1
|
Aly AH, Mokadam NA. New Directions in Coronary Revascularization for Refractory Angina: Gene Therapy and the Lizard Heart. Semin Thorac Cardiovasc Surg 2024:S1043-0679(24)00113-8. [PMID: 39672522 DOI: 10.1053/j.semtcvs.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/09/2024] [Accepted: 11/16/2024] [Indexed: 12/15/2024]
Abstract
Refractory angina is a debilitating disease with limited therapeutic options that is primarily caused by microvascular dysfunction and desertification. Towards addressing this unmet need, microvascular revascularization therapy has progressively evolved from the lizard heart inspired transmyocardial revascularization to precisely inducing vascular endothelial growth factor with gene therapy. Gene therapy with adenoviral vehicles or naked modified ribonucleic acid is safe and shows early signs of clinical promise but has not yet been proven effective due to gaps in optimization.
Collapse
Affiliation(s)
- Ahmed H Aly
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, Ohio
| | - Nahush A Mokadam
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
2
|
Wang X, Yang G, Li J, Meng C, Xue Z. Dynamic molecular signatures of acute myocardial infarction based on transcriptomics and metabolomics. Sci Rep 2024; 14:10175. [PMID: 38702356 PMCID: PMC11068872 DOI: 10.1038/s41598-024-60945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Acute myocardial infarction (AMI) commonly precedes ventricular remodeling, heart failure. Few dynamic molecular signatures have gained widespread acceptance in mainstream clinical testing despite the discovery of many potential candidates. These unmet needs with respect to biomarker and drug discovery of AMI necessitate a prioritization. We enrolled patients with AMI aged between 30 and 70. RNA-seq analysis was performed on the peripheral blood mononuclear cells collected from the patients at three time points: 1 day, 7 days, and 3 months after AMI. PLC/LC-MS analysis was conducted on the peripheral blood plasma collected from these patients at the same three time points. Differential genes and metabolites between groups were screened by bio-informatics methods to understand the dynamic changes of AMI in different periods. We obtained 15 transcriptional and 95 metabolite expression profiles at three time points after AMI through high-throughput sequencing. AMI-1d: enrichment analysis revealed the biological features of 1 day after AMI primarily included acute inflammatory response, elevated glycerophospholipid metabolism, and decreased protein synthesis capacity. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) might stand promising biomarkers to differentiate post-AMI stage. Anti-inflammatory therapy during the acute phase is an important direction for preventing related pathology. AMI-7d: the biological features of this stage primarily involved the initiation of cardiac fibrosis response and activation of platelet adhesion pathways. Accompanied by upregulated TGF-beta signaling pathway and ECM receptor interaction, GP5 help assess platelet activation, a potential therapeutic target to improve haemostasis. AMI-3m: the biological features of 3 months after AMI primarily showed a vascular regeneration response with VEGF signaling pathway, NOS3 and SHC2 widely activated, which holds promise for providing new therapeutic approaches for AMI. Our analysis highlights transcriptional and metabolomics signatures at different time points after MI, which deepens our understanding of the dynamic biological responses and associated molecular mechanisms that occur during cardiac repair.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Guang Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China.
| | - Chao Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Zengming Xue
- Department of Cardiology, Langfang People's Hospital, Hebei Medical University, No. 37, Xinhua Road, Langfang, 065000, China.
| |
Collapse
|
3
|
Stewart DJ, Gianchetti A, Byrnes D, Dittrich HC, Thorne B, Manza LL, Reinhardt RR. Safety and biodistribution of XC001 (encoberminogene rezmadenovec) gene therapy in rats: a potential therapy for cardiovascular diseases. Gene Ther 2024; 31:45-55. [PMID: 37592080 DOI: 10.1038/s41434-023-00416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Adenovirus-mediated gene therapy holds promise for the treatment of cardiovascular diseases such as refractory angina. However, potential concerns around immunogenicity and vector dissemination from the target injected tissue require evaluation. This study was undertaken to evaluate the safety and biodistribution of XC001, a replication-deficient adenovirus serotype 5 vector expressing multiple isoforms of human vascular endothelial growth factor (VEGF), following direct administration into normal rat myocardium. Animals received the buffer formulation or increasing doses of XC001 (1 × 107, 2.5 × 108 or 2.5 × 109 viral particles). Based on in-life parameters (general health, body weights, clinical pathology, serum cardiac troponin I, plasma VEGF, and gross necropsy), there were no findings of clinical concern. On Day 8, intramyocardial administration of XC001 was associated with dose-related, left ventricular myocardial inflammation at injection sites, resolving by Day 30. XC001 DNA was not detected in blood at any time but was present at Day 8 around the site of injection and to a much lesser extent in the spleen, liver, and lungs, persisting at low levels in the heart and spleen until at least Day 91. These findings demonstrate that intramyocardial injection of XC001 is supported for use in human studies.
Collapse
Affiliation(s)
- Duncan J Stewart
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute and the Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | | | | - Linda L Manza
- Pharmaron (San Diego) Lab Services LLC, San Diego, CA, USA
| | | |
Collapse
|
4
|
Li B, Li Y, Chen S, Wang Y, Zheng Y. VEGF mimetic peptide-conjugated nanoparticles for magnetic resonance imaging and therapy of myocardial infarction. J Control Release 2023; 360:44-56. [PMID: 37330014 DOI: 10.1016/j.jconrel.2023.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
To reduce the mortality of myocardial infarction (MI), accurate detection of the infarct and appropriate prevention against ischemia/reperfusion (I/R) induced cardiac dysfunction are highly desired. Considering that vascular endothelial growth factor (VEGF) receptors are overexpressed in the infarcted heart and VEGF mimetic peptide QK binds specifically to VEGF receptors and activates vascularization, the PEG-QK-modified, gadolinium-doped carbon dots (GCD-PEG-QK) were formulated. This research aims to investigate the magnetic resonance imaging (MRI) capability of GCD-PEG-QK on myocardial infarct and their therapeutic effect on I/R-induced myocardial injury. These multifunctional nanoparticles exhibited good colloidal stability, excellent fluorescent and magnetic property, and satisfactory biocompatibility. Intravenous injection of GCD-PEG-QK nanoparticles post myocardial I/R displayed accurate MRI of the infarct, enhanced efficacy of QK peptide on pro-angiogenesis, and amelioration of cardiac fibrosis, remodeling and dysfunction, probably via the improvement on QK's in vivo stability and MI-targeting. Collectively, the data suggested that this theranostic nanomedicine can realize precise MRI and effective therapy for acute MI in a non-invasive manner.
Collapse
Affiliation(s)
- Bing Li
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| | - Yingxu Li
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| | - Shuangling Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Povsic TJ, Henry TD, Traverse JH, Anderson RD, Answini GA, Sun BC, Arnaoutakis GJ, Boudoulas KD, Williams AR, Dittrich HC, Tarka EA, Latter DA, Ohman EM, Peterson MW, Byrnes D, Pepine CJ, DiCarli MF, Crystal RG, Rosengart TK, Mokadam NA. EXACT Trial: Results of the Phase 1 Dose-Escalation Study. Circ Cardiovasc Interv 2023; 16:e012997. [PMID: 37503661 DOI: 10.1161/circinterventions.123.012997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND New therapies are needed for patients with refractory angina. Encoberminogene rezmadenovec (XC001), a novel adenoviral-5 vector coding for all 3 major isoforms of VEGF (vascular endothelial growth factor), demonstrated enhanced local angiogenesis in preclinical models; however, the maximal tolerated dose and safety of direct epicardial administration remain unknown. METHODS In the phase 1 portion of this multicenter, open-label, single-arm, dose-escalation study, patients with refractory angina received increasing doses of encoberminogene rezmadenovec (1×109, 1×1010, 4×1010, and 1×1011 viral particles) to evaluate its safety, tolerability, and preliminary efficacy. Patients had class II to IV angina on maximally tolerated medical therapy, demonstrable ischemia on stress testing, and were angina-limited on exercise treadmill testing. Patients underwent minithoracotomy with epicardial delivery of 15 0.1-mL injections of encoberminogene rezmadenovec. The primary outcome was safety via adverse event monitoring over 6 months. Efficacy assessments included difference from baseline to months 3, 6 (primary), and 12 in total exercise duration, myocardial perfusion deficit using positron emission tomography, angina class, angina frequency, and quality of life. RESULTS From June 2, 2020 to June 25, 2021, 12 patients were enrolled into 4 dosing cohorts with 1×1011 viral particle as the highest planned dose. Seventeen serious adverse events were reported in 7 patients; none were related to study drug. Six serious adverse events in 4 patients were related to the thoracotomy, 3 non-serious adverse events were possibly related to study drug. The 2 lowest doses did not demonstrate improvements in total exercise duration, myocardial perfusion deficit, or angina frequency; however, there appeared to be improvements in all parameters with the 2 higher doses. CONCLUSIONS Epicardial delivery of encoberminogene rezmadenovec via minithoracotomy is feasible, and up to 1×1011 viral particle appears well tolerated. A dose response was observed across 4 dosing cohorts in total exercise duration, myocardial perfusion deficit, and angina class. The highest dose (1×1011 viral particle) was carried forward into phase 2. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04125732.
Collapse
Affiliation(s)
- Thomas J Povsic
- Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC (T.J.P., E.M.O.)
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH (T.D.H.)
| | - Jay H Traverse
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis (J.H.T., B.C.S.)
| | - R David Anderson
- University of Florida Heart and Vascular Center, Gainesville (R.D.A.)
| | - Geoffrey A Answini
- Division of Cardiovascular Surgery, Christ Hospital, Cincinnati, OH (G.A.A.)
| | - Benjamin C Sun
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis (J.H.T., B.C.S.)
| | - George J Arnaoutakis
- Department of Surgery, University of Florida Heart and Vascular Center, Gainesville (G.J.A.)
| | | | - Adam R Williams
- Department of Cardiovascular Surgery, Duke University Medical Center, Durham, NC (A.R.W.)
| | | | | | - David A Latter
- Department of Cardiovascular Surgery, St Michael's Hospital, University of Toronto, Ontario, Canada (D.A.L.)
| | - E Magnus Ohman
- Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC (T.J.P., E.M.O.)
| | | | - Dawn Byrnes
- XyloCor Therapeutics, Malvern, PA (H.C.D., D.B., M.W.P.)
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville (C.J.P.)
| | - Marcelo F DiCarli
- Departments of Radiology and Medicine, Brigham and Women's Hospital, Boston, MA (M.F.D.)
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York (R.G.C.)
| | - Todd K Rosengart
- Department of Surgery, Baylor College of Medicine, Houston, TX (T.K.R.)
| | - Nahush A Mokadam
- Division of Cardiac Surgery, The Ohio State Wexner Medical Center, Columbus (N.A.M.)
| |
Collapse
|
6
|
de Oliveira Laterza Ribeiro M, Correia VM, Herling de Oliveira LL, Soares PR, Scudeler TL. Evolving Diagnostic and Management Advances in Coronary Heart Disease. Life (Basel) 2023; 13:951. [PMID: 37109480 PMCID: PMC10143565 DOI: 10.3390/life13040951] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Despite considerable improvement in diagnostic modalities and therapeutic options over the last few decades, the global burden of ischemic heart disease is steadily rising, remaining a major cause of death worldwide. Thus, new strategies are needed to lessen cardiovascular events. Researchers in different areas such as biotechnology and tissue engineering have developed novel therapeutic strategies such as stem cells, nanotechnology, and robotic surgery, among others (3D printing and drugs). In addition, advances in bioengineering have led to the emergence of new diagnostic and prognostic techniques, such as quantitative flow ratio (QFR), and biomarkers for atherosclerosis. In this review, we explore novel diagnostic invasive and noninvasive modalities that allow a more detailed characterization of coronary disease. We delve into new technological revascularization procedures and pharmacological agents that target several residual cardiovascular risks, including inflammatory, thrombotic, and metabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | - Thiago Luis Scudeler
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| |
Collapse
|
7
|
Romeo FJ, Mavropoulos SA, Ishikawa K. Progress in Clinical Gene Therapy for Cardiac Disorders. Mol Diagn Ther 2023; 27:179-191. [PMID: 36641770 PMCID: PMC10023344 DOI: 10.1007/s40291-022-00632-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 01/16/2023]
Abstract
Despite significant advances in novel treatments and approaches, cardiovascular disease remains the leading cause of death globally. Gene therapy is a promising option for many diseases, including cardiovascular diseases. In the last 30 years, gene therapy has slowly proceeded towards clinical translation and recently reached US Food and Drug Administration approval for several diseases such as Leber congenital amaurosis and spinal muscular atrophy, among others. Previous attempts at developing gene therapies for cardiovascular diseases have yielded promising results in preclinical studies and early-phase clinical trials. However, larger trials failed to demonstrate consistent benefits in patients with ischemic heart disease and heart failure. In this review, we summarize the history and current status of clinical cardiac gene therapy. Starting with angiogenic gene therapy, we also cover more recent gene therapy trials for heart failure and cardiomyopathies. New programs are actively vying to be the first to get Food and Drug Administration approval for a cardiac gene therapy product by taking advantage of novel techniques.
Collapse
Affiliation(s)
- Francisco J Romeo
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, 1 Gustave L. Levy Place, Box 1014, New York, NY, 10029, USA
| | - Spyros A Mavropoulos
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, 1 Gustave L. Levy Place, Box 1014, New York, NY, 10029, USA
| | - Kiyotake Ishikawa
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, 1 Gustave L. Levy Place, Box 1014, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Weeraman D, Jones DA, Hussain M, Beirne AM, Hadyanto S, Rathod KS, Whiteford JR, Reid AE, Bourantas CV, Ylä-Herttuala S, Baumbach A, Gersh BJ, Henry TD, Mathur A. Proangiogenic Growth Factor Therapy for the Treatment of Refractory Angina: A Meta-analysis. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2023; 2:100527. [PMID: 39132540 PMCID: PMC11307391 DOI: 10.1016/j.jscai.2022.100527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 08/13/2024]
Abstract
Background Refractory angina (RFA; limiting angina despite optimal medical therapy) is a growing, global problem, with limited treatment options. Therefore, we conducted a systematic review of randomized controlled trials (RCTs) to evaluate the effect of proangiogenic growth factor therapy (in the form of vascular growth factors delivered either as recombinant proteins or gene therapy) in patients with RFA ineligible for revascularization. Methods We performed a meta-analysis (PROSPERO: CRD42018107283) of RCTs as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology. A comprehensive search of the PubMed, CENTRAL, Embase, Cochrane, ClinicalTrials.gov and Google Scholar databases, as well as scientific session abstracts, were performed. The pooled outcomes included major adverse cardiac events (MACE), mortality, myocardial perfusion, and indices of angina severity (Canadian Cardiovascular Society angina class [CCS] and exercise tolerance). A prespecified subgroup analysis was performed for delivery method, vector, and protein type. The standardized mean difference (SMD) or odds ratio (OR) was calculated to assess relevant outcomes. We assessed heterogeneity using the χ2 and I2 tests. Results We included 16 RCTs involving 1607 patients (1052 received proangiogenic growth factor therapy and 555 received a placebo or optimal medical therapy). Our analysis showed a significant decreased risk of MACE (OR, 0.72; 95% confidence interval [CI], 0.55-0.93) and significantly improved CCS class (SMD, -0.55; 95% CI, -1.10 to 0.00), but not mortality (OR, 0.66; 95% CI, 0.28-1.54) or exercise tolerance (SMD, 0.47; 95% CI, -0.14 to 1.09), in treated patients compared to those in the control group. Conclusions Proangiogenic growth factor therapy is a promising treatment option for RFA, with beneficial effects seen on MACE and CCS class. The results of ongoing trials are needed before it can be considered for clinical practice.
Collapse
Affiliation(s)
- Deshan Weeraman
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Barts National Institute for Health and Care Research Biomedical Research Centre, Barts Heart Centre & Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Daniel A. Jones
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Barts National Institute for Health and Care Research Biomedical Research Centre, Barts Heart Centre & Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Mohsin Hussain
- Barts National Institute for Health and Care Research Biomedical Research Centre, Barts Heart Centre & Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Anne-Marie Beirne
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Steven Hadyanto
- Barts National Institute for Health and Care Research Biomedical Research Centre, Barts Heart Centre & Queen Mary University of London, London, United Kingdom
| | - Krishnaraj S. Rathod
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Barts National Institute for Health and Care Research Biomedical Research Centre, Barts Heart Centre & Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - James R. Whiteford
- Centre for Microvascular Research, William Harvey Research Institute, Barts & The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Alice E. Reid
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Christos V. Bourantas
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Barts National Institute for Health and Care Research Biomedical Research Centre, Barts Heart Centre & Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | | | - Andreas Baumbach
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Barts National Institute for Health and Care Research Biomedical Research Centre, Barts Heart Centre & Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Bernard J. Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Timothy D. Henry
- The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, Ohio
| | - Anthony Mathur
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Barts National Institute for Health and Care Research Biomedical Research Centre, Barts Heart Centre & Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| |
Collapse
|
9
|
Alkhunaizi FA, Burkhoff D. Therapeutic Neovascularization for Refractory Angina-Are We Any Closer? JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2023; 2:100557. [PMID: 36875178 PMCID: PMC9980722 DOI: 10.1016/j.jscai.2022.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Klann PJ, Wang X, Elfert A, Zhang W, Köhler C, Güttsches AK, Jacobsen F, Weyen U, Roos A, Ehrke-Schulz E, Ehrhardt A, Vorgerd M, Bayer W. Seroprevalence of Binding and Neutralizing Antibodies against 39 Human Adenovirus Types in Patients with Neuromuscular Disorders. Viruses 2022; 15:79. [PMID: 36680119 PMCID: PMC9866721 DOI: 10.3390/v15010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
High pre-existing antibodies against viral vectors reduce their functionality and may lead to adverse complications. To circumvent this problem in future gene therapy approaches, we tested the seroprevalence of a large range of human adenovirus types in patients with neuromuscular disorders (NMDs) to find appropriate viral vector candidates for gene replacement therapy for NMDs. Binding and neutralizing antibodies against 39 human adenovirus types were tested in the sera of 133 patients with NMDs and 76 healthy controls aged 17-92 years. The influence of age, sex, and NMDs on antibody levels was analyzed. The seroprevalence of different adenoviruses in the cohort varied widely. The highest levels of binding antibodies were detected against HAdV-D27, -C1, -D24, -D70, -B14, -C6, -D13, -B34, and -E4, whereas the lowest reactivity was detected against HAdV-F41, -A31, -B11, -D75, -D8, -D65, -D26, -D80, and -D17. The highest neutralizing reactivity was observed against HAdV-B3, -C2, -E4, -C1, -G52, -C5, and -F41, whereas the lowest neutralizing reactivity was observed against HAdV-D74, -B34, -D73, -B37, -D48, -D13, -D75, -D8, -B35, and -B16. We detected no influence of sex and only minor differences between different age groups. Importantly, there were no significant differences between healthy controls and patients with NMDs. Our data show that patients with NMDs have very similar levels of binding and neutralizing antibodies against HAdV compared to healthy individuals, and we identified HAdV-A31, -B16, -B34, -B35, -D8, -D37, -D48, -D73, -D74, -D75, and -D80 as promising candidates for future vector development due to their low binding and neutralizing antibody prevalence.
Collapse
Affiliation(s)
- Patrick Julian Klann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Xiaoyan Wang
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Anna Elfert
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Medical Education and Research, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Cornelia Köhler
- Clinics for Pediatrics and Adolescent Medicine, University Hospital Sankt Josef, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Anne-Katrin Güttsches
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Frank Jacobsen
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Ute Weyen
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Andreas Roos
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Medical Education and Research, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Medical Education and Research, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Matthias Vorgerd
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
11
|
Williams AM, Shah NP, Rosengart T, Povsic TJ, Williams AR. Emerging role of positron emission tomography (PET) imaging in cardiac surgery. J Card Surg 2022; 37:4158-4164. [PMID: 36345705 DOI: 10.1111/jocs.16992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
Historically, structural and anatomical imaging has been the mainstay in the diagnosis and management of cardiovascular diseases. In recent years there has been a shift toward increased use of functional imaging studies, including positron emission tomography (PET). PET is a noninvasive nuclear medicine-imaging technique that uses radiotracers to generate images of a radionucleotide distribution by detecting the physiologic substrates that emit positron radionuclides. This article will focus on the applications of PET imaging for the cardiac surgeon and highlight the collaborative nature of using PET imaging for the management of complex heart disease. We present cases that demonstrate the value of using PET imaging in the diagnosis of coronary artery disease and management of complex endocarditis, and in targeted cardiovascular therapies.
Collapse
Affiliation(s)
- Aaron M Williams
- Department of Surgery, Duke University Hospital, Durham, North Carolina, USA
| | - Nishant P Shah
- Division of Cardiology, Department of Medicine, Duke University Hospital, Durham, North Carolina, USA
| | - Todd Rosengart
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas J Povsic
- Division of Cardiology, Department of Medicine, Duke University Hospital, Durham, North Carolina, USA
| | - Adam R Williams
- Department of Surgery, Duke University Hospital, Durham, North Carolina, USA
| |
Collapse
|
12
|
Analysis of the Prevalence of Binding and Neutralizing Antibodies against 39 Human Adenovirus Types in Student Cohorts Reveals Low-Prevalence Types and a Decline in Binding Antibody Levels during the SARS-CoV-2 Pandemic. J Virol 2022; 96:e0113322. [DOI: 10.1128/jvi.01133-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vectors based on human adenoviruses (HAdVs) are important for the development of novel immunizations, oncolytic therapies, and gene therapies. The use of HAdV-based vaccines against Ebola virus, the rapid adaptation of the vector technology for vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and their very good efficacy have shown the great potential of HAdV-based vaccines.
Collapse
|