2190 316XDivision of Neurosurgery, Department of Surgery, University of Alberta, Edmonton, Alberta Canada
| | - John Amanie
- grid.17089.370000 0001 2190 316XDivision of Radiation Oncology, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2 Canada
| | - Alysa Fairchild
- grid.17089.370000 0001 2190 316XDivision of Radiation Oncology, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2 Canada
| | - Gerald Lim
- grid.413574.00000 0001 0693 8815Division of Radiation Oncology, Department of Oncology, Tom Baker Cancer Center, Calgary, Alberta Canada
| | - Shaun Loewen
- grid.413574.00000 0001 0693 8815Division of Radiation Oncology, Department of Oncology, Tom Baker Cancer Center, Calgary, Alberta Canada
| | - Lindsay Rowe
- grid.17089.370000 0001 2190 316XDivision of Radiation Oncology, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2 Canada
| | - Carla Wallace
- grid.22072.350000 0004 1936 7697Department of Radiology, University of Calgary, Calgary, Alberta Canada
| | - Sunita Ghosh
- grid.17089.370000 0001 2190 316XDivision of Medical Oncology, Department of Oncology, University of Alberta, Edmonton, Alberta Canada
| | - Samir Patel
- grid.17089.370000 0001 2190 316XDivision of Radiation Oncology, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2 Canada
| |
Collapse
|
12
|
Carpenter DJ, Fairchild AT, Adamson JD, Fecci PE, Sampson JH, Herndon JE, Torok JA, Mullikin TC, Kim GJ, Reitman ZJ, Kirkpatrick JP, Floyd SR. Outcomes in Patients with Intact and Resected Brain Metastasis Treated with 5-Fraction Stereotactic Radiosurgery. Adv Radiat Oncol 2022; 8:101166. [PMID: 36845614 PMCID: PMC9943776 DOI: 10.1016/j.adro.2022.101166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose Hypofractionated stereotactic radiosurgery (HF-SRS) with or without surgical resection is potentially a preferred treatment for larger or symptomatic brain metastases (BMs). Herein, we report clinical outcomes and predictive factors following HF-SRS. Methods and Materials Patients undergoing HF-SRS for intact (iHF-SRS) or resected (rHF-SRS) BMs from 2008 to 2018 were retrospectively identified. Linear accelerator-based image-guided HF-SRS consisted of 5 fractions at 5, 5.5, or 6 Gy per fraction. Time to local progression (LP), time to distant brain progression (DBP), and overall survival (OS) were calculated. Cox models assessed effect of clinical factors on OS. Fine and Gray's cumulative incidence model for competing events examined effect of factors on LP and DBP. The occurrence of leptomeningeal disease (LMD) was determined. Logistic regression examined predictors of LMD. Results Among 445 patients, median age was 63.5 years; 87% had Karnofsky performance status ≥70. Fifty-three % of patients underwent surgical resection, and 75% received 5 Gy per fraction. Patients with resected BMs had higher Karnofsky performance status (90-100, 41 vs 30%), less extracranial disease (absent, 25 vs 13%), and fewer BMs (multiple, 32 vs 67%). Median diameter of the dominant BM was 3.0 cm (interquartile range, 1.8-3.6 cm) for intact BMs and 4.6 cm (interquartile range, 3.9-5.5 cm) for resected BMs. Median OS was 5.1 months (95% confidence interval [CI], 4.3-6.0) following iHF-SRS and 12.8 months (95% CI, 10.8-16.2) following rHF-SRS (P < .01). Cumulative LP incidence was 14.5% at 18 months (95% CI, 11.4-18.0%), significantly associated with greater total GTV (hazard ratio, 1.12; 95% CI, 1.05-1.20) following iFR-SRS, and with recurrent versus newly diagnosed BMs across all patients (hazard ratio, 2.28; 95% CI, 1.01-5.15). Cumulative DBP incidence was significantly greater following rHF-SRS than iHF-SRS (P = .01), with respective 24-month rates of 50.0 (95% CI, 43.3-56.3) and 35.7% (95% CI, 29.2-42.2). LMD (57 events total; 33% nodular, 67% diffuse) was observed in 17.1% of rHF-SRS and 8.1% of iHF-SRS cases (odds ratio, 2.46; 95% CI, 1.34-4.53). Any radionecrosis and grade 2+ radionecrosis events were observed in 14 and 8% of cases, respectively. Conclusions HF-SRS demonstrated favorable rates of LC and radionecrosis in postoperative and intact settings. Corresponding LMD and RN rates were comparable to those of other studies.
Collapse
Affiliation(s)
- David J. Carpenter
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina,Corresponding author: Scott Floyd, MD, PhD
| | | | - Justus D. Adamson
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Peter E. Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - John H. Sampson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - James E. Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Jordan A. Torok
- Department of Radiation Oncology, St. Clair Hospital Cancer Center, Pittsburgh, Pennsylvania
| | - Trey C. Mullikin
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Grace J. Kim
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - John P. Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina,Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Scott R. Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
13
|
Rajkumar S, Liang Y, Wegner RE, Shepard MJ. Utilization of neoadjuvant stereotactic radiosurgery for the treatment of brain metastases requiring surgical resection: a topic review. J Neurooncol 2022; 160:691-705. [DOI: 10.1007/s11060-022-04190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022]
|
14
|
Lehrer EJ, Kowalchuk RO, Ruiz-Garcia H, Merrell KW, Brown PD, Palmer JD, Burri SH, Sheehan JP, Quninoes-Hinojosa A, Trifiletti DM. Preoperative stereotactic radiosurgery in the management of brain metastases and gliomas. Front Surg 2022; 9:972727. [PMID: 36353610 PMCID: PMC9637863 DOI: 10.3389/fsurg.2022.972727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
Stereotactic radiosurgery (SRS) is the delivery of a high dose ionizing radiation in a highly conformal manner, which allows for significant sparing of nearby healthy tissues. It is typically delivered in 1-5 sessions and has demonstrated safety and efficacy across multiple intracranial neoplasms and functional disorders. In the setting of brain metastases, postoperative and definitive SRS has demonstrated favorable rates of tumor control and improved cognitive preservation compared to conventional whole brain radiation therapy. However, the risk of local failure and treatment-related complications (e.g. radiation necrosis) markedly increases with larger postoperative treatment volumes. Additionally, the risk of leptomeningeal disease is significantly higher in patients treated with postoperative SRS. In the setting of high grade glioma, preclinical reports have suggested that preoperative SRS may enhance anti-tumor immunity as compared to postoperative radiotherapy. In addition to potentially permitting smaller target volumes, tissue analysis may permit characterization of DNA repair pathways and tumor microenvironment changes in response to SRS, which may be used to further tailor therapy and identify novel therapeutic targets. Building on the work from preoperative SRS for brain metastases and preclinical work for high grade gliomas, further exploration of this treatment paradigm in the latter is warranted. Presently, there are prospective early phase clinical trials underway investigating the role of preoperative SRS in the management of high grade gliomas. In the forthcoming sections, we review the biologic rationale for preoperative SRS, as well as pertinent preclinical and clinical data, including ongoing and planned prospective clinical trials.
Collapse
Affiliation(s)
- Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roman O. Kowalchuk
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Kenneth W. Merrell
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Stuart H. Burri
- Department of Radiation Oncology, Atrium Health, Charlotte, NC, United States
| | - Jason P. Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | | | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States,Correspondence: Daniel M. Trifiletti
| |
Collapse
|
15
|
Puri A, Mylavarapu C, Xu J, Patel TA, S Teh B, Tremont-Lukats I, Chang JC, Niravath P. Clinical factors and association with treatment modalities in patients with breast cancer and brain metastases who develop leptomeningeal metastases. Breast Cancer Res Treat 2022; 193:613-623. [PMID: 35460498 DOI: 10.1007/s10549-022-06595-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Leptomeningeal metastases (LM) are an aggressive complication of metastatic breast cancer (MBC) with brain metastases (BM), with a short survival of weeks to months. Studies suggest that surgical resection of BM may increase the risk of LM, especially in infratentorial metastases. In this retrospective study, we examine this and other factors which may be associated with increased risk of LM. METHODS A database search at a single institution identified 178 patients with MBC and treated BM between 2007 and 2020. We collected demographic, clinical, radiographic, and other treatment data. LM was diagnosed by cerebrospinal fluid (CSF) cytology, neuroimaging, or both. Cox proportional hazards model was used. RESULTS After a median follow-up of 8.5 months, 41 out of 178 patients (23%) with BM developed LM. Median time to develop LM was 130 days. Mean age was 51.3 years. The number and size of the BM, hemorrhagic/cystic lesions, progressive/stable systemic disease, and extracranial metastases sites other than liver did not pose a higher risk of LM. Infratentorial lesions (HR = 5.41) and liver metastases (HR = 2.28) had a higher risk of LM. Patients who had any surgery did not have a higher risk for LM (HR 1.13). The LM group had a worse overall survival as compared to the non-LM group. CONCLUSION Among MBC patients with BM, infratentorial BM and visceral liver lesions increase the risk of LM, whereas local treatment modalities such as surgery and radiation do not. These data imply that local treatment strategy should not differ based on potential risk for LM.
Collapse
Affiliation(s)
- Akshjot Puri
- Clinical Fellow, Hematology/Oncology, Houston Methodist Cancer Center, 6445 Main St, Houston, TX, 77030, USA.
| | - Charisma Mylavarapu
- Resident, Internal Medicine, Houston Methodist Hospital, 6565 Fannin St, Houston, TX, 77030, USA
| | - Jiaqiong Xu
- Center for Outcomes Research, Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Research Institute, 6445 Main St, Houston, TX, 77030, USA
| | - Tejal A Patel
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Bin S Teh
- Department of Radiation Oncology, Houston Methodist Hospital, 6565 Fannin St, Houston, TX, 77030, USA
| | - Ivo Tremont-Lukats
- Department of Neuro Oncology, Houston Methodist Cancer Center, 6445 Main St, Houston, TX, 77030, USA
| | - Jenny C Chang
- Breast Medical Oncology, Chair & Director Cancer Center, Houston Methodist Cancer Center, 6445 Main St, Houston, TX, 77030, USA
| | - Polly Niravath
- Breast Medical Oncology Faculty, Houston Methodist Cancer Center, 6445 Main St, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Gutiérrez-Valencia E, Kalyvas A, Villafuerte CJ, Millar BA, Laperriere N, Conrad T, Berlin A, Weiss J, Zadeh G, Bernstein M, Kongkham P, Shultz DB. OUP accepted manuscript. Neuro Oncol 2022; 24:1925-1934. [PMID: 35474015 PMCID: PMC9629433 DOI: 10.1093/neuonc/noac106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We sought to identify variates correlating with overall survival (OS) in patients treated with surgery (S) plus adjuvant stereotactic radiosurgery (SRS) versus definitive SRS for large (>4 cc) brain metastases (BrM). METHODS We used univariate (UVA) and multivariate analyses (MVA) to identify survival correlates among eligible patients identified from a prospective registry and compared definitive SRS to S+ adjuvant SRS cohorts using propensity score-matched analysis (PSMA). Secondary outcomes were measured using the cumulative incidence (CI) method. RESULTS We identified 364 patients; 127 and 237 were treated with S+SRS and definitive SRS, respectively. On UVA, SRS alone [HR1.73 (1.35,2.22) P < .001), BrM quantity [HR 1.13 (1.06-1.22) (P < .001)]; performance status (PS) [HR 2.78 (1.73-4.46) (P < .001)]; extracranial disease (ECD) [HR 1.82 (1.37,2.40) (P < .001)]; and receipt of systemic treatment after BrM therapy, [HR 0.58 (0.46-073) (P < .001)] correlated with OS. On MVA, SRS alone [HR 1.81 (1.19,2.74) (P < .0054)], SRS target volume [HR 1.03 (1.01,1.06) (P < .0042)], and receipt of systemic treatment [HR 0.68 (0.50,0.93) (P < .015)] correlated with OS. When PSMA was used to balance ECD, BrM quantity, PS, and SRS target volume, SRS alone remained correlated with worsened OS [HR 1.62 (1.20-2.19) (P = 0.0015)]. CI of local failure requiring resection at 12 months was 3% versus 7% for S+SRS and SRS cohorts, respectively [(HR 2.04 (0.89-4.69) (P = .091)]. CI of pachymeningeal failure at 12 months was 16% versus 0% for S+SRS and SRS. CONCLUSION SRS target volume, receipt of systemic therapies, and treatment with S+SRS instead of definitive SRS correlated with improved survival in patients with large BrM.
Collapse
Affiliation(s)
| | | | - Conrad J Villafuerte
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Barbara-Ann Millar
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Normand Laperriere
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tatiana Conrad
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica Weiss
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | | | - David B Shultz
- Corresponding Author: David B. Shultz, MD, PhD, FRCPC, Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, 7th Floor of Ontario Power Generation (OPG) Building, Room 7–401, 700 University Avenue, Toronto, ON M5G 2M9, Canada ()
| |
Collapse
|
17
|
Tewarie IA, Jessurun CAC, Hulsbergen AFC, Smith TR, Mekary RA, Broekman MLD. Leptomeningeal disease in neurosurgical brain metastases patients: A systematic review and meta-analysis. Neurooncol Adv 2021; 3:vdab162. [PMID: 34859226 PMCID: PMC8633671 DOI: 10.1093/noajnl/vdab162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Leptomeningeal disease (LMD) is a complication distinguished by progression of metastatic disease into the leptomeninges and subsequent spread via cerebrospinal fluid (CSF). Although treatments for LMD exist, it is considered fatal with a median survival of 2–4 months. A broader overview of the risk factors that increase the brain metastasis (BM) patient's risk of LMD is needed. This meta-analysis aimed to systematically review and quantitatively assess risk factors for LMD after surgical resection for BM. Methods A systematic literature search was performed on 7 May 2021. Pooled effect sizes were calculated using a random-effects model for variables reported by three or more studies. Results Among 503 studies, thirteen studies met the inclusion criteria with a total surgical sample size of 2105 patients, of which 386 patients developed LMD. The median incidence of LMD across included studies was 16.1%. Eighteen unique risk factors were reported as significantly associated with LMD occurrence, including but not limited to: larger tumor size, infratentorial BM location, proximity of BM to cerebrospinal fluid spaces, ventricle violation during surgery, subtotal or piecemeal resection, and postoperative stereotactic radiosurgery. Pooled results demonstrated that breast cancer as the primary tumor location (HR = 2.73, 95% CI: 2.12–3.52) and multiple BMs (HR = 1.37, 95% CI: 1.18–1.58) were significantly associated with a higher risk of LMD occurrence. Conclusion Breast cancer origin and multiple BMs increase the risk of LMD occurrence after neurosurgery. Several other risk factors which might play a role in LMD development were also identified.
Collapse
Affiliation(s)
- Ishaan Ashwini Tewarie
- Department of Neurosurgery, Computational Neuroscience Outcomes Center (CNOC), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands.,Department of Neurosurgery, Haaglanden Medical Center, The Hague, Zuid-Holland, the Netherlands
| | - Charissa A C Jessurun
- Department of Neurosurgery, Computational Neuroscience Outcomes Center (CNOC), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands.,Department of Neurosurgery, Haaglanden Medical Center, The Hague, Zuid-Holland, the Netherlands
| | - Alexander F C Hulsbergen
- Department of Neurosurgery, Computational Neuroscience Outcomes Center (CNOC), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands.,Department of Neurosurgery, Haaglanden Medical Center, The Hague, Zuid-Holland, the Netherlands
| | - Timothy R Smith
- Department of Neurosurgery, Computational Neuroscience Outcomes Center (CNOC), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rania A Mekary
- Department of Neurosurgery, Computational Neuroscience Outcomes Center (CNOC), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pharmaceutical Business and Administrative Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Marike L D Broekman
- Department of Neurosurgery, Computational Neuroscience Outcomes Center (CNOC), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands.,Department of Neurosurgery, Haaglanden Medical Center, The Hague, Zuid-Holland, the Netherlands.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Prabhu RS, Dhakal R, Vaslow ZK, Dan T, Mishra MV, Murphy ES, Patel TR, Asher AL, Yang K, Manning MA, Stern JD, Patel AR, Wardak Z, Woodworth GF, Chao ST, Mohammadi A, Burri SH. Preoperative Radiosurgery for Resected Brain Metastases: The PROPS-BM Multicenter Cohort Study. Int J Radiat Oncol Biol Phys 2021; 111:764-772. [PMID: 34058254 DOI: 10.1016/j.ijrobp.2021.05.124] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Preoperative radiosurgery (SRS) is a feasible alternative to postoperative SRS, with potential benefits in adverse radiation effect (ARE) and leptomeningeal disease (LMD) relapse. However, previous studies are limited by small patient numbers and single-institution designs. Our aim was to evaluate preoperative SRS outcomes and prognostic factors from a large multicenter cohort (Preoperative Radiosurgery for Brain Metastases [PROPS-BM]). METHODS AND MATERIALS Patients with brain metastases (BM) from solid cancers who had at least 1 lesion treated with preoperative SRS and underwent a planned resection were included from 5 institutions. SRS to synchronous intact BM was allowed. Radiographic meningeal disease (MD) was categorized as either nodular or classical "sugarcoating" (cLMD). RESULTS The cohort included 242 patients with 253 index lesions. Most patients (62.4%) had a single BM, 93.7% underwent gross total resection, and 98.8% were treated with a single fraction to a median dose of 15 Gray to a median gross tumor volume of 9.9 cc. Cavity local recurrence (LR) rates at 1 and 2 years were 15% and 17.9%, respectively. Subtotal resection (STR) was a strong independent predictor of LR (hazard ratio, 9.1; P < .001). One and 2-year rates of MD were 6.1% and 7.6% and of any grade ARE were 4.7% and 6.8% , respectively. The median overall survival (OS) duration was 16.9 months and the 2-year OS rate was 38.4%. The majority of MD was cLMD (13 of 19 patients with MD; 68.4%). Of 242 patients, 10 (4.1%) experienced grade ≥3 postoperative surgical complications. CONCLUSIONS To our knowledge, this multicenter study represents the largest cohort treated with preoperative SRS. The favorable outcomes previously demonstrated in single-institution studies, particularly the low rates of MD and ARE, are confirmed in this expanded multicenter analysis, without evidence of an excessive postoperative surgical complication risk. STR, though infrequent, is associated with significantly worse cavity LR. A randomized trial between preoperative and postoperative SRS is warranted and is currently being designed.
Collapse
Affiliation(s)
- Roshan S Prabhu
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Southeast Radiation Oncology Group, Charlotte, North Carolina.
| | - Reshika Dhakal
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | | | - Tu Dan
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas
| | - Mark V Mishra
- Department of Radiation Oncology, University of Maryland, Baltimore, Maryland
| | - Erin S Murphy
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Toral R Patel
- Department of Neurosurgery, University of Texas Southwestern, Dallas, Texas
| | - Anthony L Asher
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina
| | - Kailin Yang
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | | | - Joseph D Stern
- Cone Health, Greensboro, North Carolina; Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina
| | - Ankur R Patel
- Department of Neurosurgery, Baylor University, Dallas, Texas
| | - Zabi Wardak
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas
| | | | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | | | - Stuart H Burri
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Southeast Radiation Oncology Group, Charlotte, North Carolina
| |
Collapse
|
19
|
Leptomeningeal disease and neurologic death after surgical resection and radiosurgery for brain metastases: A multi-institutional analysis. Adv Radiat Oncol 2021; 6:100644. [PMID: 33732962 PMCID: PMC7940785 DOI: 10.1016/j.adro.2021.100644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Postoperative stereotactic radiosurgery (SRS) is associated with up to 30% risk of subsequent leptomeningeal disease (LMD). Radiographic patterns of LMD (classical sugarcoating [cLMD] vs. nodular [nLMD]) in this setting has been shown to be prognostic. However, the association of these findings with neurologic death (ND) is not well described. Methods and Materials The records for patients with brain metastases who underwent surgical resection and adjunctive SRS to 1 lesion (SRS to other intact lesions was allowed) and subsequently developed LMD were combined from 7 tertiary care centers. Salvage radiation therapy (RT) for LMD was categorized according to use of whole-brain versus focal cranial RT. Results The study cohort included 125 patients with known cause of death. The ND rate in these patients was 79%, and the rate in patients who underwent LMD salvage treatment (n = 107) was 76%. Univariate logistic regression demonstrated radiographic pattern of LMD (cLMD vs. nLMD, odds ratio: 2.9; P = .04) and second LMD failure after salvage treatment (odds ratio: 3.9; P = .02) as significantly associated with ND. The ND rate was 86% for cLMD versus 68% for nLMD. Whole-brain RT was used in 95% of patients with cLMD and 52% with nLMD. In the nLMD cohort (n = 58), there was no difference in ND rate based on type of salvage RT (whole-brain RT: 67% vs. focal cranial RT: 68%, P = .92). Conclusions LMD after surgery and SRS for brain metastases is a clinically significant event with high rates of ND. Classical LMD pattern (vs. nodular) and second LMD failure after salvage treatment were significantly associated with a higher risk of ND. Patients with nLMD treated with salvage focal cranial RT did not have higher ND rates compared with WBRT. Methods to decrease LMD and the subsequent high risk of ND in this setting warrant further investigation.
Collapse
|
20
|
Yeboa DN, Gibbs IC. Stereotactic Radiotherapy and Resection of Brain Metastases: The Role of Hypofractionation. JAMA Oncol 2020; 6:1910-1911. [PMID: 33057588 DOI: 10.1001/jamaoncol.2020.4400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Debra Nana Yeboa
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston.,Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston
| | - Iris C Gibbs
- Department of Radiation Oncology, Stanford School of Medicine, Palo Alto, California
| |
Collapse
|
21
|
Burri SH, Ward MC, Prabhu RS. Hobgoblins, Iron Lungs, and Surgical Perturbation Failure? Int J Radiat Oncol Biol Phys 2020; 108:996-998. [DOI: 10.1016/j.ijrobp.2020.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 01/17/2023]
|
22
|
Chen H, Louie A, Higginson D, Palma D, Colaco R, Sahgal A. Stereotactic Radiosurgery and Stereotactic Body Radiotherapy in the Management of Oligometastatic Disease. Clin Oncol (R Coll Radiol) 2020; 32:713-727. [DOI: 10.1016/j.clon.2020.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/05/2020] [Accepted: 06/26/2020] [Indexed: 01/29/2023]
|