1
|
Piacquadio KA, Gwin JA, Leidy HJ. A Higher-Protein, Energy Restriction Diet Containing 4 Servings of Fresh, Lean Beef per Day Does Not Negatively Influence Circulating miRNAs Associated with Cardiometabolic Disease Risk in Women with Overweight. Curr Dev Nutr 2024; 8:104442. [PMID: 39310667 PMCID: PMC11416494 DOI: 10.1016/j.cdnut.2024.104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
This study examined the acute effects of 7-d energy restriction normal-protein (NP; ∼15% of daily intake as protein) compared with higher-protein (HP; ∼38% of daily intake as protein) diets varying in quantities of fresh, lean beef on circulating miRNA expression associated with cardiometabolic disease in 16 women with overweight (mean ± SD; age: 35 ± 8.7 y; body mass index: 28.5 ± 1.9 kg/m2). Fasting blood samples were collected at the end of each diet for miRNA expression, glucose, insulin, adiponectin, C-reactive protein (CRP), and IL-6. Of the 12 surveyed, 10 miRNAs (miR-320a-3p, miR-146a-5p, miR-150-5p, miR-423-5p, miR-122-5p, miR-223-3p, miR-199a-5p, miR-214-3p, miR-24-3p, and miR-126-3p) were detected. Several miRNAs were associated with fasting CRP (i.e., miR-150-5p, miR-24-3p, miR-423-5p; all P < 0.05). miR-423-5p was also associated with fasting glucose, IL-6, and homeostasis model assessment 2 %β cell function (all, P < 0.05). No differences in miRNA expression were identified between diets. These data suggest that fresh, lean beef in a short-term HP, energy restriction diet does not negatively influence circulating miRNAs associated with cardiometabolic disease in women. This trial was registered at clinicaltrials.gov as NCT02614729.
Collapse
Affiliation(s)
- Kamille A Piacquadio
- Department of Nutritional Sciences and Department of Pediatrics; University of Texas at Austin; Austin, TX, United States
| | - Jess A Gwin
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Heather J Leidy
- Department of Nutritional Sciences and Department of Pediatrics; University of Texas at Austin; Austin, TX, United States
| |
Collapse
|
2
|
Mareboina M, Deng E, Mouratidis I, Yee NS, Pitteloud N, Georgakopoulos-Soares I, Chartoumpekis DV. A review on cell-free RNA profiling: Insights into metabolic diseases and predictive value for bariatric surgery outcomes. Mol Metab 2024; 87:101987. [PMID: 38977131 PMCID: PMC11305000 DOI: 10.1016/j.molmet.2024.101987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The advent of liquid biopsies presents a novel, minimally invasive methodology for the detection of disease biomarkers, offering a significant advantage over traditional biopsy techniques. Particularly, the analysis of cell-free RNA (cfRNA) has garnered interest due to its dynamic expression profiles and the capability to study various RNA species, including messenger RNA (mRNA) and long non-coding RNA (lncRNA). These attributes position cfRNA as a versatile biomarker with broad potential applications in clinical research and diagnostics. SCOPE OF REVIEW This review delves into the utility of cfRNA biomarkers as prognostic tools for obesity-related comorbidities, such as diabetes, dyslipidemia, and non-alcoholic fatty liver disease. MAJOR CONCLUSIONS We evaluate the efficacy of cfRNA in forecasting metabolic outcomes associated with obesity and in identifying patients likely to experience favorable clinical outcomes following bariatric surgery. Additionally, this review synthesizes evidence from studies examining circulating cfRNA across different physiological and pathological states, with a focus on its role in diabetes, including disease progression monitoring and treatment efficacy assessment. Through this exploration, we underscore the emerging relevance of cfRNA signatures in the context of obesity and its comorbidities, setting the stage for future investigative efforts in this rapidly advancing domain.
Collapse
Affiliation(s)
- Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Elen Deng
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Next-Generation Therapies Program, Penn State Cancer Institute, Hershey, PA, USA
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
3
|
Hernández-Gómez KG, Avila-Nava A, González-Salazar LE, Noriega LG, Serralde-Zúñiga AE, Guizar-Heredia R, Medina-Vera I, Gutiérrez-Solis AL, Torres N, Tovar AR, Guevara-Cruz M. Modulation of MicroRNAs and Exosomal MicroRNAs after Dietary Interventions for Obesity and Insulin Resistance: A Narrative Review. Metabolites 2023; 13:1190. [PMID: 38132872 PMCID: PMC10745452 DOI: 10.3390/metabo13121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs approximately 22 nucleotides in length. Their main function is to regulate gene expression at the posttranscriptional level by inhibiting the translation of messenger RNAs (mRNAs). miRNAs originate in the cell nucleus from specific genes, where they can perform their function. However, they can also be found in serum, plasma, or other body fluids travelling within vesicles called exosomes and/or bound to proteins or other particles such as lipoproteins. miRNAs can form complexes outside the cell where they are synthesized, mediating paracrine and endocrine communication between different tissues. In this way, they can modulate the gene expression and function of distal cells. It is known that the expression of miRNAs can be affected by multiple factors, such as the nutritional or pathological state of the individual, or even in conditions such as obesity, insulin resistance, or after any dietary intervention. In this review, we will analyse miRNAs whose expression and circulation are affected in conditions of obesity and insulin resistance, as well as the changes generated after a dietary intervention, with the purpose of identifying new possible biomarkers of early response to nutritional treatment in these conditions.
Collapse
Affiliation(s)
- Karla G. Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (K.G.H.-G.); (L.G.N.); (R.G.-H.); (N.T.)
| | - Azalia Avila-Nava
- Hospital Regional de Alta Especialidad de la Península de Yucatán, Mérida 97130, Mexico; (A.A.-N.); (A.L.G.-S.)
| | - Luis E. González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (L.E.G.-S.); (A.E.S.-Z.)
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (K.G.H.-G.); (L.G.N.); (R.G.-H.); (N.T.)
| | - Aurora E. Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (L.E.G.-S.); (A.E.S.-Z.)
| | - Rocio Guizar-Heredia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (K.G.H.-G.); (L.G.N.); (R.G.-H.); (N.T.)
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, 14380 Mexico City, Mexico
| | - Ana Ligia Gutiérrez-Solis
- Hospital Regional de Alta Especialidad de la Península de Yucatán, Mérida 97130, Mexico; (A.A.-N.); (A.L.G.-S.)
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (K.G.H.-G.); (L.G.N.); (R.G.-H.); (N.T.)
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (K.G.H.-G.); (L.G.N.); (R.G.-H.); (N.T.)
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (K.G.H.-G.); (L.G.N.); (R.G.-H.); (N.T.)
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, 14380 Mexico City, Mexico
| |
Collapse
|
4
|
Ramos-Lopez O. Epigenetic Biomarkers of Metabolic Responses to Lifestyle Interventions. Nutrients 2023; 15:4251. [PMID: 37836535 PMCID: PMC10574040 DOI: 10.3390/nu15194251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Studies have examined the possible utility of epigenetic phenomena (DNA methylation changes, covalent histone modifications, and miRNA expression patterns) in predicting individual responses to different lifestyle programs. Nonetheless, most available evidence is focused on identifying epigenetic marks eventually associated with body composition and adiposity outcomes, whereas their roles in metabolic endings remain less explored. This document comprehensively reviewed the evidence regarding the use of epigenetic signatures as putative biomarkers of metabolic outcomes (glycemic, lipid, blood pressure, and inflammatory/oxidative stress features) in response to different lifestyle interventions in humans. Although more investigation is still necessary in order to translate this knowledge in clinical practice, these scientific insights are contributing to the design of advanced strategies for the precise management of cardiometabolic risk, gaining understanding on metabolic heterogeneity, allowing for the prediction of metabolic outcomes, and facilitating the design of epigenome-based nutritional strategies for a more customized approach for metabolic alterations treatment under the scope of precision nutrition.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| |
Collapse
|
5
|
Qi L, Heianza Y, Li X, Sacks FM, Bray GA. Toward Precision Weight-Loss Dietary Interventions: Findings from the POUNDS Lost Trial. Nutrients 2023; 15:3665. [PMID: 37630855 PMCID: PMC10458797 DOI: 10.3390/nu15163665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The POUNDS Lost trial is a 2-year clinical trial testing the effects of dietary interventions on weight loss. This study included 811 adults with overweight or obesity who were randomized to one of four diets that contained either 15% or 25% protein and 20% or 40% fat in a 2 × 2 factorial design. By 2 years, participants on average lost from 2.9 to 3.6 kg in body weight in the four intervention arms, while no significant difference was observed across the intervention arms. In POUNDS Lost, we performed a series of ancillary studies to detect intrinsic factors particular to genomic, epigenomic, and metabolomic markers that may modulate changes in weight and other cardiometabolic traits in response to the weight-loss dietary interventions. Genomic variants identified from genome-wide association studies (GWASs) on obesity, type 2 diabetes, glucose and lipid metabolisms, gut microbiome, and dietary intakes have been found to interact with dietary macronutrients (fat, protein, and carbohydrates) in relation to weight loss and changes of body composition and cardiometabolic traits. In addition, we recently investigated epigenomic modifications, particularly blood DNA methylation and circulating microRNAs (miRNAs). We reported DNA methylation levels at NFATC2IP, CPT1A, TXNIP, and LINC00319 were related to weight loss or changes of glucose, lipids, and blood pressure; we also reported thrifty miRNA expression as a significant epigenomic marker related to changes in insulin sensitivity and adiposity. Our studies have also highlighted the importance of temporal changes in novel metabolomic signatures for gut microbiota, bile acids, and amino acids as predictors for achievement of successful weight loss outcomes. Moreover, our studies indicate that biochemical, behavioral, and psychosocial factors such as physical activity, sleep disturbance, and appetite may also modulate metabolic changes during dietary interventions. This review summarized our major findings in the POUNDS Lost trial, which provided preliminary evidence supporting the development of precision diet interventions for obesity management.
Collapse
Affiliation(s)
- Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - George A. Bray
- Department of Clinical Obesity, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| |
Collapse
|
6
|
Elkhawaga SY, Ismail A, Elsakka EGE, Doghish AS, Elkady MA, El-Mahdy HA. miRNAs as cornerstones in adipogenesis and obesity. Life Sci 2023; 315:121382. [PMID: 36639051 DOI: 10.1016/j.lfs.2023.121382] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
In recent decades, obesity has extensively emerged to the level of pandemics. It's significantly associated with serious co-morbidities that could decrease life quality and even life expectancy. Obesity has several determinants, such as age, sex, endocrine, and genetic factors. The miRNAs have emerged as genetic factors affecting obesity. The miRNAs are small noncoding nucleic acids that can modify gene expression and hence, control biological processes. The miRNAs can greatly affect many biological processes in obesity, such as adipogenesis, lipid metabolism, and homeostasis. As a result, the entry of miRNAs in obesity therapeutic approaches has been strongly advised as miRNAs mimics, inhibitors, and stimulators. Hence, this review aims to point out a summarized and updated overview of miRNAs and their roles in obesity and its included processes, such as adipogenesis and lipid metabolism. Besides, we also review recent applications of miRNAs as a treatment approach for obesity.
Collapse
Affiliation(s)
- Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|