1
|
Dinu M, Sofi F, Lotti S, Colombini B, Mattioli AV, Catapano AL, Casula M, Baragetti A, Wong ND, Steg PG, Ambrosio G. Effects of omega-3 fatty acids on coronary revascularization and cardiovascular events: a meta-analysis. Eur J Prev Cardiol 2024; 31:1863-1875. [PMID: 38869144 DOI: 10.1093/eurjpc/zwae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
AIMS Benefits of pharmacologic omega-3 fatty acid administration in cardiovascular prevention are controversial. Particularly, effects on coronary revascularization are unclear; also debated are specific benefits of eicosapentaenoic acid (EPA). We investigated incident coronary revascularizations, myocardial infarction (MI), stroke, heart failure (HF), unstable angina, and cardiovascular death, in subjects randomized to receive EPA or EPA + docosahexaenoic acid (EPA + DHA) vs. control. METHODS AND RESULTS Meta-analysis of randomized controlled trials (RCTs) was conducted after MEDLINE, Embase, Scopus, Web of Science, and Cochrane Library search. Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines were followed for abstracting data and assessing data quality and validity. Data were pooled using a random effects model. Eighteen RCTs with 134 144 participants (primary and secondary cardiovascular prevention) receiving DHA + EPA (n = 52 498), EPA alone (n = 14 640), or control/placebo (n = 67 006) were included. Follow-up ranged from 4.5 months to 7.4 years. Overall, compared with controls, omega-3 supplementation reduced the risk of revascularization [0.90, 95% confidence interval (CI) 0.84-0.98; P = 0.001; P-heterogeneity = 0.0002; I2 = 68%], MI (0.89, 95% CI 0.81-0.98; P = 0.02; P-heterogeneity = 0.06; I2 = 41%), and cardiovascular death (0.92, 95% CI 0.85-0.99; P = 0.02; P-heterogeneity = 0.13; I2 = 33%). Lower risk was still observed in trials where most participants (≥60%) were on statin therapy. Compared with DHA + EPA, EPA alone showed a further significant risk reduction of revascularizations (0.76, 95% CI 0.65-0.88; P = 0.0002; P-interaction = 0.005) and all outcomes except HF. CONCLUSION Omega-3 fatty acid supplementation reduced the risk of cardiovascular events and coronary revascularization, regardless of background statin use. Eicosapentaenoic acid alone produced greater benefits. The role of specific omega-3 molecules in primary vs. secondary prevention and the potential benefits of reduced revascularizations on overall health status and cost savings warrant further research.
Collapse
Affiliation(s)
- Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Unit of Clinical Nutrition, Careggi University Hospital, Florence, Italy
| | - Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Anna Vittoria Mattioli
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberico L Catapano
- IRCCS MultiMedica, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Manuela Casula
- IRCCS MultiMedica, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Andrea Baragetti
- IRCCS MultiMedica, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Nathan D Wong
- Division of Cardiology, University of California, Irvine, USA
| | - Philippe Gabriel Steg
- Université Paris-Cité, INSERM U1148, FACT French Alliance for Cardiovascular Trials, AP-HP Hopital Bichat, Paris, France
| | - Giuseppe Ambrosio
- Division of Cardiology, Center for Clinical and Translational Research-CERICLET, University of Perugia School of Medicine, Ospedale S. Maria della Misericordia, Via S. Andrea delle Fratte, 06156 Perugia, Italy
| |
Collapse
|
2
|
Koutsaliaris IK, Pantazi D, Tsouka AN, Argyropoulou O, Tellis CC, Tselepis AD. Differential Effect of Omega-3 Fatty Acids on Platelet Inhibition by Antiplatelet Drugs In Vitro. Int J Mol Sci 2024; 25:10136. [PMID: 39337620 PMCID: PMC11432081 DOI: 10.3390/ijms251810136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The omega-3 polyunsaturated fatty acids (PUFAs) Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) exert multiple cardioprotective effects, influencing inflammation, platelet activation, endothelial function and lipid metabolism, besides their well-established triglyceride lowering properties. It is not uncommon for omega-3 PUFAs to be prescribed for hypertriglyceridemia, alongside antiplatelet therapy in cardiovascular disease (CVD) patients. In this regard, we studied the effect of EPA and DHA, in combination with antiplatelet drugs, in platelet aggregation and P-selectin and αIIbβ3 membrane expression. The antiplatelet drugs aspirin and triflusal, inhibitors of cyclooxygenase-1 (COX-1); ticagrelor, an inhibitor of the receptor P2Y12; vorapaxar, an inhibitor of the PAR-1 receptor, were combined with DHA or EPA and evaluated against in vitro platelet aggregation induced by agonists arachidonic acid (AA), adenosine diphosphate (ADP) and TRAP-6. We further investigated procaspase-activating compound 1 (PAC-1) binding and P-selectin membrane expression in platelets stimulated with ADP and TRAP-6. Both DHA and EPA displayed a dose-dependent inhibitory effect on platelet aggregation induced by AA, ADP and TRAP-6. In platelet aggregation induced by AA, DHA significantly improved acetylsalicylic acid (ASA) and triflusal's inhibitory activity, while EPA enhanced the inhibitory effect of ASA. In combination with EPA, ASA and ticagrelor expressed an increased inhibitory effect towards ADP-induced platelet activation. Both fatty acids could not improve the inhibitory effect of vorapaxar on AA- and ADP-induced platelet aggregation. In the presence of EPA, all antiplatelet drugs displayed a stronger inhibitory effect towards TRAP-6-induced platelet activation. Both omega-3 PUFAs inhibited the membrane expression of αIIbβ3, though they had no effect on P-selectin expression induced by ADP or TRAP-6. The antiplatelet drugs exhibited heterogeneity regarding their effect on P-selectin and αIIbβ3 membrane expression, while both omega-3 PUFAs inhibited the membrane expression of αIIbβ3, though had no effect on P-selectin expression induced by ADP or TRAP-6. The combinatory effect of DHA and EPA with the antiplatelet drugs did not result in enhanced inhibitory activity compared to the sum of the individual effects of each component.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandros D. Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45100 Ioannina, Greece; (I.K.K.); (D.P.); (A.N.T.); (O.A.); (C.C.T.)
| |
Collapse
|
3
|
Monteiro JP, Domingues MR, Calado R. Marine Animal Co-Products-How Improving Their Use as Rich Sources of Health-Promoting Lipids Can Foster Sustainability. Mar Drugs 2024; 22:73. [PMID: 38393044 PMCID: PMC10890326 DOI: 10.3390/md22020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Michaeloudes C, Christodoulides S, Christodoulou P, Kyriakou TC, Patrikios I, Stephanou A. Variability in the Clinical Effects of the Omega-3 Polyunsaturated Fatty Acids DHA and EPA in Cardiovascular Disease-Possible Causes and Future Considerations. Nutrients 2023; 15:4830. [PMID: 38004225 PMCID: PMC10675410 DOI: 10.3390/nu15224830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular disease (CVD) that includes myocardial infarction and stroke, is the leading cause of mortality worldwide. Atherosclerosis, the primary underlying cause of CVD, can be controlled by pharmacological and dietary interventions, including n-3 polyunsaturated fatty acid (PUFA) supplementation. n-3 PUFA supplementation, primarily consisting of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has shown promise in reducing atherosclerosis by modulating risk factors, including triglyceride levels and vascular inflammation. n-3 PUFAs act by replacing pro-inflammatory fatty acid types in cell membranes and plasma lipids, by regulating transcription factor activity, and by inducing epigenetic changes. EPA and DHA regulate cellular function through shared and differential molecular mechanisms. Large clinical studies on n-3 PUFAs have reported conflicting findings, causing confusion among the public and health professionals. In this review, we discuss important factors leading to these inconsistencies, in the context of atherosclerosis, including clinical study design and the differential effects of EPA and DHA on cell function. We propose steps to improve clinical and basic experimental study design in order to improve supplement composition optimization. Finally, we propose that understanding the factors underlying the poor response to n-3 PUFAs, and the development of molecular biomarkers for predicting response may help towards a more personalized treatment.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (S.C.); (P.C.); (T.-C.K.); (I.P.); (A.S.)
| | | | | | | | | | | |
Collapse
|
5
|
Wang T, Zhang X, Zhou N, Shen Y, Li B, Chen BE, Li X. Association Between Omega-3 Fatty Acid Intake and Dyslipidemia: A Continuous Dose-Response Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2023; 12:e029512. [PMID: 37264945 PMCID: PMC10381976 DOI: 10.1161/jaha.123.029512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 06/03/2023]
Abstract
Background Previous results provide supportive but not conclusive evidence for the use of omega-3 fatty acids to reduce blood lipids and prevent events of atherosclerotic cardiovascular disease, but the strength and shape of dose-response relationships remain elusive. Methods and Results This study included 90 randomized controlled trials, reported an overall sample size of 72 598 participants, and examined the association between omega-3 fatty acid (docosahexaenoic acid, eicosapentaenoic acid, or both) intake and blood lipid changes. Random-effects 1-stage cubic spline regression models were used to study the mean dose-response association between daily omega-3 fatty acid intake and changes in blood lipids. Nonlinear associations were found in general and in most subgroups, depicted as J-shaped dose-response curves for low-/high-density lipoprotein cholesterol. However, we found evidence of an approximately linear dose-response relationship for triglyceride and non-high-density lipoprotein cholesterol among the general population and more evidently in populations with hyperlipidemia and overweight/obesity who were given medium to high doses (>2 g/d). Conclusions This dose-response meta-analysis demonstrates that combined intake of omega-3 fatty acids near linearly lowers triglyceride and non-high-density lipoprotein cholesterol. Triglyceride-lowering effects might provide supportive evidence for omega-3 fatty acid intake to prevent cardiovascular events.
Collapse
Affiliation(s)
- Tianjiao Wang
- School of Pharmacy, Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Xin Zhang
- School of Pharmacy, Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Na Zhou
- School of Pharmacy, Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Yuxuan Shen
- Department of Epidemiology and Biostatistics, School of Public HealthJilin UniversityChangchunChina
| | - Biao Li
- Department of Epidemiology and Biostatistics, School of Public HealthJilin UniversityChangchunChina
| | - Bingshu E. Chen
- Department of Public Health Sciences and Canadian Cancer Trials GroupQueen’s UniversityOntarioKingstonCanada
| | - Xinzhi Li
- School of Pharmacy, Faculty of MedicineMacau University of Science and TechnologyMacauChina
| |
Collapse
|
6
|
Gupta A, Alkhalil M. The Emerging Role of Icosapent Ethyl in Patients with Cardiovascular Disease: Mechanistic Insights and Future Applications. J Clin Med 2023; 12:3758. [PMID: 37297952 PMCID: PMC10253987 DOI: 10.3390/jcm12113758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) were early established as therapeutic option for patients with high triglyceride levels. Their effects on lipoprotein particles, including a reduction in very low-density lipoprotein and a shift from small to large low-density lipoprotein, is increasingly recognised. This is coupled with their ability to be incorporated within the cellular membrane, leading to plaque stability and anti-inflammatory effects. Nonetheless, recent clinical trials have not been consistent in demonstrating the potential cardioprotective effects of omega-3 fatty acids. This is despite the circumstantial evidence from imaging studies illustrating the stabilising effects on atherosclerotic plaques and slowing of plaque progression. In this article, we will review the effects of omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on lipid biomarkers, atherosclerotic plaque features, and clinical outcome studies and provide a mechanistic role in managing residual risk of atherosclerosis. This will provide better insight into the inconsistency of the recently reported clinical outcome studies.
Collapse
Affiliation(s)
- Ashish Gupta
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK;
| | - Mohammad Alkhalil
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK;
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle upon Tyne NE7 7DN, UK
| |
Collapse
|