1
|
Wang J, Lin Y, Xu Z, Yan C, Zhao Y, Ji K. Mitochondrial Dysfunction due to Novel COQ8A Variation with Poor Response to CoQ10 Treatment: A Comprehensive Study and Review of Literatures. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1824-1838. [PMID: 38429489 DOI: 10.1007/s12311-024-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
COQ8A plays an important role in the biosynthesis of coenzyme Q10 (CoQ10), and variations in COQ8A gene are associated with primary CoQ10 deficiency-4 (COQ10D4), also known as COQ8A-ataxia. The current understanding of the association between the specific variant type, the severity of CoQ10 deficiency, and the degree of oxidative stress in individuals with primary CoQ10 deficiencies remains uncertain. Here we provide a comprehensive analysis of the clinical and genetic characteristics of an 18-year-old patient with COQ8A-ataxia, who exhibited novel compound heterozygous variants (c.1904_1906del and c.637C > T) in the COQ8A gene. These variants reduced the expression levels of COQ8A and mitochondrial proteins in the patient's muscle and skin fibroblast samples, contributed to mitochondrial respiration deficiency, increased ROS production and altered mitochondrial membrane potential. It is worth noting that the optimal treatment for COQ8A-ataxia remains uncertain. Presently, therapy consists of CoQ10 supplementation, however, it did not yield significant improvement in our patient's symptoms. Additionally, we reviewed the response of CoQ10 supplementation and evolution of patients in previous literatures in detail. We found that only half of patients could got notable improvement in ataxia. This research aims to expand the genotype-phenotype spectrum of COQ10D4, address discrepancies in previous reviews regarding the effectiveness of CoQ10 in these disorders, and help to establish a standardized treatment protocol for COQ8A-ataxia.
Collapse
Affiliation(s)
- Jiayin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zhihong Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, Shandong, China
- Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Değerliyurt A, Gülleroğlu NB, Kibar Gül AE. Primary CoQ 10 deficiency with a severe phenotype due to the c.901 C > T (p.R301W) mutation in the COQ8A gene. Int J Neurosci 2024; 134:148-152. [PMID: 35757998 DOI: 10.1080/00207454.2022.2095269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE A patient with primary CoQ10 deficiency associated with the c.901 C > T (p.R301W) (rs140246430) homozygous missense pathogenic variant in the COQ8A gene, who presented with recurrent status epilepticus, stroke-like lesions, and hypertrophic cardiomyopathy while being followed-up with early-onset autosomal recessive cerebellar ataxia will be reported in this article. CASE REPORT A 16-year-old patient who was being followed up at an external center with a diagnosis of ataxia with cerebellar atrophy had been seen 3 different times within a year for status epilepticus. The cerebral MRI showed severe cerebellar atrophy, stroke like lesions, and an inverted double- lactate peak on spectroscopy. Her echocardiography revealed marked left ventricular hypertrophy. Mitochondrial cocktail therapy containing a standard dose of CoQ10 was started, considering mitochondrial disease. The patient died due to cardiomyopathy. Mitochondrial panel analysis revealed the presence of the c.901 C > T (p.R301W) homozygous missense mutation in the COQ8A gene. CONCLUSIONS Primary Coenzyme Q10 deficiency should be considered in patients presenting with autosomal recessive stable-appearing progressive ataxia, emerging attacks of status epilepticus, stroke-like lesions on neuroimaging, and cardiomyopathy. Since there is a case with the same mutation with a similar fatal course in the literature, detection of c.901 C > T (p.R301W) mutation homozygously should be a warning for a severe prognosis and more aggressive treatment should be started without delay with a high dose of CoQ10 instead of the lower doses used in the treatment of mitochondrial disease.
Collapse
Affiliation(s)
- Aydan Değerliyurt
- Deparment of Pediatric Neurology, Ankara City Hospital, Ankara, Turkey
| | | | | |
Collapse
|
4
|
Mantle D, Hargreaves IP. Efficacy and Safety of Coenzyme Q10 Supplementation in Neonates, Infants and Children: An Overview. Antioxidants (Basel) 2024; 13:530. [PMID: 38790635 PMCID: PMC11117623 DOI: 10.3390/antiox13050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
To date, there have been no review articles specifically relating to the general efficacy and safety of coenzyme Q10 (CoQ10) supplementation in younger subjects. In this article, we therefore reviewed the efficacy and safety of CoQ10 supplementation in neonates (less than 1 month of age), infants (up to 1 year of age) and children (up to 12 years of age). As there is no rationale for the supplementation of CoQ10 in normal younger subjects (as there is in otherwise healthy older subjects), all of the articles in the medical literature reviewed in the present article therefore refer to the supplementation of CoQ10 in younger subjects with a variety of clinical disorders; these include primary CoQ10 deficiency, acyl CoA dehydrogenase deficiency, Duchenne muscular dystrophy, migraine, Down syndrome, ADHD, idiopathic cardiomyopathy and Friedreich's ataxia.
Collapse
Affiliation(s)
- David Mantle
- Pharma Nord (UK) Ltd., Morpeth, Northumberland NE61 2DB, UK
| | - Iain Parry Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK;
| |
Collapse
|
5
|
Lopriore P, Vista M, Tessa A, Giuntini M, Caldarazzo Ienco E, Mancuso M, Siciliano G, Santorelli FM, Orsucci D. Primary Coenzyme Q10 Deficiency-Related Ataxias. J Clin Med 2024; 13:2391. [PMID: 38673663 PMCID: PMC11050807 DOI: 10.3390/jcm13082391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Cerebellar ataxia is a neurological syndrome characterized by the imbalance (e.g., truncal ataxia, gait ataxia) and incoordination of limbs while executing a task (dysmetria), caused by the dysfunction of the cerebellum or its connections. It is frequently associated with other signs of cerebellar dysfunction, including abnormal eye movements, dysmetria, kinetic tremor, dysarthria, and/or dysphagia. Among the so-termed mitochondrial ataxias, variants in genes encoding steps of the coenzyme Q10 biosynthetic pathway represent a common cause of autosomal recessive primary coenzyme Q10 deficiencies (PCoQD)s. PCoQD is a potentially treatable condition; therefore, a correct and timely diagnosis is essential. After a brief presentation of the illustrative case of an Italian woman with this condition (due to a novel homozygous nonsense mutation in COQ8A), this article will review ataxias due to PCoQD.
Collapse
Affiliation(s)
- Piervito Lopriore
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.M.); (G.S.)
| | - Marco Vista
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| | - Alessandra Tessa
- Molecular Medicine, IRCCS Stella Maris Foundation, 56122 Pisa, Italy; (A.T.); (F.M.S.)
| | - Martina Giuntini
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| | - Elena Caldarazzo Ienco
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.M.); (G.S.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.M.); (G.S.)
| | | | - Daniele Orsucci
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| |
Collapse
|
6
|
Pilotto F, Del Bondio A, Puccio H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells 2024; 13:319. [PMID: 38391932 PMCID: PMC10886822 DOI: 10.3390/cells13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.
Collapse
Affiliation(s)
- Federica Pilotto
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| | - Andrea Del Bondio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| | - Hélène Puccio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| |
Collapse
|
7
|
Bremova-Ertl T, Hofmann J, Stucki J, Vossenkaul A, Gautschi M. Inborn Errors of Metabolism with Ataxia: Current and Future Treatment Options. Cells 2023; 12:2314. [PMID: 37759536 PMCID: PMC10527548 DOI: 10.3390/cells12182314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
A number of hereditary ataxias are caused by inborn errors of metabolism (IEM), most of which are highly heterogeneous in their clinical presentation. Prompt diagnosis is important because disease-specific therapies may be available. In this review, we offer a comprehensive overview of metabolic ataxias summarized by disease, highlighting novel clinical trials and emerging therapies with a particular emphasis on first-in-human gene therapies. We present disease-specific treatments if they exist and review the current evidence for symptomatic treatments of these highly heterogeneous diseases (where cerebellar ataxia is part of their phenotype) that aim to improve the disease burden and enhance quality of life. In general, a multimodal and holistic approach to the treatment of cerebellar ataxia, irrespective of etiology, is necessary to offer the best medical care. Physical therapy and speech and occupational therapy are obligatory. Genetic counseling is essential for making informed decisions about family planning.
Collapse
Affiliation(s)
- Tatiana Bremova-Ertl
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland; (J.H.); (J.S.)
- Center for Rare Diseases, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland
| | - Jan Hofmann
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland; (J.H.); (J.S.)
| | - Janine Stucki
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland; (J.H.); (J.S.)
| | - Anja Vossenkaul
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.V.); (M.G.)
| | - Matthias Gautschi
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.V.); (M.G.)
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
8
|
Manolaras I, Del Bondio A, Griso O, Reutenauer L, Eisenmann A, Habermann BH, Puccio H. Mitochondrial dysfunction and calcium dysregulation in COQ8A-ataxia Purkinje neurons are rescued by CoQ10 treatment. Brain 2023; 146:3836-3850. [PMID: 36960552 DOI: 10.1093/brain/awad099] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
COQ8A-ataxia is a rare form of neurodegenerative disorder due to mutations in the COQ8A gene. The encoded mitochondrial protein is involved in the regulation of coenzyme Q10 biosynthesis. Previous studies on the constitutive Coq8a-/- mice indicated specific alterations of cerebellar Purkinje neurons involving altered electrophysiological function and dark cell degeneration. In the present manuscript, we extend our understanding of the contribution of Purkinje neuron dysfunction to the pathology. By generating a Purkinje-specific conditional COQ8A knockout, we demonstrate that loss of COQ8A in Purkinje neurons is the main cause of cerebellar ataxia. Furthermore, through in vivo and in vitro approaches, we show that COQ8A-depleted Purkinje neurons have abnormal dendritic arborizations, altered mitochondria function and intracellular calcium dysregulation. Furthermore, we demonstrate that oxidative phosphorylation, in particular Complex IV, is primarily altered at presymptomatic stages of the disease. Finally, the morphology of primary Purkinje neurons as well as the mitochondrial dysfunction and calcium dysregulation could be rescued by CoQ10 treatment, suggesting that CoQ10 could be a beneficial treatment for COQ8A-ataxia.
Collapse
Affiliation(s)
- Ioannis Manolaras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Andrea Del Bondio
- Institut Neuromyogène, Pathophysiology and genetics of the neuron and muscle, Inserm U1315, 69008 Lyon, France
- CNRS, Université Claude Bernard Lyon I, UMR 5261, 69008 Lyon, France
| | - Olivier Griso
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Laurence Reutenauer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Institut Neuromyogène, Pathophysiology and genetics of the neuron and muscle, Inserm U1315, 69008 Lyon, France
- CNRS, Université Claude Bernard Lyon I, UMR 5261, 69008 Lyon, France
| | - Aurélie Eisenmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Bianca H Habermann
- CNRS, Institut de Biologie du Développement de Marseille (IBDM), UMR7288, Aix-Marseille University, 13009 Marseille, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Institut Neuromyogène, Pathophysiology and genetics of the neuron and muscle, Inserm U1315, 69008 Lyon, France
- CNRS, Université Claude Bernard Lyon I, UMR 5261, 69008 Lyon, France
| |
Collapse
|
9
|
Mantle D, Millichap L, Castro-Marrero J, Hargreaves IP. Primary Coenzyme Q10 Deficiency: An Update. Antioxidants (Basel) 2023; 12:1652. [PMID: 37627647 PMCID: PMC10451954 DOI: 10.3390/antiox12081652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Coenzyme Q10 (CoQ10) has a number of vital functions in all cells, both mitochondrial and extra-mitochondrial. In addition to its key role in mitochondrial oxidative phosphorylation, CoQ10 serves as a lipid soluble antioxidant and plays an important role in fatty acid beta-oxidation and pyrimidine and lysosomal metabolism, as well as directly mediating the expression of a number of genes, including those involved in inflammation. Due to the multiplicity of roles in cell function, it is not surprising that a deficiency in CoQ10 has been implicated in the pathogenesis of a wide range of disorders. CoQ10 deficiency is broadly divided into primary and secondary types. Primary CoQ10 deficiency results from mutations in genes involved in the CoQ10 biosynthetic pathway. In man, at least 10 genes are required for the biosynthesis of functional CoQ10, a mutation in any one of which can result in a deficit in CoQ10 status. Patients may respond well to oral CoQ10 supplementation, although the condition must be recognised sufficiently early, before irreversible tissue damage has occurred. In this article, we have reviewed clinical studies (up to March 2023) relating to the identification of these deficiencies, and the therapeutic outcomes of CoQ10 supplementation; we have attempted to resolve the disparities between previous review articles regarding the usefulness or otherwise of CoQ10 supplementation in these disorders. In addition, we have highlighted several of the potential problems relating to CoQ10 supplementation in primary CoQ10 deficiency, as well as identifying unresolved issues relating to these disorders that require further research.
Collapse
Affiliation(s)
| | - Lauren Millichap
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Jesus Castro-Marrero
- Rheumatology Research Group, ME/CFS Research Unit, Vall d’Hebron Research Institute, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain;
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
10
|
Chavira‐Hernández G, Piña‐Avilés CE, Zúñiga‐Ramírez C. Ataxia due to a COQ8A Novel Variant in Primary Coenzyme Q10 Deficiency. Mov Disord Clin Pract 2023; 10:S41-S44. [PMID: 37636224 PMCID: PMC10448619 DOI: 10.1002/mdc3.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Gerardo Chavira‐Hernández
- Movement Disorders and Neurodegenerative Diseases UnitHospital Civil de Guadalajara “Fray Antonio Alcalde”GuadalajaraMexico
| | | | - Carlos Zúñiga‐Ramírez
- Movement Disorders and Neurodegenerative Diseases UnitHospital Civil de Guadalajara “Fray Antonio Alcalde”GuadalajaraMexico
| |
Collapse
|
11
|
Staiano C, García-Corzo L, Mantle D, Turton N, Millichap LE, Brea-Calvo G, Hargreaves I. Biosynthesis, Deficiency, and Supplementation of Coenzyme Q. Antioxidants (Basel) 2023; 12:1469. [PMID: 37508007 PMCID: PMC10375973 DOI: 10.3390/antiox12071469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Originally identified as a key component of the mitochondrial respiratory chain, Coenzyme Q (CoQ or CoQ10 for human tissues) has recently been revealed to be essential for many different redox processes, not only in the mitochondria, but elsewhere within other cellular membrane types. Cells rely on endogenous CoQ biosynthesis, and defects in this still-not-completely understood pathway result in primary CoQ deficiencies, a group of conditions biochemically characterised by decreased tissue CoQ levels, which in turn are linked to functional defects. Secondary CoQ deficiencies may result from a wide variety of cellular dysfunctions not directly linked to primary synthesis. In this article, we review the current knowledge on CoQ biosynthesis, the defects leading to diminished CoQ10 levels in human tissues and their associated clinical manifestations.
Collapse
Affiliation(s)
- Carmine Staiano
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Laura García-Corzo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | | | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| | - Lauren E Millichap
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Iain Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| |
Collapse
|
12
|
Hojabri M, Gilani A, Irilouzadian R, Nejad biglari H, Sarmadian R. Adolescence Onset Primary Coenzyme Q10 Deficiency With Rare CoQ8A Gene Mutation: A Case Report and Review of Literature. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2023; 16:11795476231188061. [PMID: 37476682 PMCID: PMC10354825 DOI: 10.1177/11795476231188061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023]
Abstract
Background Primary deficiency of coenzyme Q10 deficiency-4 (CoQ10D4) is a heterogeneous disorder affecting different age groups. The main clinical manifestation consists of cerebellar ataxia, exercise intolerance, and dystonia. Case report We provide a case of adolescence-onset ataxia, head tremor, and proximal muscle weakness accompanied by psychiatric features and abnormal serum urea (49.4 mg/dL), lactate (7.5 mmol/L), and CoQ10 level (0.4 µg/mL). Brain-MRI demonstrated cerebellar atrophy, thinning of the corpus callosum, and loss of white matter. Whole exome sequencing showed a homozygous missense mutation (c.911C>T; p.A304V) in CoQ8A gene which is a rare mutation and responsible variant of CoQ10D4. After supplementary treatment with CoQ10 50 mg/twice a day for 2 months the clinical symptoms improved. Conclusion These observations highlight the significance of the early diagnosis of potentially treatable CoQ8A mutation as well as patient education and follow-up. Our findings widen the spectrum of CoQ8A phenotypic features so that clinicians be familiar with the disease not only in severe childhood-onset ataxia but also in adolescence with accompanying psychiatric problems.
Collapse
Affiliation(s)
- Mahsa Hojabri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Gilani
- Department of Pediatric Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Rana Irilouzadian
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Habibe Nejad biglari
- Department of Pediatric Neurology, Kerman University of Medical Sciences, Kerman, Iran
| | - Roham Sarmadian
- Infectious Diseases Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
13
|
Bagheri S, Haddadi R, Saki S, Kourosh-Arami M, Rashno M, Mojaver A, Komaki A. Neuroprotective effects of coenzyme Q10 on neurological diseases: a review article. Front Neurosci 2023; 17:1188839. [PMID: 37424991 PMCID: PMC10326389 DOI: 10.3389/fnins.2023.1188839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Neurological disorders affect the nervous system. Biochemical, structural, or electrical abnormalities in the spinal cord, brain, or other nerves lead to different symptoms, including muscle weakness, paralysis, poor coordination, seizures, loss of sensation, and pain. There are many recognized neurological diseases, like epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), stroke, autosomal recessive cerebellar ataxia 2 (ARCA2), Leber's hereditary optic neuropathy (LHON), and spinocerebellar ataxia autosomal recessive 9 (SCAR9). Different agents, such as coenzyme Q10 (CoQ10), exert neuroprotective effects against neuronal damage. Online databases, such as Scopus, Google Scholar, Web of Science, and PubMed/MEDLINE were systematically searched until December 2020 using keywords, including review, neurological disorders, and CoQ10. CoQ10 is endogenously produced in the body and also can be found in supplements or foods. CoQ10 has antioxidant and anti-inflammatory effects and plays a role in energy production and mitochondria stabilization, which are mechanisms, by which CoQ10 exerts its neuroprotective effects. Thus, in this review, we discussed the association between CoQ10 and neurological diseases, including AD, depression, MS, epilepsy, PD, LHON, ARCA2, SCAR9, and stroke. In addition, new therapeutic targets were introduced for the next drug discoveries.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology, School of Pharmacy, Hamadan University of Medical Science, Hamadan, Iran
| | - Sahar Saki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Ali Mojaver
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Sadr Z, Zare-Abdollahi D, Rohani M, Alavi A. A founder mutation in COQ7, p.(Leu111Pro), causes pure hereditary spastic paraplegia (HSP) in the Iranian population. Neurol Sci 2023:10.1007/s10072-023-06707-x. [PMID: 36854932 DOI: 10.1007/s10072-023-06707-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Affiliation(s)
- Zahra Sadr
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Davood Zare-Abdollahi
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Iran University of Medical Sciences, Hazrat Rasool Hospital, Tehran, Iran
| | - Afagh Alavi
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran. .,Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Ng YS, Gorman GS. Stroke-like episodes in adult mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:65-78. [PMID: 36813321 DOI: 10.1016/b978-0-12-821751-1.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Stroke-like episode is a paroxysmal neurological manifestation which affects a specific group of patients with mitochondrial disease. Focal-onset seizures, encephalopathy, and visual disturbances are prominent findings associated with stroke-like episodes, with a predilection for the posterior cerebral cortex. The most common cause of stroke-like episodes is the m.3243A>G variant in MT-TL1 gene followed by recessive POLG variants. This chapter aims to review the definition of stroke-like episode and delineate the clinical phenomenology, neuroimaging and EEG findings typically seen in patients. In addition, several lines of evidence supporting neuronal hyper-excitability as the key mechanism of stroke-like episodes are discussed. The management of stroke-like episodes should focus on aggressive seizure management and treatment for concomitant complications such as intestinal pseudo-obstruction. There is no robust evidence to prove the efficacy of l-arginine for both acute and prophylactic settings. Progressive brain atrophy and dementia are the sequalae of recurrent stroke-like episode, and the underlying genotype in part predicts prognosis.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
16
|
Wang Y, Hekimi S. The efficacy of coenzyme Q 10 treatment in alleviating the symptoms of primary coenzyme Q 10 deficiency: A systematic review. J Cell Mol Med 2022; 26:4635-4644. [PMID: 35985679 PMCID: PMC9443948 DOI: 10.1111/jcmm.17488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022] Open
Abstract
Coenzyme Q10 (CoQ10 ) is necessary for mitochondrial electron transport. Mutations in CoQ10 biosynthetic genes cause primary CoQ10 deficiency (PCoQD) and manifest as mitochondrial disorders. It is often stated that PCoQD patients can be treated by oral CoQ10 supplementation. To test this, we compiled all studies describing PCoQD patients up to May 2022. We excluded studies with no data on CoQ10 treatment, or with insufficient description of effectiveness. Out of 303 PCoQD patients identified, we retained 89 cases, of which 24 reported improvements after CoQ10 treatment (27.0%). In five cases, the patient's condition was reported to deteriorate after halting of CoQ10 treatment. 12 cases reported improvement in the severity of ataxia and 5 cases in the severity of proteinuria. Only a subjective description of improvement was reported for 4 patients described as responding. All reported responses were partial improvements of only some symptoms. For PCoQD patients, CoQ10 supplementation is replacement therapy. Yet, there is only very weak evidence for the efficacy of the treatment. Our findings, thus, suggest a need for caution when seeking to justify the widespread use of CoQ10 for the treatment of any disease or as dietary supplement.
Collapse
Affiliation(s)
- Ying Wang
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | | |
Collapse
|
17
|
Murray NH, Lewis A, Rincon Pabon JP, Gross ML, Henzler-Wildman K, Pagliarini DJ. 2-Propylphenol Allosterically Modulates COQ8A to Enhance ATPase Activity. ACS Chem Biol 2022; 17:2031-2038. [PMID: 35904798 PMCID: PMC9586199 DOI: 10.1021/acschembio.2c00434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
COQ8A is an atypical kinase-like protein that aids the biosynthesis of coenzyme Q, an essential cellular cofactor and antioxidant. COQ8A's mode of action remains unclear, in part due to the lack of small molecule tools to probe its function. Here, we blend NMR and hydrogen-deuterium exchange mass spectrometry to help determine how a small CoQ precursor mimetic, 2-propylphenol, modulates COQ8A activity. We identify a likely 2-propylphenol binding site and reveal that this compound modulates a conserved COQ8A domain to increase nucleotide affinity and ATPase activity. Our findings promise to aid further investigations into COQ8A's precise enzymatic function and the design of compounds capable of boosting endogenous CoQ production for therapeutic gain.
Collapse
Affiliation(s)
- Nathan H. Murray
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam Lewis
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Juan P. Rincon Pabon
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Correspondence and requests for materials should be addressed to D.J.P.,
| |
Collapse
|
18
|
A novel COQ7 mutation causing primarily neuromuscular pathology and its treatment options. Mol Genet Metab Rep 2022; 31:100877. [PMID: 35782625 PMCID: PMC9248208 DOI: 10.1016/j.ymgmr.2022.100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is necessary as electron transporter in mitochondrial respiration and other cellular functions. CoQ10 is synthesized by all cells and defects in the synthesis pathway result in primary CoQ10 deficiency that frequently leads to severe mitochondrial disease syndrome. CoQ10 is exceedingly hydrophobic, insoluble, and poorly bioavailable, with the result that dietary CoQ10 supplementation produces no or only minimal relief for patients. We studied a patient from Turkey and identified and characterized a new mutation in the CoQ10 biosynthetic gene COQ7 (c.161G > A; p.Arg54Gln). We find that unexpected neuromuscular pathology can accompany CoQ10 deficiency caused by a COQ7 mutation. We also show that by-passing the need for COQ7 by providing the unnatural precursor 2,4-dihydroxybenzoic acid, as has been proposed, is unlikely to be an effective and safe therapeutic option. In contrast, we show for the first time in human patient cells that the respiratory defect resulting from CoQ10 deficiency is rescued by providing CoQ10 formulated with caspofungin (CF/CoQ). Caspofungin is a clinically approved intravenous fungicide whose surfactant properties lead to CoQ10 micellization, complete water solubilization, and efficient uptake by cells and organs in animal studies. These findings reinforce the possibility of using CF/CoQ in the clinical treatment of CoQ10-deficient patients.
Collapse
|
19
|
Mitochondrial-Related Transcriptome Feature Correlates with Prognosis, Vascular Invasion, Tumor Microenvironment, and Treatment Response in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1592905. [PMID: 35535359 PMCID: PMC9078845 DOI: 10.1155/2022/1592905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/30/2022] [Indexed: 01/17/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, which was highly correlated with metabolic dysfunction. Nevertheless, the association between nuclear mitochondrial-related transcriptome and HCC remained unclear. Materials and Methods A total of 147 nuclear mitochondrial-related genes (NMRGs) were downloaded from the MITOMAP: A Human Mitochondrial Genome Database. The training dataset was downloaded from The Cancer Genome Atlas (TCGA), while validation datasets were retrieved from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). The univariate and multivariate, and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were applied to construct a NMRG signature, and the value of area under receiver operating characteristic curve (AUC) was utilized to assess the signature and nomogram. Then, data from the Genomics of Drug Sensitivity in Cancer (GDSC) were used for the evaluation of chemotherapy response in HCC. Results Functional enrichment of differentially expressed genes (DEGs) between HCC and paired normal tissue samples demonstrated that mitochondrial dysfunction was significantly associated with HCC development. Survival analysis showed a total of 35 NMRGs were significantly correlated with overall survival (OS) of HCC, and the LASSO Cox regression analysis further identified a 25-NMRG signature and corresponding prognosis score based on their transcriptional profiling. HCC patients were divided into high- and low-risk groups according to the median prognosis score, and high-risk patients had significantly worse OS (median OS: 27.50 vs. 83.18 months, P < 0.0001). The AUC values for OS at 1, 3, and 5 years were 0.79, 0.77, and 0.77, respectively. The prognostic capacity of NMRG signature was verified in the GSE14520 dataset and ICGC-HCC cohort. Besides, the NMRG signature outperformed each NMRG and clinical features in prognosis prediction and could also differentiate whether patients presented with vascular invasions (VIs) or not. Subsequently, a prognostic nomogram (C-index: 0.753, 95% CI: 0.703~0.804) by the integration of age, tumor metastasis, and NMRG prognosis score was constructed with the AUC values for OS at 1, 3, and 5 years were 0.82, 0.81, and 0.82, respectively. Notably, significant enrichment of regulatory and follicular helper T cells in high-risk group indicated the potential treatment of immune checkpoint inhibitors for these patients. Interestingly, the NMRG signature could also identify the potential responders of sorafenib or transcatheter arterial chemoembolization (TACE) treatment. Additionally, HCC patients in high-risk group appeared to be more sensitive to cisplatin, vorinostat, and methotrexate, reversely, patients in low-risk group had significantly higher sensitivity to paclitaxel and bleomycin instead. Conclusions In summary, the development of NMRG signature provided a more comprehensive understanding of mitochondrial dysfunction in HCC, helped predict prognosis and tumor microenvironment, and provided potential targeted therapies for HCC patients with different NMRG prognosis scores.
Collapse
|
20
|
Ashrafi MR, Haghighi R, Badv RS, Ghabeli H, Tavasoli AR, Pourbakhtyaran E, Rezaei Z, Mahdieh N, Mohammadi P, Heidari M. Epilepsia Partialis Continua a Clinical Feature of a Missense Variant in the ADCK3 Gene and Poor Response to Therapy. J Mol Neurosci 2022; 72:1125-1132. [PMID: 35275351 PMCID: PMC8914440 DOI: 10.1007/s12031-022-01993-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/27/2022] [Indexed: 11/26/2022]
Abstract
Introduction Coenzyme Q10 deficiency can be due to mutations in Coenzyme Q10-biosynthesis genes (primary) or genes unrelated to biosynthesis (secondary). Primary Coenzyme Q10 deficiency-4 (COQ10D4), also known as autosomal recessive spinocerebellar ataxia-9 (SCAR9), is an autosomal recessive disorder caused by mutations in the ADCK3 gene. This disorder is characterized by several clinical manifestations such as severe infantile multisystemic illness, encephalomyopathy, isolated myopathy, cerebellar ataxia, or nephrotic syndrome. Methods In this study, whole-exome sequencing was performed in order to identify disease-causing variants in an affected girl with developmental regression and Epilepsia Partialis Continua (EPC). Next, Sanger sequencing method was used to confirm the identified variant in the patient and segregation analysis in her parents. Case Presentation The proband is an affected 11-year-old girl with persistent seizures, EPC, and developmental regression including motor, cognition, and speech. Seizures were not controlled with various anticonvulsant drugs despite adequate dosing. Progressive cerebellar atrophy, stroke-like cortical involvement, multifocal hyperintense bright objects, and restriction in diffusion-weighted imaging (DWI) were seen in the brain magnetic resonance imaging (MRI). Conclusions A novel homozygous missense variant [NM_020247.5: c.814G>T; (p.Gly272Cys)] was identified within the ADCK3 gene, which is the first mutation in this gene in the Iranian population. Bioinformatics analysis showed this variant is damaging. Based on our patient, clinicians should consider genetic testing earlier to instant diagnosis and satisfactory treatment based on exact etiology to prevent further neurologic sequelae.
Collapse
Affiliation(s)
- Mahmoud Reza Ashrafi
- Department of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Haghighi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Department of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Ghabeli
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Pourbakhtyaran
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Department of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaei Cardiovascular Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pouria Mohammadi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Morteza Heidari
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Nakamura A, Okamoto M, Maeda A, Jiang H, Sugawara K, Kitatani K, Takekoshi S, Fujisawa A, Yamamoto Y, Kashiba M. Cellular level of coenzyme Q increases with neuronal differentiation, playing an important role in neural elongations. J Clin Biochem Nutr 2022; 71:89-96. [PMID: 36213795 PMCID: PMC9519416 DOI: 10.3164/jcbn.21-107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022] Open
Abstract
Deficiency of coenzyme Q has been reported in various neurological diseases, and the behavior of this lipid in neurons has attracted attention. However, the behavior of this lipid in normal neurons remains unclear. In this study, we analyzed the concentration of coenzyme Q before and after neuronal differentiation. Nerve growth factor treatment of PC12 cells caused neurite outgrowth and neuronal differentiation, and the amount of intracellular coenzyme Q increased dramatically during this process. In addition, when the serum was removed from the culture medium of N1E-115 cells and the neurite outgrowth was confirmed, the intracellular coenzyme Q level also increased. To elucidate the role of the increased coenzyme Q, we administered nerve growth factor to PC12 cells with coenzyme Q synthesis inhibitors and found that coenzyme Q levels decreased, neurite outgrowth was impaired, and differentiation markers were reduced. These results indicate that coenzyme Q levels increase during neuronal differentiation and that this increase is important for neurite outgrowth.
Collapse
Affiliation(s)
| | | | - Ayaka Maeda
- School of Bionics, Tokyo University of Technology
| | - Huiyu Jiang
- School of Bionics, Tokyo University of Technology
| | | | | | | | | | | | | |
Collapse
|
22
|
Pallotti F, Bergamini C, Lamperti C, Fato R. The Roles of Coenzyme Q in Disease: Direct and Indirect Involvement in Cellular Functions. Int J Mol Sci 2021; 23:128. [PMID: 35008564 PMCID: PMC8745647 DOI: 10.3390/ijms23010128] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/16/2022] Open
Abstract
Coenzyme Q (CoQ) is a key component of the respiratory chain of all eukaryotic cells. Its function is closely related to mitochondrial respiration, where it acts as an electron transporter. However, the cellular functions of coenzyme Q are multiple: it is present in all cell membranes, limiting the toxic effect of free radicals, it is a component of LDL, it is involved in the aging process, and its deficiency is linked to several diseases. Recently, it has been proposed that coenzyme Q contributes to suppressing ferroptosis, a type of iron-dependent programmed cell death characterized by lipid peroxidation. In this review, we report the latest hypotheses and theories analyzing the multiple functions of coenzyme Q. The complete knowledge of the various cellular CoQ functions is essential to provide a rational basis for its possible therapeutic use, not only in diseases characterized by primary CoQ deficiency, but also in large number of diseases in which its secondary deficiency has been found.
Collapse
Affiliation(s)
- Francesco Pallotti
- Dipartimento di Medicina e Chirurgia, Università Degli Studi dell’Insubria, 21100 Varese, Italy
- SSD Laboratorio Analisi-SMEL Specializzato in Citogenetica e Genetica Medica, ASST Settelaghi-Ospedale di Circolo-Fondazione Macchi, 21100 Varese, Italy
| | - Christian Bergamini
- Dipartimento di Farmacia e Biotecnologie, FABIT, Università Degli Studi di Bologna, 40126 Bologna, Italy;
| | - Costanza Lamperti
- UO Genetica Medica e Neurogenetica Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milano, Italy;
| | - Romana Fato
- Dipartimento di Farmacia e Biotecnologie, FABIT, Università Degli Studi di Bologna, 40126 Bologna, Italy;
| |
Collapse
|
23
|
González-García P, Barriocanal-Casado E, Díaz-Casado ME, López-Herrador S, Hidalgo-Gutiérrez A, López LC. Animal Models of Coenzyme Q Deficiency: Mechanistic and Translational Learnings. Antioxidants (Basel) 2021; 10:antiox10111687. [PMID: 34829558 PMCID: PMC8614664 DOI: 10.3390/antiox10111687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022] Open
Abstract
Coenzyme Q (CoQ) is a vital lipophilic molecule that is endogenously synthesized in the mitochondria of each cell. The CoQ biosynthetic pathway is complex and not completely characterized, and it involves at least thirteen catalytic and regulatory proteins. Once it is synthesized, CoQ exerts a wide variety of mitochondrial and extramitochondrial functions thank to its redox capacity and its lipophilicity. Thus, low levels of CoQ cause diseases with heterogeneous clinical symptoms, which are not always understood. The decreased levels of CoQ may be primary caused by defects in the CoQ biosynthetic pathway or secondarily associated with other diseases. In both cases, the pathomechanisms are related to the CoQ functions, although further experimental evidence is required to establish this association. The conventional treatment for CoQ deficiencies is the high doses of oral CoQ10 supplementation, but this therapy is not effective for some specific clinical presentations, especially in those involving the nervous system. To better understand the CoQ biosynthetic pathway, the biological functions linked to CoQ and the pathomechanisms of CoQ deficiencies, and to improve the therapeutic outcomes of this syndrome, a variety of animal models have been generated and characterized in the last decade. In this review, we show all the animal models available, remarking on the most important outcomes that each model has provided. Finally, we also comment some gaps and future research directions related to CoQ metabolism and how the current and novel animal models may help in the development of future research studies.
Collapse
Affiliation(s)
- Pilar González-García
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| | - Eliana Barriocanal-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - María Elena Díaz-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Sergio López-Herrador
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Luis C. López
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| |
Collapse
|
24
|
Cellular Models for Primary CoQ Deficiency Pathogenesis Study. Int J Mol Sci 2021; 22:ijms221910211. [PMID: 34638552 PMCID: PMC8508219 DOI: 10.3390/ijms221910211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway. However, these technologies usually provide many mutations in genes whose pathogenic effect must be validated. To functionally validate the impact of gene variations in the disease’s onset and progression, different cell models are commonly used. We review here the use of yeast strains for functional complementation of human genes, dermal skin fibroblasts from patients as an excellent tool to demonstrate the biochemical and genetic mechanisms of these diseases and the development of human-induced pluripotent stem cells (hiPSCs) and iPSC-derived organoids for the study of the pathogenesis and treatment approaches.
Collapse
|
25
|
Minimal mitochondrial respiration is required to prevent cell death by inhibition of mTOR signaling in CoQ-deficient cells. Cell Death Discov 2021; 7:201. [PMID: 34349107 PMCID: PMC8338951 DOI: 10.1038/s41420-021-00591-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/01/2021] [Accepted: 05/23/2021] [Indexed: 01/07/2023] Open
Abstract
Coenzyme Q (CoQ) is a lipid-like mobile electron transporter of the mitochondrial respiratory chain. Patients with partial loss-of-function mutations in the CoQ biosynthesis pathway suffer from partial primary CoQ deficiency (MIM 607426). This leads to mitochondrial dysfunction, which presents like mitochondrial disease syndrome (MDS). In addition, many other conditions, including MDS itself, lead to secondary CoQ deficiency. We sought to identify drugs that can alleviate the consequences of the mitochondrial dysfunction that is associated with CoQ deficiency. Loss of the CoQ-biosynthetic enzyme COQ7 prevents CoQ synthesis but leads to the accumulation of the biosynthetic intermediate demethoxyubiquinone (DMQ). Coq7-knockout mouse embryonic fibroblasts (MEFs) die when rapid ATP generation from glycolysis is prevented. We screened for drugs that could rescue cell death under these conditions. All compounds that were identified inhibit mTOR signaling. In the CoQ-deficient cells, the beneficial action mTOR inhibition appears to be mediated by inhibition of protein translation rather than by stimulation of autophagy. We further studied the Coq7-knockout cells to better determine under which conditions mTOR inhibition could be beneficial. We established that Coq7-knockout cells remain capable of a low level of mitochondrial respiration mediated by DMQ. To obtain more profound mitochondrial dysfunction, we created double-knockout mutant MEFs lacking both Coq7, as well as Pdss2, which is required for sidechain synthesis. These cells make neither CoQ nor DMQ, and their extremely small residual respiration depends on uptake of CoQ from the culture medium. Although these cells are healthy in the presence of sufficient glucose for glycolysis and do not require uridine or pyruvate supplementation, mTOR inhibitors were unable to prevent their death in the absence of sufficient glycolysis. We conclude that, for reasons that remain to be elucidated, the energy-sparing benefits of the inhibition of mTOR signaling require a minimally functional respiratory chain.
Collapse
|
26
|
Alcázar-Fabra M, Rodríguez-Sánchez F, Trevisson E, Brea-Calvo G. Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med 2021; 167:141-180. [PMID: 33677064 DOI: 10.1016/j.freeradbiomed.2021.02.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Primary Coenzyme Q (CoQ) deficiencies are clinically heterogeneous conditions and lack clear genotype-phenotype correlations, complicating diagnosis and prognostic assessment. Here we present a compilation of all the symptoms and patients with primary CoQ deficiency described in the literature so far and analyse the most common clinical manifestations associated with pathogenic variants identified in the different COQ genes. In addition, we identified new associations between the age of onset of symptoms and different pathogenic variants, which could help to a better diagnosis and guided treatment. To make these results useable for clinicians, we created an online platform (https://coenzymeQbiology.github.io/clinic-CoQ-deficiency) about clinical manifestations of primary CoQ deficiency that will be periodically updated to incorporate new information published in the literature. Since CoQ primary deficiency is a rare disease, the available data are still limited, but as new patients are added over time, this tool could become a key resource for a more efficient diagnosis of this pathology.
Collapse
Affiliation(s)
- María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain
| | | | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, 35128, Italy; Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova, 35128, Italy.
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain.
| |
Collapse
|
27
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
28
|
Villalba JM, Navas P. Regulation of coenzyme Q biosynthesis pathway in eukaryotes. Free Radic Biol Med 2021; 165:312-323. [PMID: 33549646 DOI: 10.1016/j.freeradbiomed.2021.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q (CoQ, ubiquinone/ubiquinol) is a ubiquitous and unique molecule that drives electrons in mitochondrial respiratory chain and an obligatory step for multiple metabolic pathways in aerobic metabolism. Alteration of CoQ biosynthesis or its redox stage are causing mitochondrial dysfunctions as hallmark of heterogeneous disorders as mitochondrial/metabolic, cardiovascular, and age-associated diseases. Regulation of CoQ biosynthesis pathway is demonstrated to affect all steps of proteins production of this pathway, posttranslational modifications and protein-protein-lipid interactions inside mitochondria. There is a bi-directional relationship between CoQ and the epigenome in which not only the CoQ status determines the epigenetic regulation of many genes, but CoQ biosynthesis is also a target for epigenetic regulation, which adds another layer of complexity to the many pathways by which CoQ levels are regulated by environmental and developmental signals to fulfill its functions in eukaryotic aerobic metabolism.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, 41013, Spain.
| |
Collapse
|
29
|
Amprosi M, Zech M, Steiger R, Nachbauer W, Eigentler A, Gizewski ER, Guger M, Indelicato E, Boesch S. Familial writer's cramp: a clinical clue for inherited coenzyme Q 10 deficiency. Neurogenetics 2021; 22:81-86. [PMID: 32830305 PMCID: PMC7997836 DOI: 10.1007/s10048-020-00624-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/08/2020] [Indexed: 11/23/2022]
Abstract
The spectrum of coenzyme Q10 (CoQ10) deficiency syndromes comprises a variety of disorders, including a form of autosomal recessive cerebellar ataxia (ARCA2) caused by mutations in the AarF domain-containing kinase 3 gene (ADCK3). Due to the potential response to CoQ10 supplementation, a timely diagnosis is crucial. Herein, we describe two siblings with a novel homozygous ADCK3 variant and an unusual presentation consisting of isolated writer's cramp with adult-onset. Cerebellar ataxia developed later in the disease course and remained stable during the follow-up. This report highlights that ARCA2 should be considered in the differential diagnosis of familial writer's cramp.
Collapse
Affiliation(s)
- Matthias Amprosi
- Center for Rare Neurological Diseases, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Zech
- Institut für Neurogenomik, Helmholtz Zentrum München, Oberschleißheim, Munich, Germany
| | - Ruth Steiger
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Nachbauer
- Center for Rare Neurological Diseases, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Eigentler
- Center for Rare Neurological Diseases, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke R Gizewski
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Guger
- Clinic for Neurology 2, Kepler University Hospital GmbH, Linz, Austria
| | - Elisabetta Indelicato
- Center for Rare Neurological Diseases, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sylvia Boesch
- Center for Rare Neurological Diseases, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Keller Sarmiento IJ, Mencacci NE. Genetic Dystonias: Update on Classification and New Genetic Discoveries. Curr Neurol Neurosci Rep 2021; 21:8. [PMID: 33564903 DOI: 10.1007/s11910-021-01095-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Since the advent of next-generation sequencing, the number of genes associated with dystonia has been growing exponentially. We provide here a comprehensive review of the latest genetic discoveries in the field of dystonia and discuss how the growing knowledge of biology underlying monogenic dystonias may influence and challenge current classification systems. RECENT FINDINGS Pathogenic variants in genes without previously confirmed roles in human disease have been identified in subjects affected by isolated or combined dystonia (KMT2B, VPS16, HPCA, KCTD17, DNAJC12, SLC18A2) and complex dystonia (SQSTM1, IRF2BPL, YY1, VPS41). Importantly, the classical distinction between isolated and combined dystonias has become harder to sustain since many genes have been shown to determine multiple dystonic presentations (e.g., ANO3, GNAL, ADCY5, and ATP1A3). In addition, a growing number of genes initially linked to other neurological phenotypes, such as developmental delay, epilepsy, or ataxia, are now recognized to cause prominent dystonia, occasionally in an isolated fashion (e.g., GNAO1, GNB1, SCN8A, RHOBTB2, and COQ8A). Finally, emerging analyses suggest biological convergence of genes linked to different dystonic phenotypes. While our knowledge on the genetic basis of monogenic dystonias has tremendously grown, their clinical boundaries are becoming increasingly blurry. The current phenotype-based classification may not reflect the molecular structure of the disease, urging the need for new systems based on shared biological pathways among dystonia-linked genes.
Collapse
Affiliation(s)
| | - Niccolò Emanuele Mencacci
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
31
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
32
|
Hashemi SS, Zare-Abdollahi D, Bakhshandeh MK, Vafaee A, Abolhasani S, Inanloo Rahatloo K, DanaeeFard F, Farboodi N, Rohani M, Alavi A. Clinical spectrum in multiple families with primary COQ 10 deficiency. Am J Med Genet A 2020; 185:440-452. [PMID: 33215859 DOI: 10.1002/ajmg.a.61983] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022]
Abstract
Coenzyme Q10/ COQ10 , an essential cofactor in the electron-transport chain is involved in ATP production. Primary COQ10 deficiency is clinically and genetically a heterogeneous group of mitochondrial disorders caused by defects in the COQ10 synthesis pathway. Its mode of inheritance is autosomal recessive and it is characterized by metabolic abnormalities and multisystem involvement including neurological features. Mutations in 10 genes have been identified concerning this group of diseases, so far. Among those, variants of the COQ7 gene are very rare and confined to three patients with Asian ancestry. Here, we present the clinical features and results of whole-exome sequencing (WES) of three Iranian unrelated families affected by primary COQ10 deficiency. Three homozygous variants in COQ2, COQ4, and COQ7 genes were identified. Candidate variants of the COQ2 and COQ4 genes were novel and associated with the cerebellar signs and multisystem involvement, whereas, the known variant in COQ7 was associated with a mild phenotype that was initially diagnosed as hereditary spastic paraplegia (HSP). This variant has already been reported in a Canadian girl with similar presentations that also originated from Iran suggesting both patients may share a common ancestor. Due to extensive heterogeneity in this group of disorders, and overlap with other mitochondrial/neurological disorders, WES may be helpful to distinguish primary coenzyme Q10 deficiency from other similar conditions. Given that some features of primary coenzyme Q10 deficiency may improve with exogenous COQ10 , early diagnosis is very important.
Collapse
Affiliation(s)
- Seyyed S Hashemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Davood Zare-Abdollahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad K Bakhshandeh
- Department of Pediatrics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirreza Vafaee
- Department of Orthopedics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Abolhasani
- Department of Neurology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fardad DanaeeFard
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Mohammad Rohani
- Department of Neurology, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
33
|
Wang Y, Hekimi S. Micellization of coenzyme Q by the fungicide caspofungin allows for safe intravenous administration to reach extreme supraphysiological concentrations. Redox Biol 2020; 36:101680. [PMID: 32810741 PMCID: PMC7451649 DOI: 10.1016/j.redox.2020.101680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
Coenzyme Q10 (CoQ10; also known as ubiquinone) is a vital, redox-active membrane component that functions as obligate electron transporter in the mitochondrial respiratory chain, as cofactor in other enzymatic processes and as antioxidant. CoQ10 supplementation has been widely investigated for treating a variety of acute and chronic conditions in which mitochondrial function or oxidative stress play a role. In addition, it is used as replacement therapy in patients with CoQ deficiency including inborn primary CoQ10 deficiency due to mutations in CoQ10-biosynthetic genes as well as secondary CoQ10 deficiency, which is frequently observed in patients with mitochondrial disease syndrome and in other conditions. However, despite many tests and some promising results, whether CoQ10 treatment is beneficial in any indication has remained inconclusive. Because CoQ10 is highly insoluble, it is only available in oral formulations, despite its very poor oral bioavailability. Using a novel model of CoQ-deficient cells, we screened a library of FDA-approved drugs for an activity that could increase the uptake of exogenous CoQ10 by the cell. We identified the fungicide caspofungin as capable of increasing the aqueous solubility of CoQ10 by several orders of magnitude. Caspofungin is a mild surfactant that solubilizes CoQ10 by forming nano-micelles with unique properties favoring stability and cellular uptake. Intravenous administration of the formulation in mice achieves unprecedented increases in CoQ10 plasma levels and in tissue uptake, with no observable toxicity. As it contains only two safe components (caspofungin and CoQ10), this injectable formulation presents a high potential for clinical safety and efficacy. Coenzyme Q10 (CoQ10) can be solubilized by the antifungal drug caspofungin (CF). CF is a mild surfactant and solubilizes CoQ10 in water by forming micellar structures with a high CoQ10 content. CF/CoQ10 micelles have unique properties favoring rapid and efficient uptake into cells and mitochondria. CF/CoQ10 micelles can be intravenously administrated without signs of toxicity. Intravenous administration of CF/CoQ10 in mice achieves unprecedented elevation of CoQ10 plasma levels and tissue uptake.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
34
|
Zhang L, Ashizawa T, Peng D. Primary coenzyme Q10 deficiency due to COQ8A gene mutations. Mol Genet Genomic Med 2020; 8:e1420. [PMID: 32743982 PMCID: PMC7549598 DOI: 10.1002/mgg3.1420] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Primary deficiency of coenzyme Q10 deficiency-4 (COQ10D4) is an autosomal recessive cerebellar ataxia with mitochondrial respiratory chain disfunction. The main clinical manifestation involves early-onset exercise intolerance, progressive cerebellar ataxia, and movement disorders. COQ8A gene mutations are responsible for this disease. Here, we provide clinical, laboratory, and genetic findings of a patient with cerebellar ataxia caused by compound heterozygous mutations in COQ8A gene. METHODS A male patient from a non-consanguineous Chinese family underwent detailed physical and auxiliary examination. After exclusion of acquired causes of ataxia, Friedreich's Ataxia, and common types of spinocerebellar ataxia, the patient was subjected to whole exome sequencing (WES) followed by confirmation of sequence variants using Sanger sequencing. His asymptomatic parents, two brothers and one sister were genotyped for these variants. RESULTS This patient showed early-onset exercise intolerance and progressive cerebellar ataxia, wide-based gait and tremor, accompanied by symptoms of dysautonomia. His serum lactate level was elevated and plasma total Coenzyme Q10 (CoQ10) was decreased. Brain MRI showed cerebellar atrophy, and X-ray of the spine revealed thoraco-lumbar scoliosis. Compound heterozygous mutations in the COQ8A gene were identified through WES: c.1844_1845insG, p.Ser616Leufs*114 and c.902G>A, p.Arg301Gln. After treatment with ubidecarenone, 40 mg three times per day for 2 years, the symptoms dramatically improved. CONCLUSIONS We identified a patient with COQ10D4 caused by novel COQ8A mutations. Our findings widen the spectrum of COQ8A gene mutations and clinical manifestations.
Collapse
Affiliation(s)
- Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Tetsuo Ashizawa
- Houston Methodist Research Institute and Department of Neurology, Houston Methodist Neurological Institute, Houston, Texas, USA
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
35
|
Traschütz A, Schirinzi T, Laugwitz L, Murray NH, Bingman CA, Reich S, Kern J, Heinzmann A, Vasco G, Bertini E, Zanni G, Durr A, Magri S, Taroni F, Malandrini A, Baets J, de Jonghe P, de Ridder W, Bereau M, Demuth S, Ganos C, Basak AN, Hanagasi H, Kurul SH, Bender B, Schöls L, Grasshoff U, Klopstock T, Horvath R, van de Warrenburg B, Burglen L, Rougeot C, Ewenczyk C, Koenig M, Santorelli FM, Anheim M, Munhoz RP, Haack T, Distelmaier F, Pagliarini DJ, Puccio H, Synofzik M. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann Neurol 2020; 88:251-263. [PMID: 32337771 PMCID: PMC7877690 DOI: 10.1002/ana.25751] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.
Collapse
Affiliation(s)
- Andreas Traschütz
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
| | - Tommaso Schirinzi
- Neurorehabilitation Unit, Department of NeurosciencesIRCCS Bambino Gesù Children HospitalRomeItaly
- Department of Systems MedicineUniversity of Roma Tor VergataRomeItaly
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
- Department of Pediatric NeurologyUniversity Children’s HospitalTübingenGermany
| | - Nathan H. Murray
- Morgridge Institute for ResearchMadisonWIUSA
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Craig A. Bingman
- Morgridge Institute for ResearchMadisonWIUSA
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Selina Reich
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
| | - Jan Kern
- Department of Pediatric NeurologyUniversity Children’s HospitalTübingenGermany
| | - Anna Heinzmann
- Brain and Spine Institute (ICM)Sorbonne Université, Pitié‐Salpêtrière University HospitalParisFrance
- AP‐HP, Department of GeneticsPitié‐Salpêtrière University HospitalParisFrance
| | - Gessica Vasco
- Neurorehabilitation Unit, Department of NeurosciencesIRCCS Bambino Gesù Children HospitalRomeItaly
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of NeurosciencesBambino Gesù Children’s Hospital, IRCCSRomeItaly
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of NeurosciencesBambino Gesù Children’s Hospital, IRCCSRomeItaly
| | - Alexandra Durr
- Brain and Spine Institute (ICM)Sorbonne Université, Pitié‐Salpêtrière University HospitalParisFrance
- AP‐HP, Department of GeneticsPitié‐Salpêtrière University HospitalParisFrance
| | - Stefania Magri
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Franco Taroni
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Alessandro Malandrini
- Department of Medicine, Surgery, and NeurosciencesUniversity of Siena, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria SeneseSienaItaly
| | - Jonathan Baets
- Neurogenetics Group, University of AntwerpAntwerpBelgium
- Institute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Peter de Jonghe
- Neurogenetics Group, University of AntwerpAntwerpBelgium
- Institute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Willem de Ridder
- Neurogenetics Group, University of AntwerpAntwerpBelgium
- Institute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Matthieu Bereau
- Service de Neurologie, Université de Franche‐Comté, CHRU de BesançonBesançonFrance
- Unité Extrapyramidale, Département des Neurosciences CliniquesHUG, Faculté de Médecine, Université de GenèveGenevaSwitzerland
| | | | - Christos Ganos
- Department of NeurologyCharité University Medicine BerlinBerlinGermany
| | - A. Nazli Basak
- Suna and Inan Kıraç Foundation, Neurodegeneration Research LaboratoryKUTTAM, Koç University School of MedicineIstanbulTurkey
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of NeurologyIstanbul Faculty of Medicine, Istanbul UniversityIstanbulTurkey
| | - Semra Hiz Kurul
- Departments of Pediatric NeurologyDokuz Eylül University Faculty of MedicineİzmirTurkey
| | - Benjamin Bender
- Department of Diagnostic and Interventional NeuroradiologyUniversity of TübingenTübingenGermany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Thomas Klopstock
- Department of Neurology, Friedrich‐Baur‐InstituteLudwig‐Maximilians University of MunichMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Rita Horvath
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Institute of Genetic MedicineNewcastle UniversityNewcastleUK
| | - Bart van de Warrenburg
- Department of NeurologyRadboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Lydie Burglen
- Centre de Référence Maladies Rares “Malformations et Maladies Congénitales du Cervelet”Paris‐Lyon‐LilleFrance
- Département de Génétique et Embryologie MédicaleAPHP, GHUEP, Hôpital Armand TrousseauParisFrance
- Developmental Brain Disorders LaboratoryImagine Institute, INSERM UMR 1163ParisFrance
| | - Christelle Rougeot
- Centre de Référence Maladies Rares “Malformations et Maladies Congénitales du Cervelet”Paris‐Lyon‐LilleFrance
- Hôpital Femme Mère EnfantService de NeuropédiatrieBronFrance
| | - Claire Ewenczyk
- Brain and Spine Institute (ICM)Sorbonne Université, Pitié‐Salpêtrière University HospitalParisFrance
- AP‐HP, Department of GeneticsPitié‐Salpêtrière University HospitalParisFrance
- Hôpitaux universitaires Pitié Salpêtrière ‐ Charles Foix, Service de GénétiqueParisFrance
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique MoléculaireCHU and Université de MontpellierMontpellierFrance
| | | | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de StrasbourgHôpital de HautepierreStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)INSERM‐U964/CNRS‐UMR7104/Université de StrasbourgIllkirchFrance
| | - Renato P. Munhoz
- Movement Disorders Centre, Toronto Western HospitalUniversity of Toronto, Krembil Research InstituteTorontoOntarioCanada
| | - Tobias Haack
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology, and Pediatric CardiologyUniversity Children's Hospital Duesseldorf, Medical Faculty, Heinrich Heine UniversityDuesseldorfGermany
| | - David J. Pagliarini
- Morgridge Institute for ResearchMadisonWIUSA
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
- INSERM, U1258IllkirchFrance
- CNRS, UMR7104IIllkirchFrance
- Université de StrasbourgStrasbourgFrance
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
| |
Collapse
|
36
|
Characterization of human mitochondrial PDSS and COQ proteins and their roles in maintaining coenzyme Q10 levels and each other's stability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148192. [DOI: 10.1016/j.bbabio.2020.148192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/22/2022]
|
37
|
Liu G, Ma D, Li J, Luo C, Sun Y, Zhang J, Hu P, Tang W, Xu Z. A novel COQ8A missense variant associated with a mild form of primary coenzyme Q10 deficiency type 4. Clin Biochem 2020; 84:93-98. [PMID: 32553579 DOI: 10.1016/j.clinbiochem.2020.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Primary coenzyme Q10 deficiency refers to a group of diseases characterised by reduced levels of coenzyme Q10 in related tissues or cultured cells associated with the 9 genes involved in the biosynthesis of coenzyme Q10. A biallelic pathogenic variant of COQ8A gene causes the occurrence of the primary coenzyme Q10 deficiency type 4. The objective of this study was to investigate the genetic cause of muscle weakness in a proband who had a negative DMD gene test for Becker muscular dystrophy. METHODS The DNA of the proband was sequenced using whole exome sequencing. With the help of the Human Phenotype Ontology (HPO), the range of related candidate pathogenic genes has been reduced to a certain extent based on "muscle weakness" (HP:0001324). In addition, family linkage analysis, phenotypic-genotype check and protein structure modeling were used to explore the genetic cause of the proband. RESULTS The compound heterozygous variant c.836A > C (p.Gln279Pro) and c.1228C > T (p.Arg410Ter) in the COQ8A gene was identified in the proband. According to the 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines for the interpretation of sequence variants, the novel variant c.836A > C could be classified as "likely pathogenic" for the proband. CONCLUSION The p.Gln279Pro was detected in the KxGQ motif and the QKE triplet of the COQ8A protein, whose structures were crucial for the structure and function of the COQ8A protein associated with the biosynthesis of coenzyme Q10 and the proband's clinical symptoms were relatively milder than those previously reported.
Collapse
Affiliation(s)
- Gang Liu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jiahuang Li
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Chunyu Luo
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yun Sun
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingjing Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wenwei Tang
- Department of Radiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
38
|
Traschütz A, Schirinzi T, Laugwitz L, Murray NH, Bingman CA, Reich S, Kern J, Heinzmann A, Vasco G, Bertini E, Zanni G, Durr A, Magri S, Taroni F, Malandrini A, Baets J, de Jonghe P, de Ridder W, Bereau M, Demuth S, Ganos C, Basak AN, Hanagasi H, Kurul SH, Bender B, Schöls L, Grasshoff U, Klopstock T, Horvath R, van de Warrenburg B, Burglen L, Rougeot C, Ewenczyk C, Koenig M, Santorelli FM, Anheim M, Munhoz RP, Haack T, Distelmaier F, Pagliarini DJ, Puccio H, Synofzik M. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann Neurol 2020. [PMID: 32337771 DOI: 10.1002/ana.25751 10.1002/ana.25751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.
Collapse
Affiliation(s)
- Andreas Traschütz
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Tommaso Schirinzi
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy.,Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Nathan H Murray
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Craig A Bingman
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Selina Reich
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Jan Kern
- Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Anna Heinzmann
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Gessica Vasco
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alexandra Durr
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Jonathan Baets
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Peter de Jonghe
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Willem de Ridder
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthieu Bereau
- Service de Neurologie, Université de Franche-Comté, CHRU de Besançon, Besançon, France.,Unité Extrapyramidale, Département des Neurosciences Cliniques, HUG, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| | | | - Christos Ganos
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - A Nazli Basak
- Suna and Inan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semra Hiz Kurul
- Departments of Pediatric Neurology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Bart van de Warrenburg
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Lydie Burglen
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", Paris-Lyon-Lille, France.,Département de Génétique et Embryologie Médicale, APHP, GHUEP, Hôpital Armand Trousseau, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Christelle Rougeot
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", Paris-Lyon-Lille, France.,Hôpital Femme Mère Enfant, Service de Neuropédiatrie, Bron, France
| | - Claire Ewenczyk
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France.,Hôpitaux universitaires Pitié Salpêtrière - Charles Foix, Service de Génétique, Paris, France
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, CHU and Université de Montpellier, Montpellier, France
| | | | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Renato P Munhoz
- Movement Disorders Centre, Toronto Western Hospital, University of Toronto, Krembil Research Institute, Toronto, Ontario, Canada
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM, U1258, Illkirch, France.,CNRS, UMR7104, IIllkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Qin X, Duan Z, Zheng Y, Liu WC, Guo S, Botella JR, Song CP. ABC1K10a, an atypical kinase, functions in plant salt stress tolerance. BMC PLANT BIOLOGY 2020; 20:270. [PMID: 32522160 PMCID: PMC7288548 DOI: 10.1186/s12870-020-02467-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/26/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND ABC1K (Activity of BC1 complex Kinase) is an evolutionarily primitive atypical kinase family widely distributed among prokaryotes and eukaryotes. The ABC1K protein kinases in Arabidopsis are predicted to localize either to the mitochondria or chloroplasts, in which plastid-located ABC1K proteins are involved in the response against photo-oxidative stress and cadmium-induced oxidative stress. RESULTS Here, we report that the mitochondria-localized ABC1K10a functions in plant salt stress tolerance by regulating reactive oxygen species (ROS). Our results show that the ABC1K10a expression is induced by salt stress, and the mutations in this gene result in overaccumulation of ROS and hypersensitivity to salt stress. Exogenous application of the ROS-scavenger GSH significantly represses ROS accumulation and rescues the salt hypersensitive phenotype of abc1k10a. ROS overaccumulation in abc1k10a mutants under salt stress is likely due to the defect in mitochondria electron transport chain. Furthermore, defects of several other mitochondria-localized ABC1K genes also result in salt hypersensitivity. CONCLUSIONS Taken together, our results reveal that the mitochondria-located ABC1K10a regulates mitochondrial ROS production and is a positive regulator of salt tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Xiaohui Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - José Ramón Botella
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
40
|
Awad AM, Nag A, Pham NVB, Bradley MC, Jabassini N, Nathaniel J, Clarke CF. Intragenic suppressor mutations of the COQ8 protein kinase homolog restore coenzyme Q biosynthesis and function in Saccharomyces cerevisiae. PLoS One 2020; 15:e0234192. [PMID: 32479562 PMCID: PMC7263595 DOI: 10.1371/journal.pone.0234192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae Coq8 is a member of the ancient UbiB atypical protein kinase family. Coq8, and its orthologs UbiB, ABC1, ADCK3, and ADCK4, are required for the biosynthesis of coenzyme Q in yeast, E. coli, A. thaliana, and humans. Each Coq8 ortholog retains nine highly conserved protein kinase-like motifs, yet its functional role in coenzyme Q biosynthesis remains mysterious. Coq8 may function as an ATPase whose activity is stimulated by coenzyme Q intermediates and phospholipids. A key yeast point mutant expressing Coq8-A197V was previously shown to result in a coenzyme Q-less, respiratory deficient phenotype. The A197V substitution occurs in the crucial Ala-rich protein kinase-like motif I of yeast Coq8. Here we show that long-term cultures of mutants expressing Coq8-A197V produce spontaneous revertants with the ability to grow on medium containing a non-fermentable carbon source. Each revertant is shown to harbor a secondary intragenic suppressor mutation within the COQ8 gene. The intragenic suppressors restore the synthesis of coenzyme Q. One class of the suppressors fully restores the levels of coenzyme Q and key Coq polypeptides necessary for the maintenance and integrity of the high-molecular mass CoQ synthome (also termed complex Q), while the other class provides only a partial rescue. Mutants harboring the first class of suppressors grow robustly under respiratory conditions, while mutants containing the second class grow more slowly under these conditions. Our work provides insight into the function of this important yet still enigmatic Coq8 family.
Collapse
Affiliation(s)
- Agape M. Awad
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Anish Nag
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Nguyen V. B. Pham
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Michelle C. Bradley
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Nour Jabassini
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Juan Nathaniel
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Traschütz A, Schirinzi T, Laugwitz L, Murray NH, Bingman CA, Reich S, Kern J, Heinzmann A, Vasco G, Bertini E, Zanni G, Durr A, Magri S, Taroni F, Malandrini A, Baets J, de Jonghe P, de Ridder W, Bereau M, Demuth S, Ganos C, Basak AN, Hanagasi H, Kurul SH, Bender B, Schöls L, Grasshoff U, Klopstock T, Horvath R, van de Warrenburg B, Burglen L, Rougeot C, Ewenczyk C, Koenig M, Santorelli FM, Anheim M, Munhoz RP, Haack T, Distelmaier F, Pagliarini DJ, Puccio H, Synofzik M. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann Neurol 2020. [PMID: 32337771 DOI: 10.1002/ana.25751+10.1002/ana.25751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.
Collapse
Affiliation(s)
- Andreas Traschütz
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Tommaso Schirinzi
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy.,Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Nathan H Murray
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Craig A Bingman
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Selina Reich
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Jan Kern
- Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Anna Heinzmann
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Gessica Vasco
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alexandra Durr
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Jonathan Baets
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Peter de Jonghe
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Willem de Ridder
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthieu Bereau
- Service de Neurologie, Université de Franche-Comté, CHRU de Besançon, Besançon, France.,Unité Extrapyramidale, Département des Neurosciences Cliniques, HUG, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| | | | - Christos Ganos
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - A Nazli Basak
- Suna and Inan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semra Hiz Kurul
- Departments of Pediatric Neurology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Bart van de Warrenburg
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Lydie Burglen
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", Paris-Lyon-Lille, France.,Département de Génétique et Embryologie Médicale, APHP, GHUEP, Hôpital Armand Trousseau, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Christelle Rougeot
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", Paris-Lyon-Lille, France.,Hôpital Femme Mère Enfant, Service de Neuropédiatrie, Bron, France
| | - Claire Ewenczyk
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France.,Hôpitaux universitaires Pitié Salpêtrière - Charles Foix, Service de Génétique, Paris, France
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, CHU and Université de Montpellier, Montpellier, France
| | | | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Renato P Munhoz
- Movement Disorders Centre, Toronto Western Hospital, University of Toronto, Krembil Research Institute, Toronto, Ontario, Canada
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM, U1258, Illkirch, France.,CNRS, UMR7104, IIllkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
Berardo A, Quinzii CM. Redefining infantile-onset multisystem phenotypes of coenzyme Q 10-deficiency in the next-generation sequencing era. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:22-35. [PMID: 33426503 PMCID: PMC7791541 DOI: 10.20517/jtgg.2020.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Primary coenzyme Q10 (CoQ10) deficiency encompasses a subset of mitochondrial diseases caused by mutations affecting proteins involved in the CoQ10 biosynthetic pathway. One of the most frequent clinical syndromes associated with primary CoQ10 deficiency is the severe infantile multisystemic form, which, until recently, was underdiagnosed. In the last few years, the availability of genetic screening through whole exome sequencing and whole genome sequencing has enabled molecular diagnosis in a growing number of patients with this syndrome and has revealed new disease phenotypes and molecular defects in CoQ10 biosynthetic pathway genes. Early genetic screening can rapidly and non-invasively diagnose primary CoQ10 deficiencies. Early diagnosis is particularly important in cases of CoQ10 deficient steroid-resistant nephrotic syndrome, which frequently improves with treatment. In contrast, the infantile multisystemic forms of CoQ10 deficiency, particularly when manifesting with encephalopathy, present therapeutic challenges, due to poor responses to CoQ10 supplementation. Administration of CoQ10 biosynthetic intermediate compounds is a promising alternative to CoQ10; however, further pre-clinical studies are needed to establish their safety and efficacy, as well as to elucidate the mechanism of actions of the intermediates. Here, we review the molecular defects causes of the multisystemic infantile phenotype of primary CoQ10 deficiency, genotype-phenotype correlations, and recent therapeutic advances.
Collapse
Affiliation(s)
- Andres Berardo
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
43
|
Lim A, Thomas RH. The mitochondrial epilepsies. Eur J Paediatr Neurol 2020; 24:47-52. [PMID: 31973983 DOI: 10.1016/j.ejpn.2019.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023]
Abstract
Mitochondria are vital organelles within cells that undertake many important metabolic roles, the most significant of which is to generate energy to support organ function. Dysfunction of the mitochondrion can lead to a wide range of clinical features, predominantly affecting organs with a high metabolic demand such as the brain. One of the main neurological manifestations of mitochondrial disease is metabolic epilepsies. These epileptic seizures are more frequently of posterior quadrant and occipital lobe onset, more likely to present with non-convulsive status epilepticus which may last months and be more resistant to treatment from the onset. The onset of can be of any age. Childhood onset epilepsy is a major phenotypic feature in mitochondrial disorders such as Alpers-Huttenlocher syndrome, pyruvate dehydrogenase complex deficiencies, and Leigh syndrome. Meanwhile, adults with classical mitochondrial disease syndrome such as MELAS, MERFF or POLG-related disorders could present with either focal or generalised seizures. There are no specific curative treatments for mitochondrial epilepsy. Generally, the epileptic seizures should be managed by specialist neurologist with appropriate use of anticonvulsants. As a general rule, especially in disorders associated with mutation in POLG, sodium valproate is best avoided because hepato-toxicity can be fulminant and fatal.
Collapse
Affiliation(s)
- Albert Lim
- Department of Paediatrics, Great Northern Children's Hospital, Queen Victoria Rd, Newcastle-Upon-Tyne, NE1 4LP, United Kingdom; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom
| | - Rhys H Thomas
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom; Department of Neurology, Royal Victoria Infirmary, Queen Victoria Rd, Newcastle-Upon-Tyne, NE1 4LP, United Kingdom; Institute of Neuroscience, Henry Wellcome Building, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
44
|
Pralon T, Collombat J, Pipitone R, Ksas B, Shanmugabalaji V, Havaux M, Finazzi G, Longoni P, Kessler F. Mutation of the Atypical Kinase ABC1K3 Partially Rescues the PROTON GRADIENT REGULATION 6 Phenotype in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:337. [PMID: 32269582 PMCID: PMC7109304 DOI: 10.3389/fpls.2020.00337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/06/2020] [Indexed: 05/15/2023]
Abstract
Photosynthesis is an essential pathway providing the chemical energy and reducing equivalents that sustain higher plant metabolism. It relies on sunlight, which is an inconstant source of energy that fluctuates in both intensity and spectrum. The fine and rapid tuning of the photosynthetic apparatus is essential to cope with changing light conditions and increase plant fitness. Recently PROTON GRADIENT REGULATION 6 (PGR6-ABC1K1), an atypical plastoglobule-associated kinase, was shown to regulate a new mechanism of light response by controlling the homeostasis of photoactive plastoquinone (PQ). PQ is a crucial electron carrier existing as a free neutral lipid in the photosynthetic thylakoid membrane. Perturbed homeostasis of PQ impairs photosynthesis and plant acclimation to high light. Here we show that a homologous kinase, ABC1K3, which like PGR6-ABC1K1 is associated with plastoglobules, also contributes to the homeostasis of the photoactive PQ pool. Contrary to PGR6-ABC1K1, ABC1K3 disfavors PQ availability for photosynthetic electron transport. In fact, in the abc1k1/abc1k3 double mutant the pgr6(abc1k1) the photosynthetic defect seen in the abc1k1 mutant is mitigated. However, the PQ concentration in the photoactive pool of the double mutant is comparable to that of abc1k1 mutant. An increase of the PQ mobility, inferred from the kinetics of its oxidation in dark, contributes to the mitigation of the pgr6(abc1k1) photosynthetic defect. Our results also demonstrate that ABC1K3 contributes to the regulation of other mechanisms involved in the adaptation of the photosynthetic apparatus to changes in light quality and intensity such as the induction of thermal dissipation and state transitions. Overall, we suggests that, besides the absolute concentration of PQ, its mobility and exchange between storage and active pools are critical for light acclimation in plants.
Collapse
Affiliation(s)
- Thibaut Pralon
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Joy Collombat
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Rosa Pipitone
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Brigitte Ksas
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), UMR 7265, Biosciences et Biotechnologies Institute of Aix-Marseille, Saint-Paul-lez-Durance, France
| | | | - Michel Havaux
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), UMR 7265, Biosciences et Biotechnologies Institute of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Giovanni Finazzi
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Recherche Agromique (INRA), Interdisciplinary Research Institute of Grenoble - Cell and Plant Physiology Laboratory (IRIG-LPCV), Grenoble, France
| | - Paolo Longoni
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Paolo Longoni,
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Felix Kessler,
| |
Collapse
|
45
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
46
|
Farries G, Bryan K, McGivney CL, McGettigan PA, Gough KF, Browne JA, MacHugh DE, Katz LM, Hill EW. Expression Quantitative Trait Loci in Equine Skeletal Muscle Reveals Heritable Variation in Metabolism and the Training Responsive Transcriptome. Front Genet 2019; 10:1215. [PMID: 31850069 PMCID: PMC6902038 DOI: 10.3389/fgene.2019.01215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/04/2019] [Indexed: 01/10/2023] Open
Abstract
While over ten thousand genetic loci have been associated with phenotypic traits and inherited diseases in genome-wide association studies, in most cases only a relatively small proportion of the trait heritability is explained and biological mechanisms underpinning these traits have not been clearly identified. Expression quantitative trait loci (eQTL) are subsets of genomic loci shown experimentally to influence gene expression. Since gene expression is one of the primary determinants of phenotype, the identification of eQTL may reveal biologically relevant loci and provide functional links between genomic variants, gene expression and ultimately phenotype. Skeletal muscle (gluteus medius) gene expression was quantified by RNA-seq for 111 Thoroughbreds (47 male, 64 female) in race training at a single training establishment sampled at two time-points: at rest (n = 92) and four hours after high-intensity exercise (n = 77); n = 60 were sampled at both time points. Genotypes were generated from the Illumina Equine SNP70 BeadChip. Applying a False Discovery Rate (FDR) corrected P-value threshold (PFDR < 0.05), association tests identified 3,583 cis-eQTL associated with expression of 1,456 genes at rest; 4,992 cis-eQTL associated with the expression of 1,922 genes post-exercise; 1,703 trans-eQTL associated with 563 genes at rest; and 1,219 trans-eQTL associated with 425 genes post-exercise. The gene with the highest cis-eQTL association at both time-points was the endosome-associated-trafficking regulator 1 gene (ENTR1; Rest: PFDR = 3.81 × 10-27, Post-exercise: PFDR = 1.66 × 10-24), which has a potential role in the transcriptional regulation of the solute carrier family 2 member 1 glucose transporter protein (SLC2A1). Functional analysis of genes with significant eQTL revealed significant enrichment for cofactor metabolic processes. These results suggest heritable variation in genomic elements such as regulatory sequences (e.g. gene promoters, enhancers, silencers), microRNA and transcription factor genes, which are associated with metabolic function and may have roles in determining end-point muscle and athletic performance phenotypes in Thoroughbred horses. The incorporation of the eQTL identified with genome and transcriptome-wide association may reveal useful biological links between genetic variants and their impact on traits of interest, such as elite racing performance and adaptation to training.
Collapse
Affiliation(s)
- Gabriella Farries
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Kenneth Bryan
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | - Paul A McGettigan
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Katie F Gough
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John A Browne
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lisa Michelle Katz
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Emmeline W Hill
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,Research and Development, Plusvital Ltd., Dublin, Ireland
| |
Collapse
|
47
|
Mutlu-Albayrak H, Kırat E, Gürbüz G. Childhood-onset autosomal recessive ataxias: a cross-sectional study from Turkey. Neurogenetics 2019; 21:59-66. [PMID: 31741144 DOI: 10.1007/s10048-019-00597-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/30/2019] [Indexed: 01/12/2023]
Abstract
Autosomal recessive ataxias (ARAs) are a heterogeneous group of inherited neurodegenerative disorders that affect the cerebellum, the spinocerebellar tract, and/or the sensory tracts of the spinal cord. This study is aimed at establishing molecular classification and phenotypic correlation of childhood-onset ARAs in Southeast Anatolia of Turkey. Sixty-five children (aged 0 to 18) from 40 unrelated families who were analyzed through hereditary ataxia NGS panel between the years of 2015-2018 were selected for the study. Seventeen different, clinically significant ARA-related pathogenic variants were detected in 33 of 40 families (82.5%), 12 of which were noted to be unreported variants. Among these 33 families, 24 had ATM-related (72.72%), four had SACS-related (12.12%), three had COQ8A-related (9.09%), and two had APTX-related (6.06%) pathogenic variants. The c.3576G>A (p.K1192=) was the most common homozygous pathogenic ATM variant (33.33%) that was associated with milder phenotype of ataxia telangiectasia (AT) with the onset of age of 3. Patients with SACS variants demonstrated developmental delay and progressive ataxia before the age of 3. Slowly progressive ataxia and intellectual disability were the common clinical manifestations of the patients with homozygous c.1396delG (p. E466Rfs*11) pathogenic variant in COQ8A. Homozygous APTX c.689T>G (p.V230G) pathogenic variant was identified in two patients who had chief complaint of ataxic gait onset after puberty. The most common types of ARAs in this region are AT- and Charlevoix-Saguenay-type spastic ataxia. ATM gene analysis should be performed foremost on children presenting early-onset ataxia from Southeastern Anatolia. If there is a concomitant peripheral neuron involvement, SACS gene analysis should be preferred. This valuable data will be a guide for the first step molecular diagnostic approach before requesting the NGS panel for ARA.
Collapse
Affiliation(s)
- Hatice Mutlu-Albayrak
- Department of Pediatric Genetics, Cengiz Gökcek Maternity & Children's Hospital, 15 Temmuz mh. 62 nolu cd, 27010, Gaziantep, Turkey.
| | - Emre Kırat
- Department of Medical Genetics, Ersin Arslan Education and Research Hospital, Gaziantep, Turkey
| | - Gürkan Gürbüz
- Department of Pediatric Neurology, Cengiz Gökcek Maternity & Children's Hospital, Gaziantep, Turkey
| |
Collapse
|
48
|
Galosi S, Barca E, Carrozzo R, Schirinzi T, Quinzii CM, Lieto M, Vasco G, Zanni G, Di Nottia M, Galatolo D, Filla A, Bertini E, Santorelli FM, Leuzzi V, Haas R, Hirano M, Friedman J. Dystonia-Ataxia with early handwriting deterioration in COQ8A mutation carriers: A case series and literature review. Parkinsonism Relat Disord 2019; 68:8-16. [DOI: 10.1016/j.parkreldis.2019.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/27/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
|
49
|
Vázquez-Fonseca L, Schaefer J, Navas-Enamorado I, Santos-Ocaña C, Hernández-Camacho JD, Guerra I, Cascajo MV, Sánchez-Cuesta A, Horvath Z, Siendones E, Jou C, Casado M, Gutiérrez P, Brea-Calvo G, López-Lluch G, Fernández-Ayala DJM, Cortés-Rodríguez AB, Rodríguez-Aguilera JC, Matté C, Ribes A, Prieto-Soler SY, Dominguez-Del-Toro E, Francesco AD, Aon MA, Bernier M, Salviati L, Artuch R, Cabo RD, Jackson S, Navas P. ADCK2 Haploinsufficiency Reduces Mitochondrial Lipid Oxidation and Causes Myopathy Associated with CoQ Deficiency. J Clin Med 2019; 8:jcm8091374. [PMID: 31480808 PMCID: PMC6780728 DOI: 10.3390/jcm8091374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/27/2023] Open
Abstract
Fatty acids and glucose are the main bioenergetic substrates in mammals. Impairment of mitochondrial fatty acid oxidation causes mitochondrial myopathy leading to decreased physical performance. Here, we report that haploinsufficiency of ADCK2, a member of the aarF domain-containing mitochondrial protein kinase family, in human is associated with liver dysfunction and severe mitochondrial myopathy with lipid droplets in skeletal muscle. In order to better understand the etiology of this rare disorder, we generated a heterozygous Adck2 knockout mouse model to perform in vivo and cellular studies using integrated analysis of physiological and omics data (transcriptomics–metabolomics). The data showed that Adck2+/− mice exhibited impaired fatty acid oxidation, liver dysfunction, and mitochondrial myopathy in skeletal muscle resulting in lower physical performance. Significant decrease in Coenzyme Q (CoQ) biosynthesis was observed and supplementation with CoQ partially rescued the phenotype both in the human subject and mouse model. These results indicate that ADCK2 is involved in organismal fatty acid metabolism and in CoQ biosynthesis in skeletal muscle. We propose that patients with isolated myopathies and myopathies involving lipid accumulation be tested for possible ADCK2 defect as they are likely to be responsive to CoQ supplementation.
Collapse
Affiliation(s)
- Luis Vázquez-Fonseca
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and IRP Città della Speranza, 35100 Padova, Italy
| | - Jochen Schaefer
- Department of Neurology, Carl Gustav Carus University Dresden, 01307 Dresden, Germany
| | - Ignacio Navas-Enamorado
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Boston University School of Medicine, Boston, MA 02118, USA
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Juan D Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Ignacio Guerra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
| | - María V Cascajo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Zoltan Horvath
- Department of Neurology, Carl Gustav Carus University Dresden, 01307 Dresden, Germany
| | - Emilio Siendones
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
| | - Cristina Jou
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
- Clinical Chemistry and Pathology Departments, Institut de Recerca Sant Joan de Déu, 08000 Barcelona, Spain
| | - Mercedes Casado
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
- Clinical Chemistry and Pathology Departments, Institut de Recerca Sant Joan de Déu, 08000 Barcelona, Spain
| | - Purificación Gutiérrez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Daniel J M Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Ana B Cortés-Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Juan C Rodríguez-Aguilera
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Cristiane Matté
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. CEP 90035-003, Porto Alegre, RS, Brazil
| | - Antonia Ribes
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
- Secciód'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica I Genètica Molecular, Hospital Clinic, 08000 Barcelona, Spain
| | | | | | - Andrea di Francesco
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and IRP Città della Speranza, 35100 Padova, Italy
| | - Rafael Artuch
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
- Clinical Chemistry and Pathology Departments, Institut de Recerca Sant Joan de Déu, 08000 Barcelona, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Sandra Jackson
- Department of Neurology, Carl Gustav Carus University Dresden, 01307 Dresden, Germany
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain.
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain.
| |
Collapse
|
50
|
Wisidagama DR, Thomas SM, Lam G, Thummel CS. Functional analysis of Aarf domain-containing kinase 1 in Drosophila melanogaster. Dev Dyn 2019; 248:762-770. [PMID: 31175694 DOI: 10.1002/dvdy.66] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The ADCK proteins are predicted mitochondrial kinases. Most studies of these proteins have focused on the Abc1/Coq8 subfamily, which contributes to Coenzyme Q biosynthesis. In contrast, little is known about ADCK1 despite its evolutionary conservation in yeast, Drosophila, Caenorhabditis elegans and mammals. RESULTS We show that Drosophila ADCK1 mutants die as second instar larvae with double mouth hooks and tracheal breaks. Tissue-specific genetic rescue and RNAi studies show that ADCK1 is necessary and sufficient in the trachea for larval viability. In addition, tracheal-rescued ADCK1 mutant adults have reduced lifespan, are developmentally delayed, have reduced body size, and normal levels of basic metabolites. CONCLUSION The larval lethality and double mouth hooks seen in ADCK1 mutants are often associated with reduced levels of the steroid hormone ecdysone, suggesting that this gene could contribute to controlling ecdysone levels or bioavailability. Similarly, the tracheal defects in these animals could arise from defects in intracellular lipid trafficking. These studies of ADCK1 provide a new context to define the physiological functions of this poorly understood member of the ADCK family of predicted mitochondrial proteins.
Collapse
Affiliation(s)
- Dona R Wisidagama
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Stefan M Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Geanette Lam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|