1
|
Klaassens ES, Baak ML, Mekkes NJ, Bongoni R, Schaubeck M. Effect of protein modification in synbiotic infant formula on probiotic metabolic activity and bacterial composition in an infant gut-model. MICROBIOME RESEARCH REPORTS 2024; 3:38. [PMID: 39421252 PMCID: PMC11480727 DOI: 10.20517/mrr.2024.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 10/19/2024]
Abstract
Aim: Microbial colonization of the neonatal gut is pivotal in priming the infant's immune system. Human milk (HM) is the best nutrition for infants and supports the development of the microbiota due to prebiotic compounds and probiotic microorganisms. When exclusive breastfeeding is not possible, infant formula (IF) with probiotics is a strategy to support the infant's microbiome development. However, knowledge about the effects of the infant gut microbiota and different compounds in IF on individual probiotic strains is limited, as strain-level detection in a complex ecosystem is challenging. The aim of the present study was to show the effects of IF with different protein forms on the metabolic activity of two probiotic strains isolated from HM in a complex ecosystem. Methods: By using an ex-vivo infant gut model containing infant donor-microbiota, the effects of IF with either intact or extensively hydrolyzed protein on the metabolic activity of the donor microbiota, as well as two probiotic strains [Limosilactobacillus fermentum (L. fermentum) CECT 5716 (Lf) and Bifidobacterium breve (B. breve) DSM 32583 (Bb)], were analyzed. A new bioinformatic pipeline combined with a specific infant microbiome database was used to explore shotgun metagenome datasets (1200 Megabases) for taxonomic identification and strain-level tracking. Results: Both protein forms (i.e., intact or extensively hydrolyzed protein) in IF supported infant gut microbial metabolic activity equally, as evidenced by similar levels of short-chain fatty acids (SCFAs). Interestingly, gut microbial metabolic activity was found to be differently activated in a strain-dependent manner. Taxonomic profiling of the microbiome at the strain level enabled monitoring of the prevalence and abundance of both probiotic strains, even in a complex ecosystem. Conclusion: Food matrix and host microbiota interactions should be considered when evaluating strain-specific probiotic effects in the future.
Collapse
Affiliation(s)
| | | | | | | | - Monika Schaubeck
- Research & Development, HiPP GmbH & Co. Vertrieb KG, Pfaffenhofen 85276, Germany
| |
Collapse
|
2
|
Piloquet H, Vrignaud B, Gillaizeau F, Capronnier O, Berding K, Günther J, Hecht C, Regimbart C. Efficacy and safety of a synbiotic infant formula for the prevention of respiratory and gastrointestinal infections: a randomized controlled trial. Am J Clin Nutr 2024; 119:1259-1269. [PMID: 38462218 DOI: 10.1016/j.ajcnut.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Early life nutrition is crucial for the development of the gut microbiota that, in turn, plays an essential role in the maturation of the immune system and the prevention of infections. OBJECTIVES The aim of this study was to investigate whether feeding synbiotic infants and follow-on formulas during the first year of life reduces the incidence rate (IR) of infectious diarrhea compared with standard formulas. Secondary endpoints included the IR of other infectious diseases as well as fecal milieu parameters. METHODS In this double-blind, controlled trial, 460 healthy, 1-mo-old infants were randomly assigned to receive a synbiotic [galacto-oligosaccharides (GOS)/Limosilactobacillus fermentum CECT 5716] (IF, n = 230) or a control formula (CF, n = 230) until 12 mo of age. A reference group of breastfed infants (HM, n = 80) was included. Data on infections were recorded throughout the study period and stool samples were collected at 4 and 12 mo of age. RESULTS IR of infectious diarrhea during the first year of life was 0.60 (CF), 0.56 (IF), and 0.29 (HM), with no statistically significant difference between groups. The IR of lower respiratory tract infections, 1 of the secondary endpoints, however, was lower in IF than in CF [0.79 compared with 1.01, IR ratio = 0.77 (0.60-1.00)]. Additionally, fecal pH was significantly lower at 4 mo (P < 0.0001), whereas secretory IgA was significantly higher at 12 mo of age (P = 0.015) in IF compared with CF. CONCLUSIONS Although no difference is observed in the incidence of diarrhea, consumption of a synbiotic formula containing L. fermentum CECT5716 and GOS in infancy may reduce the incidence of lower respiratory tract infections and affect the immune system and fecal milieu. Additional research is warranted to further investigate the potential interaction of the gut-lung axis. This trial was registered at clinicaltrials.gov as NCT02221687.
Collapse
Affiliation(s)
- Hugues Piloquet
- Department of Pediatric Chronic Diseases, University Hospital of Nantes, Nantes, France.
| | - Bénédicte Vrignaud
- Department of Pediatric Chronic Diseases, University Hospital of Nantes, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
3
|
Mantri A, Köhlmoos A, Schelski DS, Seel W, Stoffel-Wagner B, Krawitz P, Stehle P, Holst JJ, Weber B, Koban L, Plassmann H, Simon MC. Impact of Synbiotic Intake on Liver Metabolism in Metabolically Healthy Participants and Its Potential Preventive Effect on Metabolic-Dysfunction-Associated Fatty Liver Disease (MAFLD): A Randomized, Placebo-Controlled, Double-Blinded Clinical Trial. Nutrients 2024; 16:1300. [PMID: 38732547 PMCID: PMC11085762 DOI: 10.3390/nu16091300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Synbiotics modulate the gut microbiome and contribute to the prevention of liver diseases such as metabolic-dysfunction-associated fatty liver disease (MAFLD). This study aimed to evaluate the effect of a randomized, placebo-controlled, double-blinded seven-week intervention trial on the liver metabolism in 117 metabolically healthy male participants. Anthropometric data, blood parameters, and stool samples were analyzed using linear mixed models. After seven weeks of intervention, there was a significant reduction in alanine aminotransferase (ALT) in the synbiotic group compared to the placebo group (-14.92%, CI: -26.60--3.23%, p = 0.013). A stratified analysis according to body fat percentage revealed a significant decrease in ALT (-20.70%, CI: -40.88--0.53%, p = 0.045) in participants with an elevated body fat percentage. Further, a significant change in microbiome composition (1.16, CI: 0.06-2.25, p = 0.039) in this group was found, while the microbial composition remained stable upon intervention in the group with physiological body fat. The 7-week synbiotic intervention reduced ALT levels, especially in participants with an elevated body fat percentage, possibly due to modulation of the gut microbiome. Synbiotic intake may be helpful in delaying the progression of MAFLD and could be used in addition to the recommended lifestyle modification therapy.
Collapse
Affiliation(s)
- Aakash Mantri
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany; (A.M.); (A.K.); (W.S.)
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, 53127 Bonn, Germany;
| | - Anika Köhlmoos
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany; (A.M.); (A.K.); (W.S.)
| | - Daniela Stephanie Schelski
- Center for Economics and Neuroscience, University of Bonn, 53113 Bonn, Germany; (D.S.S.); (B.W.)
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, 53113 Bonn, Germany
| | - Waldemar Seel
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany; (A.M.); (A.K.); (W.S.)
| | - Birgit Stoffel-Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, 53127 Bonn, Germany;
| | - Peter Stehle
- Institute of Nutrition and Food Science, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany;
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department for Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Bernd Weber
- Center for Economics and Neuroscience, University of Bonn, 53113 Bonn, Germany; (D.S.S.); (B.W.)
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, 53113 Bonn, Germany
| | - Leonie Koban
- Institut Européen d’Administration des Affaires (INSEAD), 77300 Fontainebleau, France; (L.K.); (H.P.)
- Control-Interoception-Attention Team, Paris Brain Institute (ICM), 75013 Paris, France
- Lyon Neuroscience Research Center (CRNL), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Hilke Plassmann
- Institut Européen d’Administration des Affaires (INSEAD), 77300 Fontainebleau, France; (L.K.); (H.P.)
- Control-Interoception-Attention Team, Paris Brain Institute (ICM), 75013 Paris, France
| | - Marie-Christine Simon
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany; (A.M.); (A.K.); (W.S.)
| |
Collapse
|
4
|
Alba C, Carrera M, Álvarez-Calatayud G, Arroyo R, Fernández L, Rodríguez JM. Evaluation of Safety and Beneficial Health Effects of the Human-Milk Strain Bifidobacterium breve DSM32583: An Infant Pilot Trial. Nutrients 2024; 16:1134. [PMID: 38674825 PMCID: PMC11053739 DOI: 10.3390/nu16081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Human milk promotes the growth of bifidobacteria in the infant gut. Adding bifidobacterial species to infant formula may contribute to increasing their presence in the gut of formula-fed infants. Therefore, the safety and anti-infectious effects of Bifidobacterium breve DSM32583, a breast milk isolate, were assessed in a pilot trial involving 3-month-old infants. The infants were randomly assigned to either the probiotic (PG) or the control (CG) groups. All the infants consumed the same formula, although it was supplemented with the strain (1 × 107 cfu/g of formula) in the PG. Overall, 160 infants (80 per group) finished the intervention. Infants in CG gained more weight compared to PG (p < 0.05), but the weights for age Z-scores at 6 months were within the normal distribution for this age group. The rates of infections affecting the gastrointestinal and respiratory tracts and antibiotic therapy were significantly lower in the PG. The bifidobacterial population and the level of short-chain fatty acids were higher (p < 0.05) in the fecal samples of PG infants. No adverse events related to formula consumption were observed. In conclusion, the administration of an infant formula with B. breve DSM32583 was safe and exerted potential beneficial effects on gut health.
Collapse
Affiliation(s)
- Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| | - Marta Carrera
- Centro de Atención Primaria Silvano, Comunidad de Madrid, 28043 Madrid, Spain;
| | | | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| |
Collapse
|
5
|
Lordan C, Roche AK, Delsing D, Nauta A, Groeneveld A, MacSharry J, Cotter PD, van Sinderen D. Linking human milk oligosaccharide metabolism and early life gut microbiota: bifidobacteria and beyond. Microbiol Mol Biol Rev 2024; 88:e0009423. [PMID: 38206006 PMCID: PMC10966949 DOI: 10.1128/mmbr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
SUMMARYHuman milk oligosaccharides (HMOs) are complex, multi-functional glycans present in human breast milk. They represent an intricate mix of heterogeneous structures which reach the infant intestine in an intact form as they resist gastrointestinal digestion. Therefore, they confer a multitude of benefits, directly and/or indirectly, to the developing neonate. Certain bifidobacterial species, being among the earliest gut colonizers of breast-fed infants, have an adapted functional capacity to metabolize various HMO structures. This ability is typically observed in infant-associated bifidobacteria, as opposed to bifidobacteria associated with a mature microbiota. In recent years, information has been gleaned regarding how these infant-associated bifidobacteria as well as certain other taxa are able to assimilate HMOs, including the mechanistic strategies enabling their acquisition and consumption. Additionally, complex metabolic interactions occur between microbes facilitated by HMOs, including the utilization of breakdown products released from HMO degradation. Interest in HMO-mediated changes in microbial composition and function has been the focal point of numerous studies, in recent times fueled by the availability of individual biosynthetic HMOs, some of which are now commonly included in infant formula. In this review, we outline the main HMO assimilatory and catabolic strategies employed by infant-associated bifidobacteria, discuss other taxa that exhibit breast milk glycan degradation capacity, and cover HMO-supported cross-feeding interactions and related metabolites that have been described thus far.
Collapse
Affiliation(s)
- Cathy Lordan
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
| | - Aoife K. Roche
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Arjen Nauta
- FrieslandCampina, Amersfoort, the Netherlands
| | | | - John MacSharry
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Jin W, Peng J, Dai J, Tang R, Guo J, Zhao H, Wang J, Zhang S, Gao Y. Bacterial load in meconium. IMETA 2024; 3:e173. [PMID: 38868517 PMCID: PMC10989067 DOI: 10.1002/imt2.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 06/14/2024]
Abstract
The spike-in plasmid method was utilized to perform an analysis on meconium and second-pass feces, yielding both relative and absolute quantitative results. With the absolute quantitative data, the abundance of bacteria in 17 meconium samples and 17 second-pass fecal samples were found to be 1.14 × 107 and 1.59 × 109 copies/g, respectively. The mode of delivery can significantly influence the alterations and compositions of gut bacteria in a newborn within 72 h.
Collapse
Affiliation(s)
- Wen‐Yu Jin
- The Center for Microbes, Development and Health, Shanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Peng
- Obstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Jinping Dai
- Obstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Rongkang Tang
- The Center for Microbes, Development and Health, Shanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghaiChina
| | - Jia‐Xin Guo
- The Center for Microbes, Development and Health, Shanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghaiChina
| | - Huan Zhao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jielin Wang
- Hongqiao International Institute of Medicine, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shu Zhang
- Department of Gynecological OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yi‐Zhou Gao
- The Center for Microbes, Development and Health, Shanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghaiChina
| |
Collapse
|
7
|
Inchingolo F, Inchingolo AD, Palumbo I, Trilli I, Guglielmo M, Mancini A, Palermo A, Inchingolo AM, Dipalma G. The Impact of Cesarean Section Delivery on Intestinal Microbiota: Mechanisms, Consequences, and Perspectives-A Systematic Review. Int J Mol Sci 2024; 25:1055. [PMID: 38256127 PMCID: PMC10816971 DOI: 10.3390/ijms25021055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The relationship between cesarean section (CS) delivery and intestinal microbiota is increasingly studied. CS-born infants display distinct gut microbial compositions due to the absence of maternal birth canal microorganisms. These alterations potentially link to long-term health implications like immune-related disorders and allergies. This correlation underscores the intricate connection between birth mode and the establishment of diverse intestinal microbiota. A systematic literature review was conducted on the PubMed, Scopus, and Web of Science databases by analyzing the articles and examining the intricate interactions between CS delivery and the infant's intestinal microbiota. The analysis, based on a wide-ranging selection of studies, elucidates the multifaceted dynamics involved in CS-associated shifts in the establishment of fetal microbiota. We also explore the potential ramifications of these microbial changes on neonatal health and development, providing a comprehensive overview for clinicians and researchers. By synthesizing current findings, this review contributes to a deeper understanding of the interplay between delivery mode and early microbial colonization, paving the way for informed clinical decisions and future investigations in the field of perinatal medicine.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Irene Palumbo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Mariafrancesca Guglielmo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| |
Collapse
|
8
|
Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H, Kanetkar P, Kumar V, Al-Zamani ZAS, Bunkar DS. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants' gut microbiota. Front Nutr 2023; 10:1194679. [PMID: 37415910 PMCID: PMC10320619 DOI: 10.3389/fnut.2023.1194679] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Human milk is considered the most valuable form of nutrition for infants for their growth, development and function. So far, there are still some cases where feeding human milk is not feasible. As a result, the market for infant formula is widely increasing, and formula feeding become an alternative or substitute for breastfeeding. The nutritional value of the formula can be improved by adding functional bioactive compounds like probiotics, prebiotics, human milk oligosaccharides, vitamins, minerals, taurine, inositol, osteopontin, lactoferrin, gangliosides, carnitine etc. For processing of infant formula, diverse thermal and non-thermal technologies have been employed. Infant formula can be either in powdered form, which requires reconstitution with water or in ready-to-feed liquid form, among which powder form is readily available, shelf-stable and vastly marketed. Infants' gut microbiota is a complex ecosystem and the nutrient composition of infant formula is recognized to have a lasting effect on it. Likewise, the gut microbiota establishment closely parallels with host immune development and growth. Therefore, it must be contemplated as an important factor for consideration while developing formulas. In this review, we have focused on the formulation and manufacturing of safe and nutritious infant formula equivalent to human milk or aligning with the infant's needs and its ultimate impact on infants' gut microbiota.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Basant Kumar Bhinchhar
- Department of Livestock Production Management, Sri Karan Narendra Agriculture University, Jobner, India
| | - Sheela Kharkwal
- Department of Agriculture Economics, Sri Karan Narendra Agriculture University, Jobner, India
| | - Hency Rose
- Division of Dairy Technology, ICAR—National Dairy Research Institute, Karnal, India
| | - Prajasattak Kanetkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology and Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Pabst O, Hornef MW, Schaap FG, Cerovic V, Clavel T, Bruns T. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00771-6. [PMID: 37085614 DOI: 10.1038/s41575-023-00771-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
The gut and the liver are characterized by mutual interactions between both organs, the microbiome, diet and other environmental factors. The sum of these interactions is conceptualized as the gut-liver axis. In this Review we discuss the gut-liver axis, concentrating on the barriers formed by the enterohepatic tissues to restrict gut-derived microorganisms, microbial stimuli and dietary constituents. In addition, we discuss the establishment of barriers in the gut and liver during development and their cooperative function in the adult host. We detail the interplay between microbial and dietary metabolites, the intestinal epithelium, vascular endothelium, the immune system and the various host soluble factors, and how this interplay establishes a homeostatic balance in the healthy gut and liver. Finally, we highlight how this balance is disrupted in diseases of the gut and liver, outline the existing therapeutics and describe the cutting-edge discoveries that could lead to the development of novel treatment approaches.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Frank G Schaap
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, RWTH Aachen University, Aachen, Germany
| |
Collapse
|