1
|
Hayes E, Winston N, Stocco C. Molecular crosstalk between insulin-like growth factors and follicle-stimulating hormone in the regulation of granulosa cell function. Reprod Med Biol 2024; 23:e12575. [PMID: 38571513 PMCID: PMC10988955 DOI: 10.1002/rmb2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Background The last phase of folliculogenesis is driven by follicle-stimulating hormone (FSH) and locally produced insulin-like growth factors (IGFs), both essential for forming preovulatory follicles. Methods This review discusses the molecular crosstalk of the FSH and IGF signaling pathways in regulating follicular granulosa cells (GCs) during the antral-to-preovulatory phase. Main findings IGFs were considered co-gonadotropins since they amplify FSH actions in GCs. However, this view is not compatible with data showing that FSH requires IGFs to stimulate GCs, that FSH renders GCs sensitive to IGFs, and that FSH signaling interacts with factors downstream of AKT to stimulate GCs. New evidence suggests that FSH and IGF signaling pathways intersect at several levels to regulate gene expression and GC function. Conclusion FSH and locally produced IGFs form a positive feedback loop essential for preovulatory follicle formation in all species. Understanding the mechanisms by which FSH and IGFs interact to control GC function will help design new interventions to optimize follicle maturation, perfect treatment of ovulatory defects, improve in vitro fertilization, and develop new contraceptive approaches.
Collapse
Affiliation(s)
- Emily Hayes
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Nicola Winston
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Carlos Stocco
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| |
Collapse
|
2
|
García-Caballero D, Hart JR, Vogt PK. Long Non-Coding RNAs as "MYC Facilitators". PATHOPHYSIOLOGY 2023; 30:389-399. [PMID: 37755396 PMCID: PMC10534484 DOI: 10.3390/pathophysiology30030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
In this article, we discuss a class of MYC-interacting lncRNAs (long non-coding RNAs) that share the following criteria: They are direct transcriptional targets of MYC. Their expression is coordinated with the expression of MYC. They are required for sustained MYC-driven cell proliferation, and they are not essential for cell survival. We refer to these lncRNAs as "MYC facilitators" and discuss two representative members of this class of lncRNAs, SNHG17 (small nuclear RNA host gene) and LNROP (long non-coding regulator of POU2F2). We also present a general hypothesis on the role of lncRNAs in MYC-mediated transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Peter K. Vogt
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
García-Caballero D, Hart JR, Vogt PK. The MYC-regulated lncRNA LNROP (ENSG00000254887) enables MYC-driven cell proliferation by controlling the expression of OCT2. Cell Death Dis 2023; 14:168. [PMID: 36849510 PMCID: PMC9971199 DOI: 10.1038/s41419-023-05683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
MYC controls most of the non-coding genome. Several long noncoding transcripts were originally identified in the human B cell line P496-3 and then shown to be required for MYC-driven proliferation of Burkitt lymphoma-derived RAMOS cells. In this study, we used RAMOS cells exclusively as a representative of the human B cell lineage. One of the MYC-controlled lncRNAs required for RAMOS cell proliferation is ENSG00000254887 which we will term LNROP (long non-coding regulator of POU2F2). In the genome, LNROP is located in close proximity of POU2F2, the gene encoding OCT2. OCT2 is a transcription factor with important roles in sustaining the proliferation of human B cells. Here we show that LNROP is a nuclear RNA and a direct target of MYC. Downregulation of LNROP attenuates the expression of OCT2. This effect of LNROP on the expression of OCT2 is unidirectional as downregulation of OCT2 does not alter the expression of LNROP. Our data suggest that LNROP is a cis-acting regulator of OCT2. To illustrate the downstream reach of LNROP, we chose a prominent target of OCT2, the tyrosine phosphatase SHP-1. Downregulation of OCT2 elevates the expression of SHP-1. Our data suggest the following path of interactions: LNROP enables the proliferation of B cells by positively and unidirectionally regulating the growth-stimulatory transcription factor OCT2. In actively proliferating B cells, OCT2 attenuates the expression and anti-proliferative activity of SHP-1.
Collapse
Affiliation(s)
- Daniel García-Caballero
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Jonathan R Hart
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter K Vogt
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
4
|
Gómez-Hernández MA, Flores-Merino MV, Sánchez-Flores JE, Burrola-Aguilar C, Zepeda-Gómez C, Nieto-Trujillo A, Estrada-Zúñiga ME. Photoprotective Activity of Buddleja cordata Cell Culture Methanolic Extract on UVB-irradiated 3T3-Swiss Albino Fibroblasts. PLANTS 2021; 10:plants10020266. [PMID: 33573194 PMCID: PMC7912278 DOI: 10.3390/plants10020266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
The research on compounds exhibiting photoprotection against ultraviolet radiation (UVR) is a matter of increasing interest. The methanolic extract of a cell culture of Buddleja cordata has potential photoprotective effects as these cells produce phenolic secondary metabolites (SMs). These metabolites are attributed with biological activities capable of counteracting the harmful effects caused by UVR on skin. In the present work, the methanolic extract (310–2500 µg/mL) of B. cordata cell culture showed a photoprotective effect on UVB-irradiated 3T3-Swiss albino fibroblasts with a significant increase in cell viability. The greatest photoprotective effect (75%) of the extract was observed at 2500 µg/mL, which was statistically comparable with that of 250 µg/mL verbascoside, used as positive control. In addition, concentrations of the extract higher than 2500 µg/mL resulted in decreased cell viability (≤83%) after 24 h of exposure. Phytochemical analysis of the extract allowed us to determine that it was characterized by high concentrations of total phenol and total phenolic acid contents (138 ± 4.7 mg gallic acid equivalents and 44.01 ± 1.33 mg verbascoside equivalents per gram of extract, respectively) as well as absorption of UV light (first and second bands peaking at 294 and 330 nm, respectively). Some phenylethanoid glycosides were identified from the extract.
Collapse
Affiliation(s)
- Milton Abraham Gómez-Hernández
- Laboratorio de Toxicología de Productos Naturales, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Av. Wilfrido Massieu, Esq. Con Manuel M. Stampa s/n, Colonia Planetario Lindavista, Delegación Gustavo A. Madero, Ciudad de México C.P. 07700, Mexico;
| | - Miriam V. Flores-Merino
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón s/n, Residencial Colón y Col Ciprés, Toluca C.P. 50120, Mexico;
- Correspondence: (M.V.F.-M.); (M.E.E.-Z.)
| | - Jesús Enrique Sánchez-Flores
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón s/n, Residencial Colón y Col Ciprés, Toluca C.P. 50120, Mexico;
| | - Cristina Burrola-Aguilar
- Centro de Investigación en Recursos Bióticos-Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca C.P. 50295, Mexico; (C.B.-A.); (A.N.-T.)
| | - Carmen Zepeda-Gómez
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Campus El Cerrillo, Piedras Blancas, Carretera Toluca-Ixtlahuaca Km. 15.5, Toluca C.P. 50200, Mexico;
| | - Aurelio Nieto-Trujillo
- Centro de Investigación en Recursos Bióticos-Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca C.P. 50295, Mexico; (C.B.-A.); (A.N.-T.)
| | - María Elena Estrada-Zúñiga
- Centro de Investigación en Recursos Bióticos-Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca C.P. 50295, Mexico; (C.B.-A.); (A.N.-T.)
- Correspondence: (M.V.F.-M.); (M.E.E.-Z.)
| |
Collapse
|
5
|
Dwivedi P, Greis KD. Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies. Exp Hematol 2017; 46:9-20. [PMID: 27789332 PMCID: PMC5241233 DOI: 10.1016/j.exphem.2016.10.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 01/17/2023]
Abstract
Granulocyte colony-stimulating factor is a hematopoietic cytokine that stimulates neutrophil production and hematopoietic stem cell mobilization by initiating the dimerization of homodimeric granulocyte colony-stimulating factor receptor. Different mutations of CSF3R have been linked to a unique spectrum of myeloid disorders and related malignancies. Myeloid disorders caused by the CSF3R mutations include severe congenital neutropenia, chronic neutrophilic leukemia, and atypical chronic myeloid leukemia. In this review, we provide an analysis of granulocyte colony-stimulating factor receptor, various mutations, and their roles in the severe congenital neutropenia, chronic neutrophilic leukemia, and malignant transformation, as well as the clinical implications and some perspective on approaches that could expand our knowledge with respect to the normal signaling mechanisms and those associated with mutations in the receptor.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Congenital Bone Marrow Failure Syndromes
- Genetic Predisposition to Disease
- Humans
- Janus Kinases/metabolism
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Neutrophilic, Chronic/etiology
- Leukemia, Neutrophilic, Chronic/metabolism
- MAP Kinase Signaling System
- Mutation
- Neutropenia/congenital
- Neutropenia/etiology
- Neutropenia/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Granulocyte Colony-Stimulating Factor/chemistry
- Receptors, Granulocyte Colony-Stimulating Factor/genetics
- Receptors, Granulocyte Colony-Stimulating Factor/metabolism
- STAT Transcription Factors/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Pankaj Dwivedi
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
6
|
Nai W, Threapleton D, Lu J, Zhang K, Wu H, Fu Y, Wang Y, Ou Z, Shan L, Ding Y, Yu Y, Dai M. Identification of novel genes and pathways in carotid atheroma using integrated bioinformatic methods. Sci Rep 2016; 6:18764. [PMID: 26742467 PMCID: PMC4705461 DOI: 10.1038/srep18764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 11/26/2015] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular events and its molecular mechanism urgently needs to be clarified. In our study, atheromatous plaques (ATH) and macroscopically intact tissue (MIT) sampled from 32 patients were compared and an integrated series of bioinformatic microarray analyses were used to identify altered genes and pathways. Our work showed 816 genes were differentially expressed between ATH and MIT, including 443 that were up-regulated and 373 that were down-regulated in ATH tissues. GO functional-enrichment analysis for differentially expressed genes (DEGs) indicated that genes related to the "immune response" and "muscle contraction" were altered in ATHs. KEGG pathway-enrichment analysis showed that up-regulated DEGs were significantly enriched in the "FcεRI-mediated signaling pathway", while down-regulated genes were significantly enriched in the "transforming growth factor-β signaling pathway". Protein-protein interaction network and module analysis demonstrated that VAV1, SYK, LYN and PTPN6 may play critical roles in the network. Additionally, similar observations were seen in a validation study where SYK, LYN and PTPN6 were markedly elevated in ATH. All in all, identification of these genes and pathways not only provides new insights into the pathogenesis of atherosclerosis, but may also aid in the development of prognostic and therapeutic biomarkers for advanced atheroma.
Collapse
Affiliation(s)
- Wenqing Nai
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Diane Threapleton
- Division of Epidemiology, School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Jingbo Lu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kewei Zhang
- Department of Vascular Surgery, People's hospital of Henan province, Zhengzhou university, Zhengzhou 450003, Henan, China
| | - Hongyuan Wu
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - You Fu
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuanyuan Wang
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zejin Ou
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lanlan Shan
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yan Ding
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Meng Dai
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
7
|
Chintala H, Krupska I, Yan L, Lau L, Grant M, Chaqour B. The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling. Development 2015; 142:2364-74. [PMID: 26002917 DOI: 10.1242/dev.121913] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022]
Abstract
Physiological angiogenesis depends on the highly coordinated actions of multiple angiogenic regulators. CCN1 is a secreted cysteine-rich and integrin-binding matricellular protein required for proper cardiovascular development. However, our understanding of the cellular origins and activities of this molecule is incomplete. Here, we show that CCN1 is predominantly expressed in angiogenic endothelial cells (ECs) at the leading front of actively growing vessels in the mouse retina. Endothelial deletion of CCN1 in mice using a Cre-Lox system is associated with EC hyperplasia, loss of pericyte coverage and formation of dense retinal vascular networks lacking the normal hierarchical arrangement of arterioles, capillaries and venules. CCN1 is a product of an immediate-early gene that is transcriptionally induced in ECs in response to stimulation by vascular endothelial growth factor (VEGF). We found that CCN1 activity is integrated with VEGF receptor 2 (VEGF-R2) activation and downstream signaling pathways required for tubular network formation. CCN1-integrin binding increased the expression of and association between Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) and VEGF-R2, which leads to rapid dephosphorylation of VEGF-R2 tyrosine, thus preventing EC hyperproliferation. Predictably, CCN1 further brings receptors/signaling molecules into proximity that are otherwise spatially separated. Furthermore, CCN1 induces integrin-dependent Notch activation in cultured ECs, and its targeted gene inactivation in vivo alters Notch-dependent vascular specification and remodeling, suggesting that functional levels of Notch signaling requires CCN1 activity. These data highlight novel functions of CCN1 as a naturally optimized molecule, fine-controlling key processes in physiological angiogenesis and safeguarding against aberrant angiogenic responses.
Collapse
Affiliation(s)
- Hemabindu Chintala
- State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Izabela Krupska
- State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Lulu Yan
- State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Lester Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL 60607, USA
| | - Maria Grant
- Departments of Ophthalmology and Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brahim Chaqour
- State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
8
|
Ravi D, Bhalla S, Gartenhaus RB, Crombie J, Kandela I, Sharma J, Mazar A, Evens AM. The novel organic arsenical darinaparsin induces MAPK-mediated and SHP1-dependent cell death in T-cell lymphoma and Hodgkin lymphoma cells and human xenograft models. Clin Cancer Res 2014; 20:6023-33. [PMID: 25316819 DOI: 10.1158/1078-0432.ccr-14-1532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Darinaparsin (Zio-101) is a novel organic arsenical compound with encouraging clinical activity in relapsed/refractory T-cell lymphoma (TCL) and Hodgkin lymphoma (HL); however, little is known about its mechanism of action. EXPERIMENTAL DESIGN TCL cell lines (Jurkat, Hut78, and HH) and HL cell lines (L428, L540, and L1236) were examined for in vitro cell death by MTT assay and Annexin V-based flow cytometry. Jurkat and L540-derived xenografts in SCID mice were examined for in vivo tumor inhibition and survival. Biologic effects of darinaparsin on the MAPK pathway were investigated using pharmacologic inhibitors, RNAi and transient transfection for overexpression for SHP1 and MEK. RESULTS Darinaparsin treatment resulted in time- and dose-dependent cytotoxicity and apoptosis in all TCL and HL cell lines. In addition, darinaparsin had more rapid, higher, and sustained intracellular arsenic levels compared with arsenic trioxide via mass spectrometry. In vivo experiments with Jurkat (TCL) and L540 (HL)-derived lymphoma xenografts showed significant inhibition of tumor growth and improved survival in darinaparsin-treated SCID mice. Biologically, darinaparsin caused phosphorylation of ERK (and relevant downstream substrates) primarily by decreasing the inhibitory SHP1 phosphatase and coimmunoprecipitation showed significant ERK/SHP1 interaction. Furthermore, ERK shRNA knockdown or constitutive overexpression of SHP1 resulted in increased apoptosis, whereas cotreatment with pharmacologic MEK inhibitors resulted in synergistic cell death. Conversely, SHP1 blockade (via pharmacologic inhibition or RNAi) and MEK constitutive activation decreased darinaparsin-related cell death. CONCLUSIONS Altogether, these data show that darinaparsin is highly active in HL and TCL and its activity is dependent primarily on MAPK mechanisms.
Collapse
Affiliation(s)
- Dashnamoorthy Ravi
- Molecular Oncology Research Institute and Division of Hematology Oncology, Tufts Medical Center, Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
| | - Savita Bhalla
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ronald B Gartenhaus
- Marlene and Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland
| | | | - Irawati Kandela
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Jaya Sharma
- Molecular Oncology Research Institute and Division of Hematology Oncology, Tufts Medical Center, Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
| | - Andrew Mazar
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois. Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois
| | - Andrew M Evens
- Molecular Oncology Research Institute and Division of Hematology Oncology, Tufts Medical Center, Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
9
|
Zhou X, Wang H, Koles NL, Zhang A, Aronson NE. Leishmania infantum-chagasi activates SHP-1 and reduces NFAT5/TonEBP activity in the mouse kidney inner medulla. Am J Physiol Renal Physiol 2014; 307:F516-24. [PMID: 24990897 DOI: 10.1152/ajprenal.00006.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Visceral leishmaniasis patients have been reported to have a urine concentration defect. Concentration of urine by the renal inner medulla is essentially dependent on a transcription factor, NFAT5/TonEBP, because it activates expression of osmoprotective genes betaine/glycine transporter 1 (BGT1) and sodium/myo-inositol transporter (SMIT), and water channel aquaporin-2, all of which are imperative for concentrating urine. Leishmania parasites evade macrophage immune defenses by activating protein tyrosine phosphatases, among which SHP-1 is critical. We previously demonstrated that SHP-1 inhibits tonicity-dependent activation of NFAT5/TonEBP in HEK293 cells through screening a genome-wide small interfering (si) RNA library against phosphatases (Zhou X, Gallazzini M, Burg MB, Ferraris JD. Proc Natl Acad Sci USA 107: 7072-7077, 2010). We sought to examine whether Leishmania can activate SHP-1 and inhibit NFAT5/TonEBP activity in the renal inner medulla in a murine model of visceral leishmaniasis by injection of female BALB/c mice with a single intravenous dose of 5 × 10(5) L. chagasi metacyclic promastigotes. We found that SHP-1 is expressed in the kidney inner medulla. L. chagasi activates SHP-1 with an increase in stimulatory phosphorylation of SHP-1-Y536 in the region. L. chagasi reduces expression of NFAT5/TonEBP mRNA and protein as well as expression of its targeted genes: BGT1, SMIT, and aquaporin-2. The culture supernatant from L. chagasi metacyclic promastigotes increases SHP-1 protein abundance and potently inhibits NFAT5 transcriptional activity in mIMCD3 cells. However, L. chagasi in our animal model has no significant effect on urinary concentration. We conclude that L. chagasi, most likely through its secreted virulence factors, activates SHP-1 and reduces NFAT5/TonEBP gene expression, which leads to reduced NFAT5/TonEBP transcriptional activity in the kidney inner medulla.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Hong Wang
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Nancy L Koles
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Aihong Zhang
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Naomi E Aronson
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
| |
Collapse
|
10
|
Kawakami T, Xiao W. Phospholipase C-β in immune cells. Adv Biol Regul 2013; 53:249-57. [PMID: 23981313 DOI: 10.1016/j.jbior.2013.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 07/29/2013] [Accepted: 08/02/2013] [Indexed: 12/22/2022]
Abstract
Great progress has recently been made in structural and functional research of phospholipase C (PLC)-β. We now understand how PLC-β isoforms (β1-β4) are activated by GTP-bound Gαq downstream of G protein-coupled receptors. Numerous studies indicate that PLC-βs participate in the differentiation and activation of immune cells that control both the innate and adaptive immune systems. The PLC-β3 isoform also interplays with tyrosine kinase-based signaling pathways, to inhibit Stat5 activation by recruiting the protein-tyrosine phosphatase SHP-1, with which PLC-β3 and Stat5 form a multi-molecular signaling platform, named SPS complex. The SPS complex has important regulatory roles in tumorigenesis and immune cell activation.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Laboratory of Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan.
| | | |
Collapse
|