1
|
Fernandes NB, Velagacherla V, Spandana KJ, N B, Mehta CH, Gadag S, Sabhahit JN, Nayak UY. Co-delivery of lapatinib and 5-fluorouracil transfersomes using transpapillary iontophoresis for breast cancer therapy. Int J Pharm 2024; 650:123686. [PMID: 38070658 DOI: 10.1016/j.ijpharm.2023.123686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Combination chemotherapy, involving the intervention of two or more anti-neoplastic agents has been the cornerstone in breast cancer treatment, owing to the applications it holds in contrast to the mono-therapy approach. This research predominantly focussed on proving the synergy between Lapatinib (LPT) and 5-Fluorouracil (5-FU) and further enhancing its localized permeation via transfersome-loaded delivery and iontophoresis to treat breast tumors. The IC50 values for LPT and 5-FU were found to be 19.38 µg/ml and 5.7 µg/ml respectively and their synergistic effect was proven by the Chou-Talalay assay using CompuSyn software. Furthermore, LPT and 5-FU were encapsulated within transfersomes and administered via the transpapillary route. The drug-loaded carriers were characterized for their particle size, polydispersity index, zeta potential, and entrapment efficiency. The ex vivo rat skin permeation studies indicated that when compared to LPT dispersion and 5-FU solution, drug-loaded transfersomes exhibited better permeability and their transpapillary permeation was enhanced on using iontophoresis. Moreover, both LPT and 5-FU transfersomes were found to be stable for 3 months when stored at a temperature of 5 ± 3 °C. The results indicated that this treatment strategy could be an effective approach in contrast to some of the conventional treatments employed to date.
Collapse
Affiliation(s)
- Neha B Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K J Spandana
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Bhagya N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayalakshmi N Sabhahit
- Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|