1
|
Homiski C, Dey-Rao R, Shen S, Qu J, Melendy T. DNA damage-induced phosphorylation of a replicative DNA helicase results in inhibition of DNA replication through attenuation of helicase function. Nucleic Acids Res 2024; 52:10311-10328. [PMID: 39126317 PMCID: PMC11417368 DOI: 10.1093/nar/gkae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
A major function of the DNA damage responses (DDRs) that act during the replicative phase of the cell cycle is to inhibit initiation and elongation of DNA replication. It has been shown that DNA replication of the polyomavirus, SV40, is inhibited and its replication fork is slowed by cellular DDR responses. The inhibition of SV40 DNA replication is associated with enhanced DDR kinase phosphorylation of SV40 Large T-antigen (LT), the viral DNA helicase. Mass spectroscopy was used to identify a novel highly conserved DDR kinase site, T518, on LT. In cell-based assays expression of a phosphomimetic form of LT at T518 (T518D) resulted in dramatically decreased levels of SV40 DNA replication, but LT-dependent transcriptional activation was unaffected. Purified WT and LT T518D were analyzed in vitro. In concordance with the cell-based data, reactions using SV40 LT-T518D, but not T518A, showed dramatic inhibition of SV40 DNA replication. A myriad of LT protein-protein interactions and LT's biochemical functions were unaffected by the LT T518D mutation; however, LT's DNA helicase activity was dramatically decreased on long, but not very short, DNA templates. These results suggest that DDR phosphorylation at T518 inhibits SV40 DNA replication by suppressing LT helicase activity.
Collapse
Affiliation(s)
- Caleb Homiski
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rama Dey-Rao
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Thomas Melendy
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
2
|
Ivanov MP, Ladurner R, Poser I, Beveridge R, Rampler E, Hudecz O, Novatchkova M, Hériché JK, Wutz G, van der Lelij P, Kreidl E, Hutchins JR, Axelsson-Ekker H, Ellenberg J, Hyman AA, Mechtler K, Peters JM. The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion. EMBO J 2018; 37:e97150. [PMID: 29930102 PMCID: PMC6068434 DOI: 10.15252/embj.201797150] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry. This proteomic screen revealed that on chromatin the cohesin acetyltransferase ESCO2 associates with the MCM2-7 subcomplex of the replicative Cdc45-MCM-GINS helicase. The analysis of ESCO2 mutants defective in MCM binding indicates that these interactions are required for proper recruitment of ESCO2 to chromatin, cohesin acetylation during DNA replication, and centromeric cohesion. We propose that MCM binding enables ESCO2 to travel with replisomes to acetylate cohesive cohesin complexes in the vicinity of replication forks so that these complexes can be protected from precocious release by WAPL Our results also indicate that ESCO1 and ESCO2 have distinct functions in maintaining cohesion between chromosome arms and centromeres, respectively.
Collapse
Affiliation(s)
| | - Rene Ladurner
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Evelyn Rampler
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Otto Hudecz
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | | | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | - Jan Ellenberg
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna, Austria
- Institute of Molecular Biotechnology, Vienna, Austria
| | | |
Collapse
|
3
|
Miniscalco B, Poggi A, Martini V, Morello E, Sulce M, Melega M, Borrelli A, Tarducci A, Riondato F. Flow Cytometric Characterization of S-phase Fraction and Ploidy in Lymph Node Aspirates from Dogs with Lymphoma. J Comp Pathol 2018; 161:34-42. [PMID: 30173856 DOI: 10.1016/j.jcpa.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 11/26/2022]
Abstract
Canine lymphoma is a multifaceted disease encompassing numerous entities with different prognosis. Objective assessment of the proliferation rate is of importance from the pathological and clinical perspectives. Different methods have been described in the literature to assess proliferation rate, including evaluation of Ki67 expression in fresh lymph node (LN) aspirates measured by flow cytometry (FC). This test has a high accuracy in discriminating between low- and high-grade lymphomas, and provides prognostic information among high-grade B-cell lymphomas. DNA content analysis is less expensive and suitable for well-preserved samples. We describe DNA-content analysis using LN aspirates from 112 dogs with lymphoma. S-phase fraction (SPF) accurately discriminated between low- and high-grade lymphomas, with 3.15% being the best discriminating cut-off value. SPF values strongly correlated with Ki67 expression as assessed by FC. Survival analyses were restricted to 33 dogs with high-grade B-cell lymphoma receiving standardized multi-agent chemotherapy, but no significant result was obtained for SPF. We also describe a subset of aneuploid cases and their respective follow-up. We conclude that DNA content analysis may be combined with morphological examination of LN aspirates to improve the objectivity in lymphoma subtype classification in dogs. Further studies are needed to assess the possible prognostic role of SPF and ploidy status within specific lymphoma subtypes in dogs.
Collapse
Affiliation(s)
- B Miniscalco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, Turin, Italy
| | - A Poggi
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, Turin, Italy
| | - V Martini
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, Milan, Italy
| | - E Morello
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, Turin, Italy
| | - M Sulce
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, Turin, Italy
| | - M Melega
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, Turin, Italy
| | - A Borrelli
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, Turin, Italy
| | - A Tarducci
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, Turin, Italy
| | - F Riondato
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, Turin, Italy.
| |
Collapse
|
4
|
Kim E, Zheng Z, Jeon Y, Jin YX, Hwang SU, Cai L, Lee CK, Kim NH, Hyun SH. An Improved System for Generation of Diploid Cloned Porcine Embryos Using Induced Pluripotent Stem Cells Synchronized to Metaphase. PLoS One 2016; 11:e0160289. [PMID: 27472781 PMCID: PMC4966966 DOI: 10.1371/journal.pone.0160289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 12/29/2022] Open
Abstract
Pigs provide outstanding models of human genetic diseases due to their striking similarities with human anatomy, physiology and genetics. Although transgenic pigs have been produced using genetically modified somatic cells and nuclear transfer (SCNT), the cloning efficiency was extremely low. Here, we report an improved method to produce diploid cloned embryos from porcine induced pluripotent stem cells (piPSCs), which were synchronized to the G2/M stage using a double blocking method with aphidicolin and nocodazole. The efficiency of this synchronization method on our piPSC lines was first tested. Then, we modified our traditional SCNT protocol to find a workable protocol. In particular, the removal of a 6DMAP treatment post-activation enhanced the extrusion rate of pseudo-second-polar bodies (p2PB) (81.3% vs. 15.8%, based on peak time, 4hpa). Moreover, an immediate activation method yielded significantly more blastocysts than delayed activation (31.3% vs. 16.0%, based on fused embryos). The immunofluorescent results confirmed the effect of the 6DMAP treatment removal, showing remarkable p2PB extrusion during a series of nuclear transfer procedures. The reconstructed embryos from metaphase piPSCs with our modified protocol demonstrated normal morphology at 2-cell, 4-cell and blastocyst stages and a high rate of normal karyotype. This study demonstrated a new and efficient way to produce viable cloned embryos from piPSCs when synchronized to the G2/M phase of the cell cycle, which may lead to opportunities to produce cloned pigs from piPSCs more efficiently.
Collapse
Affiliation(s)
- Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology, (VETEMBIO), Veterinary Medical Center and Collage of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Zhong Zheng
- Laboratory of Veterinary Embryology and Biotechnology, (VETEMBIO), Veterinary Medical Center and Collage of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yubyeol Jeon
- Laboratory of Veterinary Embryology and Biotechnology, (VETEMBIO), Veterinary Medical Center and Collage of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yong-Xun Jin
- Department of Animal Sciences, Agriculture, Life, & Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, (VETEMBIO), Veterinary Medical Center and Collage of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology, (VETEMBIO), Veterinary Medical Center and Collage of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Agriculture, Life, & Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, (VETEMBIO), Veterinary Medical Center and Collage of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
5
|
Petrova NV, Velichko AK, Razin SV, Kantidze OL. Early S-phase cell hypersensitivity to heat stress. Cell Cycle 2015; 15:337-44. [PMID: 26689112 DOI: 10.1080/15384101.2015.1127477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Heat stress is one of the best-studied exogenous stress factors; however little is known about its delayed effects. Recently, we have shown that heat stress induces cellular senescence-like G2 arrest exclusively in early S-phase cells. The mechanism of this arrest includes the generation of heat stress-induced single-stranded DNA breaks, the collision of replication forks with these breaks and the formation of difficult-to-repair double-stranded DNA breaks. However, the early S phase-specific effects of heat stress are not limited to the induction of single-stranded DNA breaks. Here, we report that HS induces partial DNA re-replication and centrosome amplification. We suggest that HS-induced alterations in the expression levels of the genes encoding the replication licensing factors are the primary source of such perturbations. Notably, these processes do not contribute to acquisition of a senescence-like phenotype, although they do elicit postponed effects. Specifically, we found that the HeLa cells can escape from the heat stress-induced cellular senescence-like G2 arrest, and the mitosis they enter is multipolar due to the amplified centrosomes.
Collapse
Affiliation(s)
- Nadezhda V Petrova
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Artem K Velichko
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Sergey V Razin
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,b Department of Molecular Biology , Lomonosov Moscow State University , Moscow , Russia.,c LIA 1066 French-Russian Joint Cancer Research Laboratory , Villejuif , France
| | - Omar L Kantidze
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,b Department of Molecular Biology , Lomonosov Moscow State University , Moscow , Russia.,c LIA 1066 French-Russian Joint Cancer Research Laboratory , Villejuif , France
| |
Collapse
|
6
|
Yuan Y, Lee K, Park KW, Spate LD, Prather RS, Wells KD, Roberts RM. Cell cycle synchronization of leukemia inhibitory factor (LIF)-dependent porcine-induced pluripotent stem cells and the generation of cloned embryos. Cell Cycle 2014; 13:1265-76. [PMID: 24621508 DOI: 10.4161/cc.28176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear transfer (NT) from porcine iPSC to create cloned piglets is unusually inefficient. Here we examined whether such failure might be related to the cell cycle stage of donor nuclei. Porcine iPSC, derived here from the inner cell mass of blastocysts, have a prolonged S phase and are highly sensitive to drugs normally used for synchronization. However, a double-blocking procedure with 0.3 μM aphidicolin for 10 h followed by 20 ng/ml nocodazole for 4 h arrested 94.3% of the cells at G2/M and, after release from the block, provided 70.1% cells in the subsequent G1 phase without causing any significant loss of cell viability or pluripotent phenotype. Nuclei from different cell cycle stages were used as donors for NT to in vitro-matured metaphase II oocytes. G2/M nuclei were more efficient than either G1 and S stage nuclei in undergoing first cleavage and in producing blastocysts, but all groups had a high incidence of chromosomal/nuclear abnormalities at 2 h and 6 h compared with non-synchronized NT controls from fetal fibroblasts. Many G2 embryos extruded a pseudo-second polar body soon after NT and, at blastocyst, tended to be either polyploid or diploid. By contrast, the few G1 blastocysts that developed were usually mosaic or aneuploid. The poor developmental potential of G1 nuclei may relate to lack of a G1/S check point, as the cells become active in DNA synthesis shortly after exit from mitosis. Together, these data provide at least a partial explanation for the almost complete failure to produce cloned piglets from piPSC.
Collapse
Affiliation(s)
- Ye Yuan
- Division of Animal Sciences and Bond Life Sciences Center; University of Missouri; Columbia, MO USA
| | - Kiho Lee
- Division of Animal Sciences; University of Missouri; Columbia, MO USA
| | - Kwang-Wook Park
- Division of Animal Sciences; University of Missouri; Columbia, MO USA; Department of Animal Science and Technology; Sunchon National University; Suncheon, Jeonnam, Korea
| | - Lee D Spate
- Division of Animal Sciences; University of Missouri; Columbia, MO USA
| | - Randall S Prather
- Division of Animal Sciences; University of Missouri; Columbia, MO USA
| | - Kevin D Wells
- Division of Animal Sciences; University of Missouri; Columbia, MO USA
| | - R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center; University of Missouri; Columbia, MO USA
| |
Collapse
|
7
|
Pachkowski BF, Guyton KZ, Sonawane B. DNA repair during in utero development: A review of the current state of knowledge, research needs, and potential application in risk assessment. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 728:35-46. [DOI: 10.1016/j.mrrev.2011.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 05/29/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
|
8
|
Kaufman DG, Cohen SM, Chastain PD. Temporal and functional analysis of DNA replicated in early S phase. ACTA ACUST UNITED AC 2010; 51:257-71. [PMID: 21093474 DOI: 10.1016/j.advenzreg.2010.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/10/2010] [Indexed: 12/12/2022]
Abstract
In summary, recently developed technologies have begun to draw back the curtain of mystery that obscures some of the basic mechanisms of DNA replication at multiple levels. Studies using extended DNA and chromatin fiber techniques have proven valuable for identifying the location of origins of replication at specific genomic sites and determining their temporal order of replication, for identifying and quantifying sites of DNA damage and localizing chromatin proteins in relation to sites of DNA replication. The future potential of these methods include further discoveries in functional genomics and contributions to the elucidation of the histone code. Such studies could prove very valuable in studies of the mechanisms of cancer development, aging, and other processes of disordered genomic functioning.
Collapse
Affiliation(s)
- David G Kaufman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | |
Collapse
|