1
|
Lopez-Schenk R, Collins NL, Schenk NA, Beard DA. Integrated Functions of Cardiac Energetics, Mechanics, and Purine Nucleotide Metabolism. Compr Physiol 2023; 14:5345-5369. [PMID: 38158366 PMCID: PMC10956446 DOI: 10.1002/cphy.c230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Purine nucleotides play central roles in energy metabolism in the heart. Most fundamentally, the free energy of hydrolysis of the adenine nucleotide adenosine triphosphate (ATP) provides the thermodynamic driving force for numerous cellular processes including the actin-myosin crossbridge cycle. Perturbations to ATP supply and/or demand in the myocardium lead to changes in the homeostatic balance between purine nucleotide synthesis, degradation, and salvage, potentially affecting myocardial energetics and, consequently, myocardial mechanics. Indeed, both acute myocardial ischemia and decompensatory remodeling of the myocardium in heart failure are associated with depletion of myocardial adenine nucleotides and with impaired myocardial mechanical function. Yet there remain gaps in the understanding of mechanistic links between adenine nucleotide degradation and contractile dysfunction in heart disease. The scope of this article is to: (i) review current knowledge of the pathways of purine nucleotide depletion and salvage in acute ischemia and in chronic heart disease; (ii) review hypothesized mechanisms linking myocardial mechanics and energetics with myocardial adenine nucleotide regulation; and (iii) highlight potential targets for treating myocardial metabolic and mechanical dysfunction associated with these pathways. It is hypothesized that an imbalance in the degradation, salvage, and synthesis of adenine nucleotides leads to a net loss of adenine nucleotides in both acute ischemia and under chronic high-demand conditions associated with the development of heart failure. This reduction in adenine nucleotide levels results in reduced myocardial ATP and increased myocardial inorganic phosphate. Both of these changes have the potential to directly impact tension development and mechanical work at the cellular level. © 2024 American Physiological Society. Compr Physiol 14:5345-5369, 2024.
Collapse
Affiliation(s)
- Rachel Lopez-Schenk
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Collins
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah A Schenk
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel A Beard
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Johnson TA, Jinnah HA, Kamatani N. Shortage of Cellular ATP as a Cause of Diseases and Strategies to Enhance ATP. Front Pharmacol 2019; 10:98. [PMID: 30837873 PMCID: PMC6390775 DOI: 10.3389/fphar.2019.00098] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
Germline mutations in cellular-energy associated genes have been shown to lead to various monogenic disorders. Notably, mitochondrial disorders often impact skeletal muscle, brain, liver, heart, and kidneys, which are the body’s top energy-consuming organs. However, energy-related dysfunctions have not been widely seen as causes of common diseases, although evidence points to such a link for certain disorders. During acute energy consumption, like extreme exercise, cells increase the favorability of the adenylate kinase reaction 2-ADP -> ATP+AMP by AMP deaminase degrading AMP to IMP, which further degrades to inosine and then to purines hypoxanthine -> xanthine -> urate. Thus, increased blood urate levels may act as a barometer of extreme energy consumption. AMP deaminase deficient subjects experience some negative effects like decreased muscle power output, but also positive effects such as decreased diabetes and improved prognosis for chronic heart failure patients. That may reflect decreased energy consumption from maintaining the pool of IMP for salvage to AMP and then ATP, since de novo IMP synthesis requires burning seven ATPs. Similarly, beneficial effects have been seen in heart, skeletal muscle, or brain after treatment with allopurinol or febuxostat to inhibit xanthine oxidoreductase, which catalyzes hypoxanthine -> xanthine and xanthine -> urate reactions. Some disorders of those organs may reflect dysfunction in energy-consumption/production, and the observed beneficial effects related to reinforcement of ATP re-synthesis due to increased hypoxanthine levels in the blood and tissues. Recent clinical studies indicated that treatment with xanthine oxidoreductase inhibitors plus inosine had the strongest impact for increasing the pool of salvageable purines and leading to increased ATP levels in humans, thereby suggesting that this combination is more beneficial than a xanthine oxidoreductase inhibitor alone to treat disorders with ATP deficiency.
Collapse
Affiliation(s)
| | - H A Jinnah
- Departments of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | | |
Collapse
|
3
|
Feng AF, Liu ZH, Zhou SL, Zhao SY, Zhu YX, Wang HX. Effects of AMPD1 gene C34T polymorphism on cardiac index, blood pressure and prognosis in patients with cardiovascular diseases: a meta-analysis. BMC Cardiovasc Disord 2017; 17:174. [PMID: 28673246 PMCID: PMC5496365 DOI: 10.1186/s12872-017-0608-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/22/2017] [Indexed: 04/21/2023] Open
Abstract
Background The meta-analysis was aimed to evaluate the effects of AMPD1 gene C34T polymorphism on cardiac function indexes, blood pressure and prognosis in patients with cardiovascular diseases (CVD). Methods Eligible studies were retrieved through a comprehensive search of electronic databases and manual search. Then the high-quality studies met the rigorous inclusion and exclusion criteria, as well as related to the subject was selected for the study. Comprehensive data analyses were conducted using STATA software 12.0. Results The study results revealed that CVD patients with CT + TT genotype of AMPD1 C34T polymorphism presented elevated left ventricular ejection fraction (LVEF) (%) and reduced left ventricular end diastolic dimension (LVEDD) (mm) as compared with CC genotype, moreover, the subgroup analysis found that the LVEF (%) was markedly higher in heart failure (HF) patients carrying CT + TT genotype than CC genotype. Besides, the systolic blood pressure (SBP) (mmHg) in CVD patients with CT + TT genotype was obviously decreased in contrast with the CC genotype. Patients suffered from HF with different genotypes (CT + TT and CC) of AMPD1 C34T polymorphism exhibited no significant differences in total survival rate and cardiac survival rate. Conclusions Our current meta-analysis indicated that the T allele of AMPD1 gene C34T polymorphism may be correlated with LVEF, LVEDD and SBP, which plays a protective role in the cardiac functions and blood pressure in CVD patients, but had no effects on total survival rate and cardiac survival rate for HF.
Collapse
Affiliation(s)
- Ai-Fang Feng
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Zhong-Hui Liu
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Shu-Long Zhou
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Shi-Yuan Zhao
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Yan-Xin Zhu
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Huai-Xin Wang
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China.
| |
Collapse
|
4
|
Guo M, Guo G, Ji X. Genetic polymorphisms associated with heart failure: A literature review. J Int Med Res 2016; 44:15-29. [PMID: 26769713 PMCID: PMC5536573 DOI: 10.1177/0300060515604755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
Objective To review possible associations reported between genetic variants and the risk, therapeutic response and prognosis of heart failure. Methods Electronic databases (PubMed, Web of Science and CNKI) were systematically searched for relevant papers, published between January 1995 and February 2015. Results Eighty-two articles covering 29 genes and 39 polymorphisms were identified. Conclusion Genetic association studies of heart failure have been highly controversial. There may be interaction or synergism of several genetic variants that together result in the ultimate pathological phenotype for heart failure.
Collapse
Affiliation(s)
- Mengqi Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Guanlun Guo
- Hubei Key Laboratory of Advanced Technology of Automotive Components, School of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Xiaoping Ji
- Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
5
|
Feldman AM, She L, McNamara DM, Mann DL, Bristow MR, Maisel AS, Wagner DR, Andersson B, Chiariello L, Hayward CS, Hendry P, Parker JD, Racine N, Selzman CH, Senni M, Stepinska J, Zembala M, Rouleau J, Velazquez EJ, Lee KL. Genetic variants are not associated with outcome in patients with coronary artery disease and left ventricular dysfunction: results of the Genetic Substudy of the Surgical Treatment for Ischemic Heart Failure (STICH) trials. Cardiology 2015; 130:69-81. [PMID: 25592552 DOI: 10.1159/000368221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVES AND BACKGROUND We evaluated the ability of 23 genetic variants to provide prognostic information in patients enrolled in the Genetic Substudy of the Surgical Treatment for Ischemic Heart Failure (STICH) trials. METHODS Patients assigned to STICH Hypothesis 1 were randomized to medical therapy with or without coronary artery bypass grafting (CABG). Those assigned to STICH Hypothesis 2 were randomized to CABG or CABG with left ventricular reconstruction. RESULTS In patients assigned to STICH Hypothesis 2 (n = 714), no genetic variant met the prespecified Bonferroni-adjusted threshold for statistical significance (p < 0.002); however, several variants met nominal prognostic significance: variants in the β2-adrenergic receptor gene (β2-AR Gln27Glu) and in the A1-adenosine receptor gene (A1-717 T/G) were associated with an increased risk of a subject dying or being hospitalized for a cardiac problem (p = 0.027 and 0.031, respectively). These relationships remained nominally significant even after multivariable adjustment for prognostic clinical variables. However, none of the 23 genetic variants influenced all-cause mortality or the combination of death or cardiovascular hospitalization in the STICH Hypothesis 1 population (n = 532) by either univariate or multivariable analysis. CONCLUSION We were unable to identify the predictive genotypes in optimally treated patients in these two ischemic heart failure populations.
Collapse
Affiliation(s)
- Arthur M Feldman
- Department of Medicine, Temple University School of Medicine, Philadelphia, Pa., USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Smolenski RT, Rybakowska I, Turyn J, Romaszko P, Zabielska M, Taegtmeyer A, Słomińska EM, Kaletha KK, Barton PJR. AMP deaminase 1 gene polymorphism and heart disease-a genetic association that highlights new treatment. Cardiovasc Drugs Ther 2014; 28:183-9. [PMID: 24431031 PMCID: PMC3955129 DOI: 10.1007/s10557-013-6506-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Nucleotide metabolism and signalling is directly linked to myocardial function. Therefore analysis how diversity of genes coding nucleotide metabolism related proteins affects clinical progress of heart disease could provide valuable information for development of new treatments. Several studies identified that polymorphism of AMP deaminase 1 gene (AMPD1), in particular the common C34T variant of this gene was found to benefit patients with heart failure and ischemic heart disease. However, these findings were inconsistent in subsequent studies. This prompted our detailed analysis of heart transplant recipients that revealed diverse effect: improved early postoperative cardiac function associated with C34T mutation in donors, but worse 1-year survival. Our other studies on the metabolic impact of AMPD1 C34T mutation revealed decrease in AMPD activity, increased production of adenosine and de-inhibition of AMP regulated protein kinase. Thus, genetic, clinical and biochemical studies revealed that while long term attenuation of AMPD activity could be deleterious, transient inhibition of AMPD activity before acute cardiac injury is protective. We suggest therefore that pharmacological inhibition of AMP deaminase before transient ischemic event such as during ischemic heart disease or cardiac surgery could provide therapeutic benefit.
Collapse
Affiliation(s)
- Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland,
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Filigheddu F. Genetic prediction of heart failure incidence, prognosis and beta-blocker response. Mol Diagn Ther 2013; 17:205-19. [PMID: 23592012 DOI: 10.1007/s40291-013-0035-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heart failure (HF) is a widespread syndrome due to left ventricular dysfunction with high mortality, morbidity and health-care costs. Beta-blockers, together with diuretics and ACE-inhibitors or angiotensin receptor blockers, are a cornerstone of HF therapy, as they reduce mortality and morbidity. Nevertheless, their efficacy varies among patients, and genetics is likely to be one of the modifying factors. In this article, literature on the role of candidate genes on the development of HF, its prognosis and pharmacogenomics of β-blockers in patients with HF is reviewed. The available findings do not support, at the present time, a role for genetic tests in the treatment of HF. More large-scale genome-wide studies with adequate methodology and statistical analysis are required before considering genetic tailoring of HF therapy in patients with systolic HF.
Collapse
Affiliation(s)
- Fabiana Filigheddu
- Department of Clinical and Experimental Medicine, University of Sassari, Viale S.Pietro 8, 07100 Sassari, Italy.
| |
Collapse
|
8
|
Toufan M, Shahvalizadeh R, Khalili M. Myocardial infarction in a patient with left ventricular noncompaction: a case report. Int J Gen Med 2012; 5:661-5. [PMID: 22924011 PMCID: PMC3422902 DOI: 10.2147/ijgm.s28902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We describe a 73-year-old male patient with left ventricular noncompaction (LVNC) who was diagnosed with acute myocardial infarction (MI), three-vessel coronary artery disease, a fresh intraventricular thrombus, and mitral regurgitation. He was treated with full anticoagulant therapy, coronary artery bypass grafting, and mitral valve repair. This case adds to a small but growing literature showing association between LVNC and MI and/or coronary artery disease. We suggest that patients with LVNC could be considered at heightened risk for MI, and the two conditions might have a common genetic underpinning in some cases.
Collapse
Affiliation(s)
- Mehrnoush Toufan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
9
|
AMPD1 gene mutations are associated with obesity and diabetes in Polish patients with cardiovascular diseases. J Appl Genet 2010; 52:67-76. [PMID: 21108053 PMCID: PMC3026686 DOI: 10.1007/s13353-010-0009-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 07/02/2010] [Accepted: 07/27/2010] [Indexed: 11/24/2022]
Abstract
Previous studies showed an association of the common functional polymorphism (C34T, Gln12Stop) in the adenosine monophosphate deaminase-1 (AMPD1) gene with survival in heart failure (HF) and/or coronary artery disease (CAD). The aim of the study was to search for other mutations in selected regions of the AMPD1 gene in Polish CAD and HF patients, and to analyze their associations with obesity and diabetes. Exons 2, 3, 5, and 7 of AMPD1 were scanned for mutations in 97 patients with CAD without HF (CAD+ HF−), 104 patients with HF (HF+), and 200 newborns from North-Western Poland using denaturing high-performance liquid chromatography (DHPLC), polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), and direct sequencing. Frequencies of AMPD1 C34T mutation, as well as novel A99G, G512A, IVS4-6delT, and C784T sequence alterations, were similar in the three groups, but 860T mutated allele was less frequent in the combined CAD+ HF− and HF+ groups than in the controls (1.7% vs. 4.3%, p = 0.040). Heterozygous 34CT genotype was associated with lower (odds ratio [OR] = 0.32, 95% confidence interval [CI] = 0.13–0.81) and 860AT with higher (OR = 13.7, 95%CI = 1.6–118) prevalence of diabetes or hyperglycemia in relation to wild-type homozygotes. Abdominal obesity was more frequent in 860AT patients than in wild-type homozygotes and 34CT heterozygotes (86% vs. 40% vs. 29%, p < 0.05). Nine genes containing polymorphisms linked with AMPD1 C34T mutation were found in the HapMap database. AMPD1 C34T nonsense mutation is associated with reduced prevalence of diabetes and obesity in patients with CAD or HF, but A860T substitution seems to exert opposite metabolic effects and should always be accounted for in the studies of the AMPD1 genotype.
Collapse
|
10
|
Safranow K, Czyzycka E, Binczak‐Kuleta A, Rzeuski R, Skowronek J, Wojtarowicz A, Jakubowska K, Olszewska M, Loniewska B, Kaliszczak R, Kornacewicz‐Jach Z, Ciechanowicz A, Chlubek D. Association of C34TAMPD1gene polymorphism with features of metabolic syndrome in patients with coronary artery disease or heart failure. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:102-12. [DOI: 10.1080/00365510802430964] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Palmer BR, Devereaux CL, Dhamrait SS, Mocatta TJ, Pilbrow AP, Frampton CM, Skelton L, Yandle TG, Winterbourn CC, Richards AM, Montgomery HE, Cameron VA. The common G-866A polymorphism of the UCP2 gene and survival in diabetic patients following myocardial infarction. Cardiovasc Diabetol 2009; 8:31. [PMID: 19527523 PMCID: PMC2702310 DOI: 10.1186/1475-2840-8-31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 06/15/2009] [Indexed: 01/08/2023] Open
Abstract
Background A variant in the promoter of the human uncoupling protein 2 (UCP2) gene, the G-866A polymorphism, has been associated with future risk of coronary heart disease events, in those devoid of traditional risk factors and in those suffering from diabetes. We thus examined the impact of the G-866A polymorphism on 5-year survival in a cohort of 901 post-myocardial infarction patients, and the impact of type-2 diabetes on this relationship. The association of UCP2 with baseline biochemical and hormonal measurements, including levels of the inflammatory marker myeloperoxidase, was also examined. Methods UCP2 G-866A genotypes were determined using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) protocol. Myeloperoxidase levels were measured in plasma samples taken from 419 cohort patients 24–96 hours after admission. Results Genotypes were obtained for 901 patients with genotype frequencies AA 15.5%, GA 45.5%, and GG 39.0%. Genotype was not associated with survival in the overall cohort (mortality: AA 15.6%, GA 16.8%, GG 19.4%, p = 0.541). However, amongst diabetics, AA and GA genotype groups had significantly worse survival than GG diabetic patients (p < 0.05) with an attributable risk of 23.3% and 18.7% for those of AA and GA genotype respectively. Multivariate analysis using a Cox proportional hazards model confirmed that the interaction of diabetes with genotype was significantly predictive of survival (p = 0.031). In the cohort's diabetic subgroup AA/GA patients had higher myeloperoxidase levels than their GG counterparts (GA/AA, n = 51, 63.9 ± 5.23; GG, n = 34, 49.1 ± 3.72 ng/ml, p = 0.041). Further analysis showed that this phenomenon was confined to male patients (GA/AA, n = 36, 64.3 ± 6.23; GG, n = 29, 44.9 ± 3.72 ng/ml, p = 0.015). Conclusion Diabetic patients in this post-myocardial infarction cohort with UCP2 -866 AA/GA genotype have poorer survival and higher myeloperoxidase levels than their GG counterparts.
Collapse
Affiliation(s)
- Barry R Palmer
- Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ten recently identified associations between nsSNPs and colorectal cancer could not be replicated in German families. Cancer Lett 2008; 271:153-7. [PMID: 18619730 DOI: 10.1016/j.canlet.2008.05.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 02/20/2008] [Accepted: 05/29/2008] [Indexed: 12/31/2022]
Abstract
Ten non-synonymous single nucleotide polymorphisms (nsSNPs), which were recently associated with colorectal cancer risk in a comprehensive, array based study (AKAP9 M463I, DKK3 G335R, AMPD1 Q12X, LIPC L356F, PSMB9 V32I, THBS1 N700S, CA6 S90G, ASCC3 C1995S, DHX36 S416C and CPA4 G303C) were re-evaluated in the present study based on 626 German familial non-HNPCC colorectal cancer patients and 736 healthy controls. No associations of any of the 10 nsSNPs with colorectal cancer could be replicated. The combined analyses indicated that further research based on additional independent samples is required.
Collapse
|
13
|
Littlejohn MD, Palmer BR, Richards AM, Frampton CM, Pilbrow AP, Troughton RW, Cameron VA, Kennedy MA. Ile164 variant of beta2-adrenoceptor does not influence outcome in heart failure but may interact with beta blocker treatment. Eur J Heart Fail 2008; 10:55-9. [PMID: 18068431 DOI: 10.1016/j.ejheart.2007.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 09/13/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND The Ile164 variant of the beta2-adrenoceptor has been shown to alter cardiovascular phenotypes and adversely affect survival in heart failure patients. AIMS We aimed to replicate this observation by genotyping a cohort of 451 heart failure patients for the Ile164 polymorphism. METHODS Patient outcome was recorded over a median follow-up period of 3.09 years, and genotypes were derived by multiplex amplification refractory mutation system PCR. RESULTS Genotypes were obtained for 443 patients, and 3.2% of these (14 patients) were heterozygous for the Ile164 SNP. Demographic data, cardiac function and neurohormonal profiles did not differ between genotype groups. Ile164 genotype did not significantly affect survival in this cohort (Thr164 homozygotes 48.9%, Ile164 heterozygous 42.9%, p=0.66), although multivariate analysis suggested that beta-blocker treatment may negatively impact survival in the heterozygote group. CONCLUSION This study suggests that the Ile164 polymorphism of the beta2-adrenoceptor does not have a major impact on outcome in individuals with heart failure, although it's potential interaction with beta-blockers requires further examination.
Collapse
Affiliation(s)
- Mathew D Littlejohn
- Department of Pathology and Carney Centre for Pharmacogenomics, University of Otago, Christchurch, PO Box 4345, Christchurch, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Palmer BR, Frampton CM, Richards AM, Cameron VA. AMPD1 gene polymorphism and survival in patients with stable congestive heart failure. Am Heart J 2007; 153:e13. [PMID: 17452134 DOI: 10.1016/j.ahj.2007.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
de Groote P, Mouquet F, Dallongeville J, Lamblin N, Bauters C. The impact of the AMPD1 gene polymorphism on exercise capacity, other prognostic parameters, and survival in patients with stable congestive heart failure. A study on 686 consecutive patients. Am Heart J 2007; 153:e15. [PMID: 17452135 DOI: 10.1016/j.ahj.2007.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|