1
|
Gómez-Lombardi A, Costa BG, Gutiérrez PP, Carvajal PM, Rivera LZ, El-Deredy W. The cognitive triad network - oscillation - behaviour links individual differences in EEG theta frequency with task performance and effective connectivity. Sci Rep 2024; 14:21482. [PMID: 39277643 PMCID: PMC11401920 DOI: 10.1038/s41598-024-72229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
We reconcile two significant lines of Cognitive Neuroscience research: the relationship between the structural and functional architecture of the brain and behaviour on the one hand and the functional significance of oscillatory brain processes to behavioural performance on the other. Network neuroscience proposes that the three elements, behavioural performance, EEG oscillation frequency, and network connectivity should be tightly connected at the individual level. Young and old healthy adults were recruited as a proxy for performance variation. An auditory inhibitory control task was used to demonstrate that task performance correlates with the individual EEG frontal theta frequency. Older adults had a significantly slower theta frequency, and both theta frequency and task performance correlated with the strengths of two network connections that involve the main areas of inhibitory control and speech processing. The results suggest that both the recruited functional network and the oscillation frequency induced by the task are specific to the task, are inseparable, and mark individual differences that directly link structure and function to behaviour in health and disease.
Collapse
Affiliation(s)
- Andre Gómez-Lombardi
- Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso, Chile.
- Centro de Investigación del Desarrollo en Cognición y Lenguaje, Universidad de Valparaíso, Valparaíso, Chile.
| | - Begoña Góngora Costa
- Centro de Investigación del Desarrollo en Cognición y Lenguaje, Universidad de Valparaíso, Valparaíso, Chile
| | - Pavel Prado Gutiérrez
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Pablo Muñoz Carvajal
- Centro para la Investigación Traslacional en Neurofarmacología, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Lucía Z Rivera
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Wael El-Deredy
- Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso, Chile
- Department of Electronic Engineering, School of Engineering, Universitat de València, Valencia, Spain
| |
Collapse
|
2
|
Lévesque M, Arguin M. The oscillatory features of visual processing are altered in healthy aging. Front Psychol 2024; 15:1323493. [PMID: 38449765 PMCID: PMC10914935 DOI: 10.3389/fpsyg.2024.1323493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
The temporal features of visual processing were compared between young and elderly healthy participants in visual object and word recognition tasks using the technique of random temporal sampling. The target stimuli were additively combined with a white noise field and were exposed very briefly (200 ms). Target visibility oscillated randomly throughout exposure duration by manipulating the signal-to-noise ratio (SNR). Classification images (CIs) based on response accuracy were calculated to reflect processing efficiency according to the time elapsed since target onset and the power of SNR oscillations in the 5-55 Hz range. CIs differed substantially across groups whereas individuals of the same group largely shared crucial features such that a machine learning algorithm reached 100% accuracy in classifying the data patterns of individual participants into their proper group. These findings demonstrate altered perceptual oscillations in healthy aging and are consistent with previous investigations showing brain oscillation anomalies in the elderly.
Collapse
Affiliation(s)
- Mélanie Lévesque
- Département de Psychologie, Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Martin Arguin
- Département de Psychologie, Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Gyulai A, Körmendi J, Issa MF, Juhasz Z, Nagy Z. Event-Related Spectral Perturbation, Inter Trial Coherence, and Functional Connectivity in motor execution: A comparative EEG study of old and young subjects. Brain Behav 2023; 13:e3176. [PMID: 37624638 PMCID: PMC10454281 DOI: 10.1002/brb3.3176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION The motor-related bioelectric brain activity of healthy young and old subjects was studied to understand the effect of aging on motor execution. A visually cued finger tapping movement paradigm and high-density EEG were used to examine the time and frequency characteristics. METHODS Twenty-two young and 22 healthy elderly adults participated in the study. Repeated trials of left and right index finger movements were recorded with a 128-channel EEG. Event-Related Spectral Perturbation (ERSP), Inter Trial Coherence (ITC), and Functional Connectivity were computed and compared between the age groups. RESULTS An age-dependent theta and alpha band ERSP decrease was observed over the frontal-midline area. Decrease of beta band ERSP was found over the ipsilateral central-parietal regions. Significant ITC differences were found in the delta and theta bands between old and young subjects over the contralateral parietal-occipital areas. The spatial extent of increased ITC values was larger in old subjects. The movement execution of older subjects showed higher global efficiency in the delta and theta bands, and higher local efficiency and node strengths in the delta, theta, alpha, and beta bands. CONCLUSION As functional compensation of aging, elderly motor networks involve more nonmotor, parietal-occipital, and frontal areas, with higher global and local efficiency, node strength. ERSP and ITC changes seem to be sensitive and complementary biomarkers of age-related motor execution.
Collapse
Affiliation(s)
- Adam Gyulai
- Szentagothai Doctoral SchoolSemmelweis UniversityBudapestHungary
- Department of NeurologyUzsoki HospitalBudapestHungary
- Laboratory of Bioelectric Brain ImagingNational Mental, Neurological and Neurosurgical InstituteBudapestHungary
| | - Janos Körmendi
- Laboratory of Bioelectric Brain ImagingNational Mental, Neurological and Neurosurgical InstituteBudapestHungary
- Department of Electrical Engineering and Information SystemsUniversity of PannoniaVeszpremHungary
- Faculty of Education and Psychology, Institute of Health Promotion and Sport SciencesEötvös Loránd UniversityBudapestHungary
| | - Mohamed F. Issa
- Department of Electrical Engineering and Information SystemsUniversity of PannoniaVeszpremHungary
- Faculty of Computers and Artificial Intelligence, Department of Scientific ComputingBenha UniversityBenhaEgypt
| | - Zoltan Juhasz
- Department of Electrical Engineering and Information SystemsUniversity of PannoniaVeszpremHungary
| | - Zoltan Nagy
- Laboratory of Bioelectric Brain ImagingNational Mental, Neurological and Neurosurgical InstituteBudapestHungary
- Department of Electrical Engineering and Information SystemsUniversity of PannoniaVeszpremHungary
- Department of Vascular NeurologySemmelweis UniversityBudapestHungary
| |
Collapse
|
4
|
Frolov N, Pitsik E, Grubov V, Badarin A, Maksimenko V, Zakharov A, Kurkin S, Hramov A. Perceptual Integration Compensates for Attention Deficit in Elderly during Repetitive Auditory-Based Sensorimotor Task. SENSORS (BASEL, SWITZERLAND) 2023; 23:6420. [PMID: 37514714 PMCID: PMC10385696 DOI: 10.3390/s23146420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Sensorimotor integration (SI) brain functions that are vital for everyday life tend to decline in advanced age. At the same time, elderly people preserve a moderate level of neuroplasticity, which allows the brain's functionality to be maintained and slows down the process of neuronal degradation. Hence, it is important to understand which aspects of SI are modifiable in healthy old age. The current study focuses on an auditory-based SI task and explores: (i) if the repetition of such a task can modify neural activity associated with SI, and (ii) if this effect is different in young and healthy old age. A group of healthy older subjects and young controls underwent an assessment of the whole-brain electroencephalography (EEG) while repetitively executing a motor task cued by the auditory signal. Using EEG spectral power and functional connectivity analyses, we observed a differential age-related modulation of theta activity throughout the repetition of the SI task. Growth of the anterior stimulus-related theta oscillations accompanied by enhanced right-lateralized frontotemporal phase-locking was found in elderly adults. Their young counterparts demonstrated a progressive increase in prestimulus occipital theta power. Our results suggest that the short-term repetition of the auditory-based SI task modulates sensory processing in the elderly. Older participants most likely progressively improve perceptual integration rather than attention-driven processing compared to their younger counterparts.
Collapse
Affiliation(s)
- Nikita Frolov
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Elena Pitsik
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Vadim Grubov
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Artem Badarin
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Vladimir Maksimenko
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Alexander Zakharov
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Semen Kurkin
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Alexander Hramov
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| |
Collapse
|
5
|
Roy B, Malviya L, Kumar R, Mal S, Kumar A, Bhowmik T, Hu JW. Hybrid Deep Learning Approach for Stress Detection Using Decomposed EEG Signals. Diagnostics (Basel) 2023; 13:diagnostics13111936. [PMID: 37296788 DOI: 10.3390/diagnostics13111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Stress has an impact, not only on a person's physical health, but also on the ability to perform at the workplace in daily life. The well-established relation between psychological stress and its pathogeneses highlights the need for detecting psychological stress early, in order to prevent disease advancement and to save human lives. Electroencephalography (EEG) signal recording tools are widely used to collect these psychological signals/brain rhythms in the form of electric waves. The aim of the current research was to apply automatic feature extraction to decomposed multichannel EEG recordings, in order to efficiently detect psychological stress. The traditional deep learning techniques, namely the convolution neural network (CNN), long short-term memory (LSTM), bidirectional long short-term memory (BiLSTM), gated recurrent unit (GRU) and recurrent neural network (RNN) models, have been frequently used for stress detection. A hybrid combination of these techniques may provide improved performance, and can handle long-term dependencies in non-linear brain signals. Therefore, this study proposed an integration of deep learning models, called DWT-based CNN, BiLSTM, and two layers of a GRU network, to extract features and classify stress levels. Discrete wavelet transform (DWT) analysis was used to remove the non-linearity and non-stationarity from multi-channel (14 channel) EEG recordings, and to decompose them into different frequency bands. The decomposed signals were utilized for automatic feature extraction using the CNN, and the stress levels were classified using BiLSTM and two layers of GRU. This study compared five combinations of the CNN, LSTM, BiLSTM, GRU and RNN models with the proposed model. The proposed hybrid model performed better in classification accuracy compared to the other models. Therefore, hybrid combinations are appropriate for the clinical intervention and prevention of mental and physical problems.
Collapse
Affiliation(s)
- Bishwajit Roy
- Department of Computer Science Engineering-AI & ML, Siliguri Institute of Technology, Siliguri 734009, India
| | - Lokesh Malviya
- School of Computing Science and Engineering, Vellore Institute of Technology Bhopal University, Bhopal 466114, India
| | - Radhikesh Kumar
- Department of Computer Science and Engineering, National Institute of Technology, Patna 800001, India
| | - Sandip Mal
- School of Computing Science and Engineering, Vellore Institute of Technology Bhopal University, Bhopal 466114, India
| | - Amrendra Kumar
- Department of Civil Engineering, Roorkee Institute of Technology, Roorkee 247667, India
| | - Tanmay Bhowmik
- Department of Computer Science and Engineering, Pandit Deendayal Energy University, Gandhinagar 382426, India
| | - Jong Wan Hu
- Department of Civil and Environmental Engineering, Incheon National University, Incheon 22022, Republic of Korea
- Incheon Disaster Prevention Research Center, Incheon National University, Incheon 22022, Republic of Korea
| |
Collapse
|
6
|
Güntekin B, Aktürk T, Arakaki X, Bonanni L, Del Percio C, Edelmayer R, Farina F, Ferri R, Hanoğlu L, Kumar S, Lizio R, Lopez S, Murphy B, Noce G, Randall F, Sack AT, Stocchi F, Yener G, Yıldırım E, Babiloni C. Are there consistent abnormalities in event-related EEG oscillations in patients with Alzheimer's disease compared to other diseases belonging to dementia? Psychophysiology 2022; 59:e13934. [PMID: 34460957 DOI: 10.1111/psyp.13934] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 01/30/2023]
Abstract
Cerebrospinal and structural-molecular neuroimaging in-vivo biomarkers are recommended for diagnostic purposes in Alzheimer's disease (AD) and other dementias; however, they do not explain the effects of AD neuropathology on neurophysiological mechanisms underpinning cognitive processes. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association reviewed the field literature and reached consensus on the event-related electroencephalographic oscillations (EROs) that show consistent abnormalities in patients with significant cognitive deficits due to Alzheimer's, Parkinson's (PD), Lewy body (LBD), and cerebrovascular diseases. Converging evidence from oddball paradigms showed that, as compared to cognitively unimpaired (CU) older adults, AD patients had lower amplitude in widespread delta (>4 Hz) and theta (4-7 Hz) phase-locked EROs as a function of disease severity. Similar effects were also observed in PD, LBD, and/or cerebrovascular cognitive impairment patients. Non-phase-locked alpha (8-12 Hz) and beta (13-30 Hz) oscillations were abnormally reduced (event-related desynchronization, ERD) in AD patients relative to CU. However, studies on patients with other dementias remain lacking. Delta and theta phase-locked EROs during oddball tasks may be useful neurophysiological biomarkers of cognitive systems at work in heuristic and intervention clinical trials performed in AD patients, but more research is needed regarding their potential role for other dementias.
Collapse
Affiliation(s)
- Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Aktürk
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Vocational School, Program of Electroneurophysiology, Istanbul Medipol University, Istanbul, Turkey
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | | | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Francesca Farina
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | - Lütfü Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Sanjeev Kumar
- Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | - Fiona Randall
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Görsev Yener
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Ebru Yıldırım
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Vocational School, Program of Electroneurophysiology, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Babiloni
- Alzheimer's Association, Chicago, Illinois, USA
- Institute for Research and Medical Care, Hospital San Raffaele of Cassino, Cassino, Italy
| |
Collapse
|
7
|
Khurana V, Gahalawat M, Kumar P, Roy PP, Dogra DP, Scheme E, Soleymani M. A Survey on Neuromarketing Using EEG Signals. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3065200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Pavlov AN, Pitsik EN, Frolov NS, Badarin A, Pavlova ON, Hramov AE. Age-Related Distinctions in EEG Signals during Execution of Motor Tasks Characterized in Terms of Long-Range Correlations. SENSORS 2020; 20:s20205843. [PMID: 33076556 PMCID: PMC7602706 DOI: 10.3390/s20205843] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
The problem of revealing age-related distinctions in multichannel electroencephalograms (EEGs) during the execution of motor tasks in young and elderly adults is addressed herein. Based on the detrended fluctuation analysis (DFA), differences in long-range correlations are considered, emphasizing changes in the scaling exponent α. Stronger responses in elderly subjects are confirmed, including the range and rate of increase in α. Unlike elderly subjects, young adults demonstrated about 2.5 times more pronounced differences between motor task responses with the dominant and non-dominant hand. Knowledge of age-related changes in brain electrical activity is important for understanding consequences of healthy aging and distinguishing them from pathological changes associated with brain diseases. Besides diagnosing age-related effects, the potential of DFA can also be used in the field of brain–computer interfaces.
Collapse
Affiliation(s)
- Alexey N. Pavlov
- Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.N.P.); (O.N.P.)
| | - Elena N. Pitsik
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya Str. 1, 420500 Innopolis, Russia; (E.N.P.); (N.S.F.); (A.B.)
| | - Nikita S. Frolov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya Str. 1, 420500 Innopolis, Russia; (E.N.P.); (N.S.F.); (A.B.)
| | - Artem Badarin
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya Str. 1, 420500 Innopolis, Russia; (E.N.P.); (N.S.F.); (A.B.)
| | - Olga N. Pavlova
- Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.N.P.); (O.N.P.)
| | - Alexander E. Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya Str. 1, 420500 Innopolis, Russia; (E.N.P.); (N.S.F.); (A.B.)
- Lobachevsky University, 23 Gagarina Avenue, 603950 Nizhny Novgorod, Russia
- Saratov State Medical University, Bolshaya Kazachya Str. 112, 410012 Saratov, Russia
- Correspondence:
| |
Collapse
|
9
|
Frolov NS, Pitsik EN, Maksimenko VA, Grubov VV, Kiselev AR, Wang Z, Hramov AE. Age-related slowing down in the motor initiation in elderly adults. PLoS One 2020; 15:e0233942. [PMID: 32937652 PMCID: PMC7494367 DOI: 10.1371/journal.pone.0233942] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/01/2020] [Indexed: 11/19/2022] Open
Abstract
Age-related changes in the human brain functioning crucially affect the motor system, causing increased reaction time, low ability to control and execute movements, difficulties in learning new motor skills. The lifestyle and lowered daily activity of elderly adults, along with the deficit of motor and cognitive brain functions, might lead to the developed ambidexterity, i.e., the loss of dominant limb advances. Despite the broad knowledge about the changes in cortical activity directly related to the motor execution, less is known about age-related differences in the motor initiation phase. We hypothesize that the latter strongly influences the behavioral characteristics, such as reaction time, the accuracy of motor performance, etc. Here, we compare the neuronal processes underlying the motor initiation phase preceding fine motor task execution between elderly and young subjects. Based on the results of the whole-scalp sensor-level electroencephalography (EEG) analysis, we demonstrate that the age-related slowing down in the motor initiation before the dominant hand movements is accompanied by the increased theta activation within sensorimotor area and reconfiguration of the theta-band functional connectivity in elderly adults.
Collapse
Affiliation(s)
- Nikita S. Frolov
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Innopolis, The Republic of Tatarstan, Russia
- * E-mail:
| | - Elena N. Pitsik
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Innopolis, The Republic of Tatarstan, Russia
| | - Vladimir A. Maksimenko
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Innopolis, The Republic of Tatarstan, Russia
| | - Vadim V. Grubov
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Innopolis, The Republic of Tatarstan, Russia
- Saratov State Medical University, Saratov, Russia
| | | | - Zhen Wang
- Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Alexander E. Hramov
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Innopolis, The Republic of Tatarstan, Russia
- Saratov State Medical University, Saratov, Russia
| |
Collapse
|
10
|
Yıldırım E, Güntekin B, Hanoğlu L, Algun C. EEG alpha activity increased in response to transcutaneous electrical nervous stimulation in young healthy subjects but not in the healthy elderly. PeerJ 2020; 8:e8330. [PMID: 31938578 PMCID: PMC6953335 DOI: 10.7717/peerj.8330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
Transcutaneous Electrical Nerve Stimulation (TENS) is used not only in the treatment of pain but also in the examination of sensory functions. With aging, there is decreased sensitivity to somatosensory stimuli. It is essential to examine the effect of TENS application on the sensory functions in the brain by recording the spontaneous electroencephalogram (EEG) activity and the effect of aging on the sensory functions of the brain during the application. The present study aimed to investigate the effect of the application of TENS on the brain’s electrical activity and the effect of aging on the sensory functions of the brain during application of TENS. A total of 15 young (24.2 ± 3.59) and 14 elderly (65.64 ± 4.92) subjects were included in the study. Spontaneous EEG was recorded from 32 channels during TENS application. Power spectrum analysis was performed by Fast Fourier Transform in the alpha frequency band (8–13 Hz) for all subjects. Repeated measures of analysis of variance was used for statistical analysis (p < 0.05). Young subjects had increased alpha power during the TENS application and had gradually increased alpha power by increasing the current intensity of TENS (p = 0.035). Young subjects had higher alpha power than elderly subjects in the occipital and parietal locations (p = 0.073). We can, therefore, conclude that TENS indicated increased alpha activity in young subjects. Young subjects had higher alpha activity than elderly subjects in the occipital and somatosensory areas. To our knowledge, the present study is one of the first studies examining the effect of TENS on spontaneous EEG in healthy subjects. Based on the results of the present study, TENS may be used as an objective method for the examination of sensory impairments, and in the evaluative efficiency of the treatment of pain conditions.
Collapse
Affiliation(s)
- Ebru Yıldırım
- Department of Physical Therapy and Rehabilitation/Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Biophysics/School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging, and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Güntekin
- Department of Biophysics/School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging, and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- REMER, Clinical Electrophysiology, Neuroimaging, and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey.,Department of Neurology/School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Candan Algun
- Department of Physical Therapy and Rehabilitation/School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Orthesis-Prosthesis/School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
11
|
Wang B, Li P, Li D, Niu Y, Yan T, Li T, Cao R, Yan P, Guo Y, Yang W, Ren Y, Li X, Wang F, Yan T, Wu J, Zhang H, Xiang J. Increased Functional Brain Network Efficiency During Audiovisual Temporal Asynchrony Integration Task in Aging. Front Aging Neurosci 2018; 10:316. [PMID: 30356825 PMCID: PMC6189604 DOI: 10.3389/fnagi.2018.00316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/19/2018] [Indexed: 01/05/2023] Open
Abstract
Audiovisual integration significantly changes over the lifespan, but age-related functional connectivity in audiovisual temporal asynchrony integration tasks remains underexplored. In the present study, electroencephalograms (EEGs) of 27 young adults (22–25 years) and 25 old adults (61–76 years) were recorded during an audiovisual temporal asynchrony integration task with seven conditions [auditory (A), visual (V), AV, A50V, A100V, V50A and V100A]. We calculated the phase lag index (PLI)-weighted connectivity networks modulated by the audiovisual tasks and found that the PLI connections showed obvious dynamic changes after stimulus onset. In the theta (4–7 Hz) and alpha (8–13 Hz) bands, the AV and V50A conditions induced stronger functional connections and higher global and local efficiencies, reflecting a stronger audiovisual integration effect, which was attributed to the auditory information arriving at the primary auditory cortex earlier than the visual information reaching the primary visual cortex. Importantly, the functional connectivity and network efficiencies of old adults revealed higher global and local efficiencies and higher degree in both the theta and alpha bands. These larger network efficiencies indicated that old adults might experience more difficulties in attention and cognitive control during the audiovisual integration task with temporal asynchrony than young adults. There were significant associations between network efficiencies and peak time of integration only in young adults. We propose that an audiovisual task with multiple conditions might arouse the appropriate attention in young adults but would lead to a ceiling effect in old adults. Our findings provide new insights into the network topography of old adults during audiovisual integration and highlight higher functional connectivity and network efficiencies due to greater cognitive demand.
Collapse
Affiliation(s)
- Bin Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.,Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Peizhen Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Dandan Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Yan Niu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Ting Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Rui Cao
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Pengfei Yan
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Yuxiang Guo
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Weiping Yang
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China
| | - Yanna Ren
- Medical Humanities College, Guiyang University of Traditional Chinese Medicine, Guiyang, China
| | - Xinrui Li
- Suzhou North America High School, Suzhou, China
| | | | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, China.,Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China.,Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing, China
| | - Jinglong Wu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing, China.,Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Xiang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
12
|
Chan HL, Kuo PC, Cheng CY, Chen YS. Challenges and Future Perspectives on Electroencephalogram-Based Biometrics in Person Recognition. Front Neuroinform 2018; 12:66. [PMID: 30356770 PMCID: PMC6189450 DOI: 10.3389/fninf.2018.00066] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
The emergence of the digital world has greatly increased the number of accounts and passwords that users must remember. It has also increased the need for secure access to personal information in the cloud. Biometrics is one approach to person recognition, which can be used in identification as well as authentication. Among the various modalities that have been developed, electroencephalography (EEG)-based biometrics features unparalleled universality, distinctiveness and collectability, while minimizing the risk of circumvention. However, commercializing EEG-based person recognition poses a number of challenges. This article reviews the various systems proposed over the past few years with a focus on the shortcomings that have prevented wide-scale implementation, including issues pertaining to temporal stability, psychological and physiological changes, protocol design, equipment and performance evaluation. We also examine several directions for the further development of usable EEG-based recognition systems as well as the niche markets to which they could be applied. It is expected that rapid advancements in EEG instrumentation, on-device processing and machine learning techniques will lead to the emergence of commercialized person recognition systems in the near future.
Collapse
Affiliation(s)
- Hui-Ling Chan
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Po-Chih Kuo
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Yi Cheng
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Yong-Sheng Chen
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
13
|
Brokjær A, Olesen AE, Kreilgaard M, Graversen C, Gram M, Christrup LL, Dahan A, Drewes AM. Objective markers of the analgesic response to morphine in experimental pain research. J Pharmacol Toxicol Methods 2015; 73:7-14. [PMID: 25659520 DOI: 10.1016/j.vascn.2015.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 11/25/2022]
Abstract
INTRODUCTION In experimental pain research the effect of opioids is normally assessed by verbal subjective response to analgesia. However, as many confounders in pain assessment exist, objective bed-side assessment of the effect is highly warranted. Therefore, we aimed to assess the effect of morphine on three objective pharmacodynamic markers (pupil diameter, prolactin concentration and resting electroencephalography (EEG)) and compare the changes from placebo with subjective analgesia on experimental muscle pain for convergent validation. METHODS Fifteen healthy male participants received placebo or 30 mg rectal morphine at two separate sessions. At baseline and several time points after drug administration, the central effects of morphine were assessed by experimental muscle pain, pupil diameter, prolactin concentration and resting EEG. RESULTS Morphine increased tolerance to muscle pain, together with significant reductions in pupil diameter and increase in prolactin concentration (all P < 0.001). Miosis was induced simultaneously with the onset of analgesic effect 30 min after dosing, while a significant increase in prolactin concentration was seen after 45 min. The change in pupil diameter was negatively correlated to change in tolerated muscle pressure (r = -0.40, P < 0.001), whereas the increase in prolactin concentration was positively correlated (r = 0.32, P = 0.001). The effect of morphine on EEG was seen as a decrease in the relative theta (4-7.5 Hz) activity (P = 0.03), but was not significant until 120 min after dosing and did not correlate to the increase in tolerated muscle pressure (r = -0.1, P=0.43). DISCUSSION Prolactin concentration and pupil diameter showed similar temporal development, had good dynamic ranges and were sensitive to morphine. Thus, both measures proved to be sensitive measures of morphine effects. EEG may give additive information on the brain's response to pain, however more advanced analysis may be necessary. We therefore recommend using pupil diameter in studies where a simple and reliable objective measure of the morphine-induced central activation is needed.
Collapse
Affiliation(s)
- Anne Brokjær
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark.
| | - Anne Estrup Olesen
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Mads Kreilgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Carina Graversen
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark.
| | - Mikkel Gram
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark.
| | - Lona Louring Christrup
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|