1
|
Petkar S, Wanjari D, Priya V. A Comprehensive Review on High-Flow Nasal Cannula Oxygen Therapy in Critical Care: Evidence-Based Insights and Future Directions. Cureus 2024; 16:e66264. [PMID: 39238720 PMCID: PMC11375959 DOI: 10.7759/cureus.66264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
High-flow nasal cannula (HFNC) therapy has emerged as a significant advancement in respiratory support, offering a non-invasive alternative to traditional oxygen delivery methods in critical care settings. This review comprehensively evaluates HFNC therapy, focusing on its definition, historical evolution, and current clinical applications. HFNC therapy delivers humidified and heated oxygen at high flow rates through a nasal cannula, enhancing oxygenation and patient comfort. The review highlights the physiological mechanisms underlying HFNC and its efficacy in managing acute respiratory failure, chronic obstructive pulmonary disease exacerbations, and postoperative respiratory support. Key findings from clinical trials and meta-analyses are discussed, emphasizing HFNC's advantages over conventional methods, such as reduced intubation rates and shorter ICU stays. The review also addresses safety considerations, including potential risks and complications associated with HFNC therapy. Furthermore, it explores future directions for research and technological advancements aimed at optimizing HFNC use in diverse patient populations. This review aims to provide evidence-based insights to inform clinical practice and guide future investigations in respiratory therapy.
Collapse
Affiliation(s)
- Shubham Petkar
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Dnyanshree Wanjari
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vishnu Priya
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Cattaneo S, Bronco A, Bonacina D, Bonanomi E. Pneumatocele in focus: EIT's colors of the invisible. Pediatr Pulmonol 2024. [PMID: 39041907 DOI: 10.1002/ppul.27185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Affiliation(s)
- Stefano Cattaneo
- Department of Pediatric Intensive Care, ASST Papa Giovanni XXIII, Bergamo, Italy
- University of Turin, Turin, Italy
| | - Alfio Bronco
- Department of Pediatric Intensive Care, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Daniele Bonacina
- Department of Pediatric Intensive Care, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Ezio Bonanomi
- Department of Pediatric Intensive Care, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
3
|
Cui Z, Liu X, Qu H, Wang H. Technical Principles and Clinical Applications of Electrical Impedance Tomography in Pulmonary Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:4539. [PMID: 39065936 PMCID: PMC11281055 DOI: 10.3390/s24144539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Pulmonary monitoring is crucial for the diagnosis and management of respiratory conditions, especially after the epidemic of coronavirus disease. Electrical impedance tomography (EIT) is an alternative non-radioactive tomographic imaging tool for monitoring pulmonary conditions. This review proffers the current EIT technical principles and applications on pulmonary monitoring, which gives a comprehensive summary of EIT applied on the chest and encourages its extensive usage to clinical physicians. The technical principles involving EIT instrumentations and image reconstruction algorithms are explained in detail, and the conditional selection is recommended based on clinical application scenarios. For applications, specifically, the monitoring of ventilation/perfusion (V/Q) is one of the most developed EIT applications. The matching correlation of V/Q could indicate many pulmonary diseases, e.g., the acute respiratory distress syndrome, pneumothorax, pulmonary embolism, and pulmonary edema. Several recently emerging applications like lung transplantation are also briefly introduced as supplementary applications that have potential and are about to be developed in the future. In addition, the limitations, disadvantages, and developing trends of EIT are discussed, indicating that EIT will still be in a long-term development stage before large-scale clinical applications.
Collapse
Affiliation(s)
- Ziqiang Cui
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; (X.L.); (H.Q.); (H.W.)
| | | | | | | |
Collapse
|
4
|
Cappellini I, Campagnola L, Consales G. Electrical Impedance Tomography, Artificial Intelligence, and Variable Ventilation: Transforming Respiratory Monitoring and Treatment in Critical Care. J Pers Med 2024; 14:677. [PMID: 39063931 PMCID: PMC11277617 DOI: 10.3390/jpm14070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Electrical Impedance Tomography (EIT), combined with variable ventilation strategies and Artificial Intelligence (AI), is poised to revolutionize critical care by transitioning from reactive to predictive approaches. This integration aims to enhance patient outcomes through personalized interventions and real-time monitoring. METHODS this narrative review explores the principles and applications of EIT, variable ventilation, and AI in critical care. EIT impedance sensing creates dynamic images of internal physiology, aiding the management of conditions like Acute Respiratory Distress Syndrome (ARDS). Variable ventilation mimics natural breathing variability to improve lung function and minimize ventilator-induced lung injury. AI enhances EIT through advanced image reconstruction techniques, neural networks, and digital twin technology, offering more accurate diagnostics and tailored therapeutic interventions. CONCLUSIONS the confluence of EIT, variable ventilation, and AI represents a significant advancement in critical care, enabling a predictive, personalized approach. EIT provides real-time insights into lung function, guiding precise ventilation adjustments and therapeutic interventions. AI integration enhances EIT diagnostic capabilities, facilitating the development of personalized treatment plans. This synergy fosters interdisciplinary collaborations and sets the stage for innovative research, ultimately improving patient outcomes and advancing the future of critical care.
Collapse
Affiliation(s)
- Iacopo Cappellini
- Department of Critical Care, Section of Anesthesiology and Critical Care, Azienda USL Toscana Centro, Ospedale Santo Stefano, 59100 Prato, Italy; (L.C.); (G.C.)
| | | | | |
Collapse
|
5
|
Ribeiro De Santis Santiago R, Xin Y, Gaulton TG, Alcala G, León Bueno de Camargo ED, Cereda M, Britto Passos Amato M, Berra L. Lung Imaging Acquisition with Electrical Impedance Tomography: Tackling Common Pitfalls. Anesthesiology 2023; 139:329-341. [PMID: 37402247 DOI: 10.1097/aln.0000000000004613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Electrical impedance tomography is a powerful tool for lung imaging that can be employed at the bedside in multiple clinical scenarios. Diagnosing and preventing interpretation pitfalls will ensure reliable data and allow for appropriate clinical decision-making.
Collapse
Affiliation(s)
- Roberta Ribeiro De Santis Santiago
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yi Xin
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timothy G Gaulton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Glasiele Alcala
- Pulmonary Division, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
| | - Erick Dario León Bueno de Camargo
- Federal University of ABC/Engineering, Modeling and Applied Social Sciences Centre, Biomedical Engineering, São Bernardo do Campo, Brazil
| | - Maurizio Cereda
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Abbott M, Li Y, Brochard L, Zhang H. Precision Medicine Using Simultaneous Monitoring and Assessment with Imaging and Biomarkers to Manage Mechanical Ventilation in ARDS. INTENSIVE CARE RESEARCH 2023; 3:195-203. [PMID: 37664686 PMCID: PMC10471647 DOI: 10.1007/s44231-023-00045-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/24/2023] [Indexed: 09/05/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has a ~ 40% mortality rate with an increasing prevalence exacerbated by the COVID-19 pandemic. Mechanical ventilation is the primary means for life-saving support to buy time for lung healing in ARDS patients, however, it can also lead to ventilator-induced lung injury (VILI). Effective strategies to reduce or prevent VILI are necessary but are not currently delivered. Therefore, we aim at evaluating the current imaging technologies to visualize where pressure and volume being delivered to the lung during mechanical ventilation; and combining plasma biomarkers to guide management of mechanical ventilation. We searched PubMed and Medline using keywords and analyzed the literature, including both animal models and human studies, to examine the independent use of computed tomography (CT) to evaluate lung mechanics, electrical impedance tomography (EIT) to guide ventilation, ultrasound to monitor lung injury, and plasma biomarkers to indicate status of lung pathophysiology. This investigation has led to our proposal of the combination of imaging and biomarkers to precisely deliver mechanical ventilation to improve patient outcomes in ARDS.
Collapse
Affiliation(s)
- Megan Abbott
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Yuchong Li
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Laurent Brochard
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Department of Physiology, University of Toronto, Toronto, ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
7
|
Wang Y, Ping X, Chen X, Wang D. Flexible Electrodes as a Measuring System of Electrical Impedance Imaging. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1901. [PMID: 36903016 PMCID: PMC10004451 DOI: 10.3390/ma16051901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Electrical Impedance Tomography (EIT) is a detection imaging technology developed 30 years ago. When the conventional EIT measurement system is used, the electrode and the excitation measurement terminal are connected with a long wire, which is easily affected by external interference, and the measurement result is unstable. In this paper, we developed a flexible electrode device based on flexible electronics technology, which can be softly attached to the skin surface for real-time physiological monitoring. The flexible equipment includes an excitation measuring circuit and electrode, which eliminates the adverse effects of connecting long wires and improves the effectiveness of measuring signals. At the same time, the design also uses flexible electronic technology to make the system structure achieve ultra-low modulus and high tensile strength so that the electronic equipment has soft mechanical properties. Experiments have shown that when the flexible electrode is deformed, its function is completely unaffected, the measurement results remain stable, and the static and fatigue performances are satisfactory. The flexible electrode has high system accuracy and good anti-interference.
Collapse
Affiliation(s)
- Yi Wang
- College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
- Tianjin Key Laboratory of Integrated Design and On-Line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin 300222, China
| | - Xuecheng Ping
- College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
- Tianjin Key Laboratory of Integrated Design and On-Line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin 300222, China
| | - Xiaoyan Chen
- College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Di Wang
- College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
| |
Collapse
|
8
|
Roshdy A. Respiratory Monitoring During Mechanical Ventilation: The Present and the Future. J Intensive Care Med 2023; 38:407-417. [PMID: 36734248 DOI: 10.1177/08850666231153371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The increased application of mechanical ventilation, the recognition of its harms and the interest in individualization raised the need for an effective monitoring. An increasing number of monitoring tools and modalities were introduced over the past 2 decades with growing insight into asynchrony, lung and chest wall mechanics, respiratory effort and drive. They should be used in a complementary rather than a standalone way. A sound strategy can guide a reduction in adverse effects like ventilator-induced lung injury, ventilator-induced diaphragm dysfunction, patient-ventilator asynchrony and helps early weaning from the ventilator. However, the diversity, complexity, lack of expertise, and associated cost make formulating the appropriate monitoring strategy a challenge for clinicians. Most often, a big amount of data is fed to the clinicians making interpretation difficult. Therefore, it is fundamental for intensivists to be aware of the principle, advantages, and limits of each tool. This analytic review includes a simplified narrative of the commonly used basic and advanced respiratory monitors along with their limits and future prospective.
Collapse
Affiliation(s)
- Ashraf Roshdy
- Critical Care Medicine Department, Faculty of Medicine, 54562Alexandria University, Alexandria, Egypt.,Critical Care Unit, North Middlesex University Hospital, London, UK
| |
Collapse
|
9
|
Kopra J, Litonius E, Pekkarinen PT, Laitinen M, Heinonen JA, Fontanelli L, Mäkiaho TP, Skrifvars MB. Ventilation during continuous compressions or at 30:2 compression-to-ventilation ratio results in similar arterial oxygen and carbon dioxide levels in an experimental model of prolonged cardiac arrest. Intensive Care Med Exp 2023; 11:3. [PMID: 36607514 PMCID: PMC9823175 DOI: 10.1186/s40635-022-00485-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In refractory out-of-hospital cardiac arrest, transportation to hospital with continuous chest compressions (CCC) from a chest compression device and ventilation with 100% oxygen through an advanced airway is common practice. Despite this, many patients are hypoxic and hypercapnic on arrival, possibly related to suboptimal ventilation due to the counterpressure caused by the CCC. We hypothesized that a compression/ventilation ratio of 30:2 would provide better ventilation and gas exchange compared to asynchronous CCC during prolonged experimental cardiopulmonary resuscitation (CPR). METHODS We randomized 30 anaesthetized domestic swine (weight approximately 50 kg) with electrically induced ventricular fibrillation to the CCC or 30:2 group and bag-valve ventilation with a fraction of inspired oxygen (FiO2) of 100%. We started CPR after a 5-min no-flow period and continued until 40 min from the induction of ventricular fibrillation. Chest compressions were performed with a Stryker Medical LUCAS® 2 mechanical chest compression device. We collected arterial blood gas samples every 5 min during the CPR, measured ventilation distribution during the CPR using electrical impedance tomography (EIT) and analysed post-mortem computed tomography (CT) scans for differences in lung aeration status. RESULTS The median (interquartile range [IQR]) partial pressure of oxygen (PaO2) at 30 min was 110 (52-117) mmHg for the 30:2 group and 70 (40-171) mmHg for the CCC group. The median (IQR) partial pressure of carbon dioxide (PaCO2) at 30 min was 70 (45-85) mmHg for the 30:2 group and 68 (42-84) mmHg for the CCC group. No statistically significant differences between the groups in PaO2 (p = 0.40), PaCO2 (p = 0.79), lactate (p = 0.37), mean arterial pressure (MAP) (p = 0.47) or EtCO2 (p = 0.19) analysed with a linear mixed model were found. We found a deteriorating trend in PaO2, EtCO2 and MAP and rising PaCO2 and lactate levels through the intervention. There were no differences between the groups in the distribution of ventilation in the EIT data or the post-mortem CT findings. CONCLUSIONS The 30:2 and CCC protocols resulted in similar gas exchange and lung pathology in an experimental prolonged mechanical CPR model.
Collapse
Affiliation(s)
- Jukka Kopra
- grid.15485.3d0000 0000 9950 5666Department of Emergency Care and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Erik Litonius
- grid.7737.40000 0004 0410 2071Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirkka T. Pekkarinen
- grid.7737.40000 0004 0410 2071Division of Intensive Care, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Merja Laitinen
- VetCT Teleconsulting–Teleradiology Small Animal Team, Cambridge, UK
| | - Juho A. Heinonen
- grid.7737.40000 0004 0410 2071Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Luca Fontanelli
- grid.8982.b0000 0004 1762 5736Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, Unit of Anaesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Tomi P. Mäkiaho
- grid.15485.3d0000 0000 9950 5666Department of Emergency Care and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markus B. Skrifvars
- grid.15485.3d0000 0000 9950 5666Department of Emergency Care and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Emerging trends and hot spots on electrical impedance tomography extrapulmonary applications. Heliyon 2022; 8:e12458. [PMID: 36619470 PMCID: PMC9812712 DOI: 10.1016/j.heliyon.2022.e12458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
Objective Electrical impedance tomography (EIT) develops rapidly in technology and applications. Nowadays EIT is used in multiple clinical and experimental scenarios including pulmonary, brain, and tissue monitoring, etc. The present study explores the research trends and hotspots on EIT extrapulmonary application research by bibliometrics analysis. Approach Publications on EIT extrapulmonary applications between 1987 and 2021 were retrieved from the Web of Science Core Collection database. For precise screening, search strategy "electrical impedance tomography" plus "hemodynamic" or "brain" or "nerve" or "cancer" or "venous" or "vessel" or "tumor" or "veterinary" or "tissue" or "cell" or "wearable" or "application" and excluding "lung", "ventilation" "respiratory", "pulmonary", "algorithm", "current", "voltage" or "electrode" were used. CiteSpace and VOSviewer were used to analyze the publication features, collaboration, keywords co-occurrence, and co-cited reference. Main results A total of 506 articles were finally identified. The global publication numbers on extrapulmonary applications gradually increased yearly in the past 30 years. The US, UK, and China contributed most three publications concerning EIT extrapulmonary applications. "tissues", "conductivity", "model" were research hotspots, and "cutaneous melanoma", "microstructure", "diagnosis" were recent topics (Portions of this research have previously been presented in poster form). Significance Overall, EIT extrapulmonary applications bibliometrics analysis provides a unique insight into research focus, current trends, and future directions.
Collapse
|
11
|
Jiang H, Han Y, Zheng X, Fang Q. Roles of electrical impedance tomography in lung transplantation. Front Physiol 2022; 13:986422. [PMID: 36407002 PMCID: PMC9669435 DOI: 10.3389/fphys.2022.986422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Lung transplantation is the preferred treatment method for patients with end-stage pulmonary disease. However, several factors hinder the progress of lung transplantation, including donor shortages, candidate selection, and various postoperative complications. Electrical impedance tomography (EIT) is a functional imaging tool that can be used to evaluate pulmonary ventilation and perfusion at the bedside. Among patients after lung transplantation, monitoring the graft’s pulmonary function is one of the most concerning issues. The feasible application of EIT in lung transplantation has been reported over the past few years, and this technique has gained increasing interest from multidisciplinary researchers. Nevertheless, physicians still lack knowledge concerning the potential applications of EIT in lung transplantation. We present an updated review of EIT in lung transplantation donors and recipients over the past few years, and discuss the potential use of ventilation- and perfusion-monitoring-based EIT in lung transplantation.
Collapse
Affiliation(s)
| | | | - Xia Zheng
- *Correspondence: Xia Zheng, ; Qiang Fang,
| | - Qiang Fang
- *Correspondence: Xia Zheng, ; Qiang Fang,
| |
Collapse
|
12
|
Yueyi J, Jing T, Lianbing G. A structured narrative review of clinical and experimental studies of the use of different positive end-expiratory pressure levels during thoracic surgery. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:717-731. [PMID: 36181340 PMCID: PMC9629996 DOI: 10.1111/crj.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES This study aimed to present a review on the general effects of different positive end-expiratory pressure (PEEP) levels during thoracic surgery by qualitatively categorizing the effects into detrimental, beneficial, and inconclusive. DATA SOURCE Literature search of Pubmed, CNKI, and Wanfang was made to find relative articles about PEEP levels during thoracic surgery. We used the following keywords as one-lung ventilation, PEEP, and thoracic surgery. RESULTS We divide the non-individualized PEEP value into five grades, that is, less than 5, 5, 5-10, 10, and more than 10 cmH2 O, among which 5 cmH2 O is the most commonly used in clinic at present to maintain alveolar dilatation and reduce the shunt fraction and the occurrence of atelectasis, whereas individualized PEEP, adjusted by test titration or imaging method to adapt to patients' personal characteristics, can effectively ameliorate intraoperative oxygenation and obtain optimal pulmonary compliance and better indexes relating to respiratory mechanics. CONCLUSIONS Available data suggest that PEEP might play an important role in one-lung ventilation, the understanding of which will help in exploring a simple and economical method to set the appropriate PEEP level.
Collapse
Affiliation(s)
- Jiang Yueyi
- The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Tan Jing
- Department of AnesthesiologyJiangsu Cancer HospitalNanjingChina
| | - Gu Lianbing
- The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina,Department of AnesthesiologyJiangsu Cancer HospitalNanjingChina
| |
Collapse
|
13
|
Biselli PJC, Degobbi Tenorio Quirino Dos Santos Lopes F, Righetti RF, Moriya HT, Tibério IFLC, Martins MA. Lung Mechanics Over the Century: From Bench to Bedside and Back to Bench. Front Physiol 2022; 13:817263. [PMID: 35910573 PMCID: PMC9326096 DOI: 10.3389/fphys.2022.817263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Lung physiology research advanced significantly over the last 100 years. Respiratory mechanics applied to animal models of lung disease extended the knowledge of the workings of respiratory system. In human research, a better understanding of respiratory mechanics has contributed to development of mechanical ventilators. In this review, we explore the use of respiratory mechanics in basic science to investigate asthma and chronic obstructive pulmonary disease (COPD). We also discuss the use of lung mechanics in clinical care and its role on the development of modern mechanical ventilators. Additionally, we analyse some bench-developed technologies that are not in widespread use in the present but can become part of the clinical arsenal in the future. Finally, we explore some of the difficult questions that intensive care doctors still face when managing respiratory failure. Bringing back these questions to bench can help to solve them. Interaction between basic and translational science and human subject investigation can be very rewarding, as in the conceptualization of “Lung Protective Ventilation” principles. We expect this interaction to expand further generating new treatments and managing strategies for patients with respiratory disease.
Collapse
Affiliation(s)
- Paolo Jose Cesare Biselli
- Intensive Care Unit, University Hospital, University of Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Paolo Jose Cesare Biselli,
| | | | - Renato Fraga Righetti
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Hospital Sírio-Libanês, Serviço de Reabilitação, São Paulo, Brazil
| | - Henrique Takachi Moriya
- Biomedical Engineering Laboratory, Escola Politecnica, University of Sao Paulo, Sao Paulo, Brazil
| | - Iolanda Fátima Lopes Calvo Tibério
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Milton Arruda Martins
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
14
|
Dos Santos Rocha A, Diaper J, Balogh AL, Marti C, Grosgurin O, Habre W, Peták F, Südy R. Effect of body position on the redistribution of regional lung aeration during invasive and non-invasive ventilation of COVID-19 patients. Sci Rep 2022; 12:11085. [PMID: 35773299 PMCID: PMC9245873 DOI: 10.1038/s41598-022-15122-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Severe COVID-19-related acute respiratory distress syndrome (C-ARDS) requires mechanical ventilation. While this intervention is often performed in the prone position to improve oxygenation, the underlying mechanisms responsible for the improvement in respiratory function during invasive ventilation and awake prone positioning in C-ARDS have not yet been elucidated. In this prospective observational trial, we evaluated the respiratory function of C-ARDS patients while in the supine and prone positions during invasive (n = 13) or non-invasive ventilation (n = 15). The primary endpoint was the positional change in lung regional aeration, assessed with electrical impedance tomography. Secondary endpoints included parameters of ventilation and oxygenation, volumetric capnography, respiratory system mechanics and intrapulmonary shunt fraction. In comparison to the supine position, the prone position significantly increased ventilation distribution in dorsal lung zones for patients under invasive ventilation (53.3 ± 18.3% vs. 43.8 ± 12.3%, percentage of dorsal lung aeration ± standard deviation in prone and supine positions, respectively; p = 0.014); whereas, regional aeration in both positions did not change during non-invasive ventilation (36.4 ± 11.4% vs. 33.7 ± 10.1%; p = 0.43). Prone positioning significantly improved the oxygenation both during invasive and non-invasive ventilation. For invasively ventilated patients reduced intrapulmonary shunt fraction, ventilation dead space and respiratory resistance were observed in the prone position. Oxygenation is improved during non-invasive and invasive ventilation with prone positioning in patients with C-ARDS. Different mechanisms may underly this benefit during these two ventilation modalities, driven by improved distribution of lung regional aeration, intrapulmonary shunt fraction and ventilation-perfusion matching. However, the differences in the severity of C-ARDS may have biased the sensitivity of electrical impedance tomography when comparing positional changes between the protocol groups.Trial registration: ClinicalTrials.gov (NCT04359407) and Registered 24 April 2020, https://clinicaltrials.gov/ct2/show/NCT04359407 .
Collapse
Affiliation(s)
- André Dos Santos Rocha
- Unit for Anaesthesiological Investigations, Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva and University of Geneva, Rue Willy Donzé 6, 1205, Geneva, Switzerland.
| | - John Diaper
- Unit for Anaesthesiological Investigations, Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva and University of Geneva, Rue Willy Donzé 6, 1205, Geneva, Switzerland
| | - Adam L Balogh
- Unit for Anaesthesiological Investigations, Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva and University of Geneva, Rue Willy Donzé 6, 1205, Geneva, Switzerland
| | - Christophe Marti
- Department of Internal Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Olivier Grosgurin
- Department of Internal Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Walid Habre
- Unit for Anaesthesiological Investigations, Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva and University of Geneva, Rue Willy Donzé 6, 1205, Geneva, Switzerland
| | - Ferenc Peták
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Roberta Südy
- Unit for Anaesthesiological Investigations, Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva and University of Geneva, Rue Willy Donzé 6, 1205, Geneva, Switzerland
| |
Collapse
|
15
|
Ren H, Xie L, Wang Z, Tang X, Ning B, Teng T, Qian J, Wang Y, Fu L, Zhao Z, Xiang L. Comparison of Global and Regional Compliance-Guided Positive End-Expiratory Pressure Titration on Regional Lung Ventilation in Moderate-to-Severe Pediatric Acute Respiratory Distress Syndrome. Front Med (Lausanne) 2022; 9:805680. [PMID: 35677825 PMCID: PMC9167956 DOI: 10.3389/fmed.2022.805680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo investigate the difference in the positive end-expiratory pressure (PEEP) selected with chest electrical impedance tomography (EIT) and with global dynamic respiratory system compliance (Crs) in moderate-to-severe pediatric acute respiratory distress syndrome (pARDS).MethodsPatients with moderate-to-severe pARDS (PaO2/FiO2 < 200 mmHg) were retrospectively included. On the day of pARDS diagnosis, two PEEP levels were determined during the decremental PEEP titration for each individual using the best compliance (PEEPC) and EIT-based regional compliance (PEEPEIT) methods. The differences of global and regional compliance (for both gravity-dependent and non-dependent regions) under the two PEEP conditions were compared. In addition, the EIT-based global inhomogeneity index (GI), the center of ventilation (CoV), and standard deviation of regional delayed ventilation (RVDSD) were also calculated and compared.ResultsA total of 12 children with pARDS (5 with severe and 7 with moderate pARDS) were included. PEEPC and PEEPEIT were identical in 6 patients. In others, the differences were only ± 2 cm H2O (one PEEP step). There were no statistical differences in global compliance at PEEPC and PEEPEIT [28.7 (2.84–33.15) vs. 29.74 (2.84–33.47) ml/cm H2O median (IQR), p = 0.028 (the significant level after adjusted for multiple comparison was 0.017)]. Furthermore, no differences were found in regional compliances and other EIT-based parameters measuring spatial and temporal ventilation distributions.ConclusionAlthough EIT provided information on ventilation distribution, PEEP selected with the best Crs might be non-inferior to EIT-guided regional ventilation in moderate-to-severe pARDS. Further study with a large sample size is required to confirm the finding.
Collapse
Affiliation(s)
- Hong Ren
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xie
- Clinical Research Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhulin Wang
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoliao Tang
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Botao Ning
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Teng Teng
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Qian
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijun Fu
- Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Lijun Fu,
| | - Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
- Zhanqi Zhao,
| | - Long Xiang
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Neonatal, Second People’s Hospital of Kashgar, Xinjiang, China
- Long Xiang,
| |
Collapse
|