1
|
Bayona-Bafaluy P, Sanz-Pons J, Esteban O, Bueno-Borghi L, Ruiz-Pesini E. Risk Factors Associated With Leber Hereditary Optic Neuropathy due to Rare Mutations in Mitochondrial DNA-Encoded Respiratory Complex I Subunits. Clin Genet 2024. [PMID: 39711423 DOI: 10.1111/cge.14683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
An in-depth analysis of susceptibility factors modifying the penetrance of rare Leber hereditary optic neuropathy-causing mutations in respiratory complex I genes encoded in mitochondrial deoxyribonucleic acid has not been performed. To bridge this gap, we conducted a review of the literature on rare mutations associated with LHON, selected those with substantial evidence of pathogenicity, and performed an in-depth analysis of the various pedigrees. Examining the influences that modify the penetrance of the classical mutations associated with this disease may offer insights into susceptibility factors in individuals carrying the rare mutations.
Collapse
Affiliation(s)
- Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Javier Sanz-Pons
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Olivia Esteban
- Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain
- Servicio de Oftalmología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Luca Bueno-Borghi
- Servicio de Oftalmología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Logan IS. The discovery of a ten-generation m.C1494T pedigree in the east of England with probable links to King Richard III. Eur J Med Genet 2024; 70:104957. [PMID: 38897372 DOI: 10.1016/j.ejmg.2024.104957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
This paper reports the discovery of a m.C1494T pedigree in the east of England made during a search for matrilineal relations of King Richard III. The mitochondrial DNA variant m.C1494T has been associated with aminoglycoside-induced deafness. This variant is very uncommon. although pedigrees with this variant have previously been found in China and Spain. The members of the newly identified pedigree all belong to the mitochondrial haplogroup J1c2c3, which is also the haplogroup of King Richard III. The presence of a few people in the USA from the same haplogroup has previously been noted, and it is now known that one of the people can show his descent from a couple who lived in Nottinghamshire, England, in the late 1700's. The mitochondrial DNA sequence of this man, at present living in the USA, and of his 4th cousin, twice removed, living in Lincoln, England, has shown they belong to haplogroup J1c2c3 and both have the variant m.C1494T; thereby, allowing the production of a multi-generational pedigree originating in the east of England. Fortunately, deafness has not been found in any living member of this large pedigree. It was also noted that the link to the family of King Richard III has not been firmly defined; however the circumstantial evidence is strong as many of his family members lived in this part of England.
Collapse
Affiliation(s)
- Ian S Logan
- 22 Parkside Drive, Exmouth, Devon, EX8 4LB, UK.
| |
Collapse
|
3
|
Chen Z, Chen L, Tan J, Mao Y, Hao M, Li Y, Wang Y, Li J, Wang J, Jin L, Zheng HX. Natural selection shaped the protective effect of the mtDNA lineage against obesity in Han Chinese populations. J Genet Genomics 2024:S1673-8527(24)00129-2. [PMID: 38880354 DOI: 10.1016/j.jgg.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Mitochondria play a key role in lipid metabolism, and mitochondrial DNA (mtDNA) mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function. In this study, we investigated mtDNA variants that may affect obesity risk in 2877 Han Chinese individuals from three independent populations. The association analysis of 16 basal mtDNA haplogroups with body mass index, waist circumference, and waist-to-hip ratio revealed that only haplogroup M7 was significantly negatively correlated with all three adiposity-related anthropometric traits in the overall cohort, verified by the analysis of a single population, i.e., the Zhengzhou population. Furthermore, subhaplogroup analysis suggested that M7b1a1 was the most likely haplogroup associated with a decreased obesity risk, and the variation T12811C (causing Y159H in ND5) harbored in M7b1a1 may be the most likely candidate for altering the mitochondrial function. Specifically, we found that proportionally more nonsynonymous mutations accumulated in M7b1a1 carriers, indicating that M7b1a1 was either under positive selection or subject to a relaxation of selective constraints. We also found that nuclear variants, especially in DACT2 and PIEZO1, may functionally interact with M7b1a1.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Lu Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yizhen Mao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Meng Hao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Jinxi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China; Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China; Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
Battista M, Carelli V, Bottazzi L, Bandello F, Cascavilla ML, Barboni P. Gene therapy for Leber hereditary optic neuropathy. Expert Opin Biol Ther 2024; 24:521-528. [PMID: 38939999 DOI: 10.1080/14712598.2024.2359015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Leber hereditary optic neuropathy (LHON) is among the most frequent inherited mitochondrial disease, causing a severe visual impairment, mostly in young-adult males. The causative mtDNA variants (the three common are m.11778 G>A/MT-ND4, m.3460 G>A/MT-ND1, and m.14484T>C/MT-ND6) by affecting complex I impair oxidative phosphorylation in retinal ganglion cells, ultimately leading to irreversible cell death and consequent functional loss. The gene therapy based on allotopic expression of a wild-type transgene carried by adeno-associated viral vectors (AVV-based) appears a promising approach in mitochondrial disease and its efficacy has been explored in several large clinical trials. AREAS COVERED The review work employed basic concepts in mitochondrial diseases, LHON, and gene therapy procedures. Reports from completed trials in LHON (i.e. RESCUE) were reviewed and critically compared. EXPERT OPINION New challenges, as the improvement of the contralateral untreated eye or the apparently better outcome in patients treated in later stages (6-12 months), were highlighted by the latest gene therapy trials. A better understanding of the pathogenetic mechanisms of the disease together with combined therapy (medical and gene therapy) and optimization in genetic correction approaches could improve the visual outcome of treated eyes.
Collapse
Affiliation(s)
- Marco Battista
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Programma di Neurogenetica, IRCCS Istituto di Scienze Neurologiche di Bologna, Bologna, Italy
| | - Leonardo Bottazzi
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Lucia Cascavilla
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Piero Barboni
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
- Studio Oculistico d'Azeglio, Bologna, Italy
| |
Collapse
|
5
|
Ji Y, Guo N, Lu C, Zhang M, Wang S, Yang L, Li Q, Lv M, Yang Y, Gao Y. Association between mtDNA haplogroups and skeletal fluorosis in Han population residing in drinking water endemic fluorosis area of northern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2397-2406. [PMID: 37660259 DOI: 10.1080/09603123.2023.2253161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
To investigate the association between mtDNA genetic information and the risk of SF, individuals were conducted in the drinking water endemic fluorosis area in northern China, sequenced the whole genome of mtDNA, identified the SNPs and SNVs, analyzed the haplogroups, and diagnosed SF, and then, the effect of mtDNA genetic information on the risk of SF was evaluated. We find that, D5 haplogroup and its specific SNPs reduced the risk, while the D4 haplogroup and its specific SNPs increased the risk of SF. The number of SNVs in coding regions of mitochondrial respiratory chain (MRC) is different between the controls and cases. This suggests that D5 haplogroup may play a protective role in the risk of SF, while the opposite is observed for the D4 haplogroup, this may relate to their specific SNPs. And SNVs that encode the MRC complex may also be associated with the risk of SF.
Collapse
Affiliation(s)
- Yi Ji
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chunqing Lu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Sa Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qiao Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Man Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
6
|
Leber's Hereditary Optic Neuropathy with Mitochondrial DNA Mutation G11778A: A Systematic Literature Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1107866. [PMID: 36743514 PMCID: PMC9893526 DOI: 10.1155/2023/1107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023]
Abstract
Background LHON is a progressive disease with early disease onset and male predominance, usually causing devastating visual loss to patients. These systematic review and meta-analysis are aimed at summarizing epidemiology, disease onset and progression, visual recovery, risk factors, and treatment options of Leber's hereditary optic neuropathy (LHON) with mitochondrial DNA mutation G11778A from current evidence. Methods The PubMed database was examined from its inception date to November 2021. Data from included studies were pooled with either a fixed-effects model or a random-effects model, depending on the results of heterogeneity tests. Sensitivity analysis was conducted to test the robustness of results. Results A total of 41 articles were included in the systematic review for qualitative analysis, and 34 articles were included for quantitative meta-analysis. The pooled estimate of proportion of G11778A mutation among the three primary mutations of mitochondrial DNA (G11778A, G3460A, and T14484C) for LHON was 73% (95% CI: 67% and 79%), and the LHON patients with G11778A mutation included the pooled male ratio estimate of 77% (76% and 79%), the pooled age estimate of 35.3 years (33.2 years and 37.3 years), the pooled onset age estimate of 22.1 years (19.7 years and 24.6 years), the pooled visual acuity estimate of 1.4 LogMAR (1.2 LogMAR and 1.6 LogMAR), and the pooled estimate of spontaneous visual recovery rate (in either 1 eye) of 20% (15% and 27%). Conclusions The G11778A mutation is a prevalent mitochondrial DNA mutation accounting for over half of LHON cases with three primary mutations. Spontaneous visual recovery is rare, and no effective treatment is currently available.
Collapse
|
7
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Xu Q, Sun P, Feng C, Chen Q, Sun X, Chen Y, Tian G. Varying Clinical Phenotypes of Mitochondrial DNA T12811C Mutation: A Case Series Report. Front Med (Lausanne) 2022; 9:912103. [PMID: 35860740 PMCID: PMC9291510 DOI: 10.3389/fmed.2022.912103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
The T12811C mitochondrial DNA (mtDNA) mutation has been reported in Leber hereditary optic neuropathy (LHON) previously, with vision loss as the main manifestation. The involvement of other organ systems, including the central and peripheral nervous system, heart, and extraocular muscles, has not been well described. This case series report investigated four patients with T12811C mtDNA mutation, verified through a next generation sequencing. Two male patients presented with bilateral subacute visual decrease combined with involvement of multiple organ systems: leukoencephalopathy, hypertrophic cardiomyopathy, neurosensory deafness, spinal cord lesion and peripheral neuropathies. Two female patients presented with progressive ptosis and ophthalmoplegia, one of whom also manifested optic atrophy. This study found out that patients harboring T12811C mtDNA mutation manifested not only as vision loss, but also as a multi-system disorder affecting the nervous system, heart, and extraocular muscles.
Collapse
Affiliation(s)
- Qingdan Xu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Ping Sun
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Chaoyi Feng
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Qian Chen
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institute of Brain Science, Fudan University, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- *Correspondence: Yuhong Chen,
| | - Guohong Tian
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- Guohong Tian,
| |
Collapse
|
9
|
Al-Kafaji G, Alharbi MA, Alkandari H, Salem AH, Bakhiet M. Analysis of the entire mitochondrial genome reveals Leber's hereditary optic neuropathy mitochondrial DNA mutations in an Arab cohort with multiple sclerosis. Sci Rep 2022; 12:11099. [PMID: 35773337 PMCID: PMC9246974 DOI: 10.1038/s41598-022-15385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Several mitochondrial DNA (mtDNA) mutations of Leber's hereditary optic neuropathy (LHON) have been reported in patients with multiple sclerosis (MS) from different ethnicities. To further study the involvement of LHON mtDNA mutations in MS in the Arab population, we analyzed sequencing data of the entire mitochondrial genome from 47 unrelated Saudi individuals, 23 patients with relapse-remitting MS (RRMS) and 24 healthy controls. Ten LHON mutations/variants were detected in the patients but were absent in the controls. Of them, the common primary pathogenic mutation m.14484T>C and the rare mutation m.10237T>C were found in one patient, whereas the rare mutation m.9101T>C was found in another patient. The remaining were secondary single nucleotide variants (SNVs) found either in synergy with the primary/rare mutations or individually in other patients. Patients carrying LHON variants also exhibited distinct mtDNA variants throughout the mitochondrial genome, eight were previously reported in patients with LHON. Moreover, five other LHON-related SNVs differed significantly in their prevalence among patients and controls (P < 0.05). This study, the first to investigate LHON mtDNA mutations/variants in a Saudi cohort may suggest a role of these mutations/variants in the pathogenesis or genetic predisposition to MS, a possibility which needs to be explored further in a large-scale.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain. .,Department of molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Salmaniya Avenue, Building 293, Road 2904, Block 329, Manama, Kingdom of Bahrain.
| | - Maram A Alharbi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Hasan Alkandari
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Abdel Halim Salem
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
10
|
Ji Y, Zhang J, Liang M, Meng F, Zhang M, Mo JQ, Wang M, Guan MX. Mitochondrial tRNA variants in 811 Chinese probands with Leber's hereditary optic neuropathy. Mitochondrion 2022; 65:56-66. [PMID: 35623556 DOI: 10.1016/j.mito.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/27/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is the maternal inheritance of eye disorder. LHON-linked mitochondrial DNA (mtDNA) mutations affect the ND1, ND4 or ND6 genes encoding essential subunits of complex I. However, the role of mitochondrial tRNA defects in the pathogenesis of LHON is poorly understood. In this report, Sanger sequence analysis of 22 mitochondrial tRNA genes identified 139 variants in a cohort of 811 Han Chinese probands and 485 control Chinese subjects. Among these, 32 (4 known and 28 novel/putative) tRNA variants in 69 probands may contribute to pathogenesis of LHON, as these exhibited (1) present in <1% of controls; (2) evolutionary conservation; (3) potential and significance of structural and functional modifications. Such variants may have potentially compromised structural and functional aspects in the processing of tRNAs, structure stability, tRNA charging, or codon-anticodon interactions during translation. These 32 variants presented either singly or with multiple mutations, with the primary LHON-linked ND1 3640G>A, ND4 11778G>A or ND6 14484T>C mutations in the probands. The thirty-eight pedigrees carrying only one of tRNA variants exhibited relatively low penetrances of LHON, ranging from 5.7% to 42.9%, with an average of 19%. Strikingly, the average penetrances of optic neuropathy among 33 Chinese families carrying both a known/putative tRNA variant and a primary LHON-associated mtDNA mutation were 40.1%. These findings suggested that mitochondrial tRNA variants represent a significant causative factor for LHON, accounting for 8.75% cases in this cohort. These new insights may lead to beneficial applications in the pathophysiology, disease management, and genetic counseling of LHON.
Collapse
Affiliation(s)
- Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min Liang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Feilong Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei 051730, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California 92123, USA
| | - Meng Wang
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University, Hangzhou, Zhejiang 310058, China; Division of Mitochondrial Biomedicine, Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Guo H, Guo L, Yuan Y, Liang XY, Bi R. Co-occurrence of m.15992A>G and m.15077G>A Is Associated With a High Penetrance of Maternally Inherited Hypertension in a Chinese Pedigree. Am J Hypertens 2022; 35:96-102. [PMID: 34346491 DOI: 10.1093/ajh/hpab123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/25/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) pathogenic variants have been identified to be associated with maternally inherited essential hypertension (MIEH). However, the distinctive clinical features and molecular pathogenesis of MIEH are not fully understood. METHODS In this study, we collected a Chinese MIEH family with extraordinary higher penetrance of essential hypertension (88.89%) and early ages of onset (31-40 years old), and performed clinical and genetic characterization for this family. The complete mitochondrial genome of the proband was sequenced and analyzed. RESULTS The maternally related members in this family were presented with severe increased blood pressure, left ventricular remodeling, and metabolic abnormalities. Through sequencing the entire mtDNA of the proband and performing systematic analysis of the mtDNA variants with a phylogenic approach, we identified a potentially pathogenic tRNA variant (m.15992A>G in the MT-TP gene) that may account for the MIEH in this family. One nonsynonymous variant (m.15077G>A in the MT-CYB gene) was identified to play a synergistic role with m.15992A>G to cause a high penetrance of MIEH. CONCLUSIONS Our results, together with previous findings, have indicated that tRNA pathogenic variants in the mtDNA could act important roles in the pathogenesis of MIEH through reducing mitochondrial translation and disturbing mitochondrial function.
Collapse
Affiliation(s)
- Hao Guo
- Department of Cardiology, 1st Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Cardiology, Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, China
| | - Li Guo
- Department of Radiology, 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yong Yuan
- Department of emergency, 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xin-yue Liang
- Department of Cardiology, 1st Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Cardiology, Graduate School of the Kunming Medical University, Kunming, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
12
|
Zhang XH, Xie Y, Xu QG, Cao K, Xu K, Jin ZB, Li Y, Wei SH. Mitochondrial Mutations in Ethambutol-Induced Optic Neuropathy. Front Cell Dev Biol 2021; 9:754676. [PMID: 34676220 PMCID: PMC8525703 DOI: 10.3389/fcell.2021.754676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Ethambutol-induced optic neuropathy (EON) is a well-recognized ocular complication in patients who take ethambutol as a tuberculosis treatment. The aim of the current study was to investigate the presence of mitochondrial mutations, including OPA1 and Leber's hereditary optic neuropathy (LHON)-mitochondrial DNA (mtDNA), in patients with EON and to determine their effect on clinical features of these patients. Methods: All 47 patients underwent clinical evaluations, including best-corrected visual acuity, fundus examination, and color fundus photography; 37 patients were then followed up over time. Molecular screening methods, including PCR-based sequencing of the OPA1 gene and LHON-mtDNA mutations, together with targeted exome sequencing, were used to detect mutations. Results: We detected 15 OPA1 mutations in 18 patients and two LHON-mtDNA mutations in four patients, for an overall mutation detection rate of 46.8%. The mean presentation age was significantly younger in the patients with the mitochondrial mutations (27.5 years) than in those without mutations (48 years). Fundus examination revealed a greater prevalence of optic disc hyperemia in the patients with mutations (70.5%) than without mutations (48%). Half of the patients with mutations and 91% of the patients without mutations had improved vision. After adjusting for confounders, the logistic regression revealed that the patients with optic disc pallor on the first visit (p = 0.004) or the patients with the mitochondrial mutations (p < 0.001) had a poorer vision prognosis. Conclusion: Our results indicated that carriers with OPA1 mutations might be more vulnerable for the toxicity of EMB to develop EON.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Xie
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Quan-Gang Xu
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| | - Kai Cao
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ke Xu
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Li
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shi-Hui Wei
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| |
Collapse
|
13
|
Sundaramurthy S, SelvaKumar A, Ching J, Dharani V, Sarangapani S, Yu-Wai-Man P. Leber hereditary optic neuropathy-new insights and old challenges. Graefes Arch Clin Exp Ophthalmol 2021; 259:2461-2472. [PMID: 33185731 DOI: 10.1007/s00417-020-04993-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial DNA (mtDNA) disorder with the majority of patients harboring one of three primary mtDNA point mutations, namely, m.3460G>A (MTND1), m.11778G>A (MTND4), and m.14484T>C (MTND6). LHON is characterized by bilateral subacute loss of vision due to the preferential loss of retinal ganglion cells (RGCs) within the inner retina, resulting in optic nerve degeneration. This review describes the clinical features associated with mtDNA LHON mutations and recent insights gained into the disease mechanisms contributing to RGC loss in this mitochondrial disorder. Although treatment options remain limited, LHON research has now entered an active translational phase with ongoing clinical trials, including gene therapy to correct the underlying pathogenic mtDNA mutation.
Collapse
Affiliation(s)
- Srilekha Sundaramurthy
- 1SN Oil and Natural Gas Corporation (ONGC) Department of Genetics & Molecular Biology, Vision Research Foundation, Chennai, India.
| | - Ambika SelvaKumar
- Department of Neuro-Ophthalmology, Medical Research Foundation, Chennai, India
| | - Jared Ching
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Vidhya Dharani
- Department of Neuro-Ophthalmology, Medical Research Foundation, Chennai, India
| | - Sripriya Sarangapani
- 1SN Oil and Natural Gas Corporation (ONGC) Department of Genetics & Molecular Biology, Vision Research Foundation, Chennai, India
| | - Patrick Yu-Wai-Man
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
14
|
Mitochondrial Genetic Heterogeneity in Leber's Hereditary Optic Neuropathy: Original Study with Meta-Analysis. Genes (Basel) 2021; 12:genes12091300. [PMID: 34573281 PMCID: PMC8472268 DOI: 10.3390/genes12091300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022] Open
Abstract
Leber’s hereditary optic neuropathy (LHON) is a mitochondrial disorder that causes loss of central vision. Three primary variants (m.3460G>A, m.11778G>A, and m.14484T>C) and about 16 secondary variants are responsible for LHON in the majority of the cases. We investigated the complete mitochondrial DNA (mtDNA) sequences of 189 LHON patients and found a total of 54 disease-linked pathogenic variants. The primary variants m.11778G>A and m.14484T>C were accountable for only 14.81% and 2.64% cases, respectively. Patients with these two variants also possessed additional disease-associated variants. Among 156 patients who lacked the three primary variants, 16.02% harboured other LHON-associated variants either alone or in combination with other disease-associated variants. Furthermore, we observed that none of the haplogroups were explicitly associated with LHON. We performed a meta-analysis of m.4216T>C and m.13708G>A and found a significant association of these two variants with the LHON phenotype. Based on this study, we recommend the use of complete mtDNA sequencing to diagnose LHON, as we found disease-associated variants throughout the mitochondrial genome.
Collapse
|
15
|
Zhang J, Ji Y, Chen J, Xu M, Wang G, Ci X, Lin B, Mo JQ, Zhou X, Guan MX. Assocation Between Leber's Hereditary Optic Neuropathy and MT-ND1 3460G>A Mutation-Induced Alterations in Mitochondrial Function, Apoptosis, and Mitophagy. Invest Ophthalmol Vis Sci 2021; 62:38. [PMID: 34311469 PMCID: PMC8322717 DOI: 10.1167/iovs.62.9.38] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To investigate the molecular mechanism underlying the Leber's hereditary optic neuropathy (LHON)-linked MT-ND1 3460G>A mutation. Methods Cybrid cell models were generated by fusing mitochondrial DNA-less ρ0 cells with enucleated cells from a patient carrying the m.3460G>A mutation and a control subject. The impact of m.3460G>A mutations on oxidative phosphorylation was evaluated using Blue Native gel electrophoresis, and measurements of oxygen consumption were made with an extracellular flux analyzer. Assessment of reactive oxygen species (ROS) production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Assays for apoptosis and mitophagy were undertaken via immunofluorescence analysis. Results Nineteen Chinese Han pedigrees bearing the m.3460G>A mutation exhibited variable penetrance and expression of LHON. The m.3460G>A mutation altered the structure and function of MT-ND1, as evidenced by reduced MT-ND1 levels in mutant cybrids bearing the mutation. The instability of mutated MT-ND1 manifested as defects in the assembly and activity of complex I, respiratory deficiency, diminished mitochondrial adenosine triphosphate production, and decreased membrane potential, in addition to increased production of mitochondrial ROS in the mutant cybrids carrying the m.3460G>A mutation. The m.3460G>A mutation mediated apoptosis, as evidenced by the elevated release of cytochrome c into the cytosol and increasing levels of the apoptotic-associated proteins BAK, BAX, and PARP, as well as cleaved caspases 3, 7, and 9, in the mutant cybrids. The cybrids bearing the m.3460G>A mutation exhibited reduced levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PTEN-induced kinase 1/parkin-dependent mitophagy. Conclusions Our findings highlight the critical role of m.3460G>A mutation in the pathogenesis of LHON, manifested by mitochondrial dysfunction and alterations in apoptosis and mitophagy.
Collapse
Affiliation(s)
- Juanjuan Zhang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jie Chen
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Man Xu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoping Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaorui Ci
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California, United States
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Shuai J, Shi J, Liang Y, Ji F, Gu L, Yuan Z. Mutational analysis of mitochondrial tRNA genes in 138 patients with Leber's hereditary optic neuropathy. Ir J Med Sci 2021; 191:865-876. [PMID: 34053002 DOI: 10.1007/s11845-021-02656-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mutations in mitochondrial DNA (mtDNA) are the most important causes for Leber's hereditary optic neuropathy (LHON). Of these, three primary mtDNA mutations account for more than 90% cases of this disease. However, to date, little is known regarding the relationship between mitochondrial tRNA (mt-tRNA) variants and LHON. AIM In this study, we aimed to investigate the association between mt-tRNA variants and LHON. METHODOLOGY One hundred thirty-eight LHON patients lacking three primary mutations (ND1 3460G > A, ND4 11778Gxs > A, and ND6 14484 T > C), as well as 266 controls were enrolled in this study. PCR-Sanger sequencing was performed to screen the mt-tRNA variants. Moreover, the phylogenetic analysis, pathogenicity scoring system, as well as mitochondrial functions were performed. RESULTS We identified 8 possible pathogenic variants: tRNAPhe 593 T > C, tRNALeu(UUR) 3275C > T, tRNAGln 4363 T > C, tRNAMet 4435A > G, tRNAAla 5587 T > C, tRNAGlu 14693A > G, tRNAThr 15927G > A, and 15951A > G, which may change the structural and functional impact on the corresponding tRNAs, and subsequently lead to a failure in tRNA metabolism. Furthermore, significant reductions in mitochondrial ATP and MMP levels and an overproduction of ROS were observed in cybrid cells containing these mt-tRNA variants, suggesting that these variants may lead to mitochondrial dysfunction which was responsible for LHON. CONCLUSION Our study indicated that mt-tRNA variants were associated with LHON, and screening for mt-tRNA variants were recommended for early detection, diagnosis, and prevention of maternally inherited LHON.
Collapse
Affiliation(s)
- Jie Shuai
- Department of Ophthalmology, the Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Shi
- Department of Ophthalmology, the Affiliated Hospital of Nantong University, Nantong, China
| | - Ya Liang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Fangfang Ji
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zhilan Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| |
Collapse
|
17
|
Ding Y, Zhuo G, Guo Q, Li M. Leber's Hereditary Optic Neuropathy: the roles of mitochondrial transfer RNA variants. PeerJ 2021; 9:e10651. [PMID: 33552719 PMCID: PMC7819119 DOI: 10.7717/peerj.10651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023] Open
Abstract
Leber’s Hereditary Optic Neuropathy (LHON) was a common maternally inherited disease causing severe and permanent visual loss which mostly affects males. Three primary mitochondrial DNA (mtDNA) mutations, ND1 3460G>A, ND4 11778G>A and ND6 14484T>C, which affect genes encoding respiratory chain complex I subunit, are responsible for >90% of LHON cases worldwide. Families with maternally transmitted LHON show incomplete penetrance with a male preponderance for visual loss, suggesting the involvement of secondary mtDNA variants and other modifying factors. In particular, variants in mitochondrial tRNA (mt-tRNA) are important risk factors for LHON. These variants decreased the tRNA stability, prevent tRNA aminoacylation, influence the post-transcriptionalmodification and affect tRNA maturation. Failure of mt-tRNA metabolism subsequently impairs protein synthesis and expression, folding, and function of oxidative phosphorylation (OXPHOS) enzymes, which aggravates mitochondrial dysfunction that is involved in the progression and pathogenesis of LHON. This review summarizes the recent advances in our understanding of mt-tRNA biology and function, as well as the reported LHON-related mt-tRNA second variants; it also discusses the molecular mechanism behind the involvement of these variants in LHON.
Collapse
Affiliation(s)
- Yu Ding
- Central laboratory, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Guangchao Zhuo
- Central laboratory, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Qinxian Guo
- Central laboratory, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Meiya Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Rovcanin B, Jancic J, Pajic J, Rovcanin M, Samardzic J, Djuric V, Nikolic B, Ivancevic N, Novakovic I, Kostic V. Oxidative Stress Profile in Genetically Confirmed Cases of Leber's Hereditary Optic Neuropathy. J Mol Neurosci 2020; 71:1070-1081. [PMID: 33095398 DOI: 10.1007/s12031-020-01729-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
The mechanisms of the complex pathophysiology of Leber's hereditary optic neuropathy (LHON) are still insufficiently clarified. The role of oxidative stress as an etiological factor has been proposed and demonstrated in vitro, but without conclusive data that rely on clinical samples. The aim of the study was to evaluate and characterize the existence of oxidative stress in the plasma of LHON patients and healthy individuals. Whole mitochondrial genome sequencing has been performed in order to identify primary LHON mutations. For the assessment of oxidative stress, the following biomarkers were determined in plasma: total oxidant status (TOS), total antioxidant status (TAS), and oxidative stress index (OSI), while oxidative damage of cellular proteins was estimated by quantifying advanced oxidation protein products (AOPP). All three primary LHON mutations (m.3460G > A, m.11778G > A and m.14484 T > C) were identified as a genetic cause of the disease, where the most prevalent one was m.11778G > A. LHON patients have a highly significant increase of TOS and a marked decrease of TAS levels, which suggests the existence of substantial oxidative stress. OSI is high in LHON patients, which definitely implies the presence of redox imbalance. Elevated level of AOPP in LHON patients refers to the significant deleterious effects of oxidative stress on cellular proteins. Oxidative stress parameters do not significantly differ between LHON individuals with different primary mutations. Both symptomatic and asymptomatic LHON patients have an augmented level of oxidative stress which suggests that primary mutations exhibit a pro-oxidative phenotype. Gender and smoking habit significantly influence examined biochemical parameters when LHON patients are compared with the control group. Different mitochondrial haplogroups are characterized by altered levels of OSI in LHON group. The absence of physiological correlations between redox parameters reflects the deregulation of homeostatic oxidative/antioxidative balance in LHON patients. This is the greatest series of LHON patients that were evaluated for oxidative stress and the first case-controlled study that evaluated TOS, TAS, OSI, and AOPP and their influence on disease phenotype. It is evident that the presence of oxidative stress represents an important pathophysiological event in LHON and that it could potentially serve as a circulatory biomarker for a therapy efficacy understanding.
Collapse
Affiliation(s)
- Branislav Rovcanin
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovica 8, 11000, Belgrade, Serbia. .,Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovica 8, 11000, Belgrade, Serbia.
| | - Jasna Jancic
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovica 8, 11000, Belgrade, Serbia.,Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovica 8, 11000, Belgrade, Serbia.,Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Pajic
- Radiation Protection Department, Radiation Protection Center, Serbian Institute of Occupational Health Dr Dragomir Karajovic, Belgrade, Serbia
| | - Marija Rovcanin
- The Obstetrics and Gynecology Clinic Narodni Front, Belgrade, Serbia
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Djuric
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Blazo Nikolic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Ivancevic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Novakovic
- Faculty of Medicine, Institute for Human Genetics, University of Belgrade, Belgrade, Serbia
| | - Vladimir Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Sun D, Yao S, Wu F, Deng W, Ma Y, Jin L, Wang J, Wang X. Mitochondrial DNA Haplogroup M7 Confers Disability in a Chinese Aging Population. Front Genet 2020; 11:577795. [PMID: 33193696 PMCID: PMC7645148 DOI: 10.3389/fgene.2020.577795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroups have been associated with functional impairments (i.e., decreased gait speed and grip strength, frailty), which are risk factors of disability. However, the association between mtDNA haplogroups and ADL disability is still unclear. In this study, we conducted an investigation of 25 mtSNPs defining 17 major mtDNA haplogroups for ADL disability in an aging Chinese population. We found that mtDNA haplogroup M7 was associated with an increased risk of disability (OR = 3.18 [95% CI = 1.29-7.83], P = 0.012). The survival rate of the M7 haplogroup group (6.1%) was lower than that of the non-M7 haplogroup group (9.5%) after a 6-year follow-up. In cellular studies, cytoplasmic hybrid (cybrid) cells with the M7 haplogroup showed distinct mitochondrial functions from the M8 haplogroup. Specifically, the respiratory chain complex capacity was significantly lower in M7 haplogroup cybrids than in M8 haplogroup cybrids. Furthermore, an obvious decreased mitochondrial membrane potential and 40% reduced ATP-linked oxygen consumption were found in M7 haplogroup cybrids compared to M8 haplogroup cybrids. Notably, M7 haplogroup cybrids generated more reactive oxygen species (ROS) than M8 haplogroup cybrids. Therefore, the M7 haplogroup may contribute to the risk of disability via altering mitochondrial function to some extent, leading to decreased oxygen consumption, but increased ROS production, which may activate mitochondrial retrograde signaling pathways to impair cellular and tissue function.
Collapse
Affiliation(s)
- Dayan Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Shun Yao
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Fei Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wan Deng
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- Six-sector Industrial Research Institute, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Li JK, Li W, Gao FJ, Qu SF, Hu FY, Zhang SH, Li LL, Wang ZW, Qiu Y, Wang LS, Huang J, Wu JH, Chen F. Mutation Screening of mtDNA Combined Targeted Exon Sequencing in a Cohort With Suspected Hereditary Optic Neuropathy. Transl Vis Sci Technol 2020; 9:11. [PMID: 32855858 PMCID: PMC7422818 DOI: 10.1167/tvst.9.8.11] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/23/2020] [Indexed: 12/02/2022] Open
Abstract
Purpose Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) are the two commonest forms of hereditary optic neuropathy. The aim of this study was to comprehensively investigate the incidence and spectrum of mutations in patients with suspected hereditary optic neuropathy by combining mitochondrial DNA (mtDNA) genome-wide and targeted exon sequencing. Methods A cohort of 1101 subjects were recruited to participate in the study, comprising 177 families (177 probands and their family members, a total of 537 subjects, including 254 patients) and 164 sporadic cases with suspected hereditary optic neuropathy, and 400 unrelated control subjects for genetic analysis: all subjects (including control subjects) underwent a comprehensive ophthalmologic examination and were subjected to sequencing analysis of mtDNA genome-wide and targeted exon. Overall, targeted exon sequencing was used to screen 792 genes associated with common hereditary eye diseases, and the mtDNA genome-wide were screened by next-generation sequencing. Results We found variants detected in 168 (40.2%, 168/418) of the 418 patients screened. Among these, 132 cases (78.6%, 132/168) were detected with known LHON disease-causing mtDNA variants; 40 cases (23.8%, 40/168) were detected with nuclear DNA (ntDNA) variants, which included 36 cases (21.4%, 36/168) with detected OPA1 mutations, 4 patients (2.4%, 4/168) with detected OPA3 mutations, and 2 patients (1.2%, 2/168) with detected TMEM126A homozygous mutation. Coexistence variation (mtDNA/mtDNA [n = 16], ntDNA/ntDNA [n = 4], mtDNA/ntDNA [n = 7]) was found in 27 patients (16.4%, 27/165), including mtDNA/ntDNA coexistence variation that was detected in seven patients. Among these ntDNA mutations, 38 distinct disease-causing variants, including autosomal recessive heterozygous mutations, were detected, which included 22 novel variants and two de novo variants. Total haplogroup distribution showed that 34.5% (29/84) and 28.6% (24/84) of the affected subjects with m.11778G>A belonged to haplogroup D and M, with a high frequency of subhaplogroups D4, D5, and M7. Conclusions The LHON-mtDNA mutations are the commonest genetic defects in this Chinese cohort, followed by the OPA1 mutations. To our knowledge, this is the first comprehensive study of LHON, ADOA, and autosomal recessive optic atrophy combined with mtDNA genome-wide and targeted exon sequencing, as well as haplogroup analysis, in a large cohort of Chinese patients with suspected hereditary optic neuropathy. Our findings provide a powerful basis for genetic counseling in patients with suspected hereditary optic neuropathy. Translational Relevance We applied mtDNA genome-wide sequencing combined with panel-based targeted exon sequencing to explore the pathogenic variation spectrum and genetic characteristics of patients with suspected hereditary optic neuropathy, providing a comprehensive research strategy for clinical assistant diagnosis, treatment, and genetic counseling.
Collapse
Affiliation(s)
- Jian-Kang Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.,BGI-Shenzhen, Shenzhen, China
| | - Wei Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Feng-Juan Gao
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Shou-Fang Qu
- National Institutes for Food and Drug Control, Tiantan Xili Dongcheng District, Beijing, China
| | - Fang-Yuan Hu
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Li-Li Li
- National Institutes for Food and Drug Control, Tiantan Xili Dongcheng District, Beijing, China
| | - Zi-Wei Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Yong Qiu
- BGI-Shenzhen, Shenzhen, China.,MGI, BGI-Shenzhen, Shenzhen, China
| | - Lu-Sheng Wang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.,BGI-Shenzhen, Shenzhen, China
| | - Jie Huang
- National Institutes for Food and Drug Control, Tiantan Xili Dongcheng District, Beijing, China
| | - Ji-Hong Wu
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, China.,MGI, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
21
|
Sukhorukov VS, Voronkova AS, Litvinova NA, Baranich TI, Illarioshkin SN. The Role of Mitochondrial DNA Individuality in the Pathogenesis of Parkinson’s Disease. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Chen D, Zhao Q, Xiong J, Lou X, Han Q, Wei X, Xie J, Li X, Zhou H, Shen L, Yang Y, Fang H, Lyu J. Systematic analysis of a mitochondrial disease-causing ND6 mutation in mitochondrial deficiency. Mol Genet Genomic Med 2020; 8:e1199. [PMID: 32162843 PMCID: PMC7216815 DOI: 10.1002/mgg3.1199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background The m.14487T>C mutation is recognized as a diagnostic mutation of mitochondrial disease during the past 16 years, emerging evidence suggests that mutant loads of m.14487T>C and disease phenotype are not closely correlated. Methods Immortalized lymphocytes were generated by coculturing the Epstein–Barr virus and lymphocytes from m.14487T>C carrier Chinese patient with Leigh syndrome. Fifteen cytoplasmic hybrid (cybrid) cell lines were generated by fusing mtDNA lacking 143B cells with platelets donated by patients. Mitochondrial function was systematically analyzed at transcriptomic, metabolomic, and biochemical levels. Results Unlike previous reports, we found that the assembly of mitochondrial respiratory chain complexes, mitochondrial respiration, and mitochondrial OXPHOS function was barely affected in cybrid cells carrying homoplastic m.14487T>C mutation. Mitochondrial dysfunction associated transcriptomic and metabolomic reprogramming were not detected in cybrid carrying homoplastic m.14487T>C. However, we found that mitochondrial function was impaired in patient‐derived immortalized lymphocytes. Conclusion Our data revealed that m.14487T>C mutation is insufficient to cause mitochondrial deficiency; additional modifier genes may be involved in m.14487T>C‐associated mitochondrial disease. Our results further demonstrated that a caution should be taken by solely use of m.14487T>C mutation for molecular diagnosis of mitochondrial disease.
Collapse
Affiliation(s)
- Deyu Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiongya Zhao
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jingting Xiong
- Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoting Lou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Qinxia Han
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiujuan Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueyun Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Peking University, Beijing, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
23
|
Ding Y, Ye YF, Li MY, Xia BH, Leng JH. Mitochondrial tRNAAla 5601C>T variant may affect the clinical expression of the LHON‑related ND4 11778G>A mutation in a family. Mol Med Rep 2019; 21:201-208. [PMID: 31939618 PMCID: PMC6896293 DOI: 10.3892/mmr.2019.10844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/09/2019] [Indexed: 01/21/2023] Open
Abstract
Certain mutations in mitochondrial DNA (mtDNA) are associated with Leber's hereditary optic neuropathy (LHON). In particular, the well-known NADH dehydrogenase 4 (ND4) m.11778G>A mutation is one of the most common LHON-associated primary mutations worldwide. However, how specific mtDNA mutations, or variants, affect LHON penetrance is not fully understood. The aim of the current study was to explore the relationship between mtDNA mutations and LHON, and to provide useful information for early detection and prevention of this disease. Following the molecular characterization of a Han Chinese family with maternally inherited LHON, four out of eight matrilineal relatives demonstrated varying degrees of both visual impairment and age of onset. Through PCR amplification of mitochondrial genomes and direct Sanger sequencing analysis, a homoplasmic mitochondrial-encoded ND4 m.11778G>A mutation, alongside a set of genetic variations belonging to human mtDNA haplogroup B5b1 were identified. Among these sequence variants, alanine transfer RNA (tRNA)Ala m.5601C>T was of particular interest. This variant occurred at position 59 in the TψC loop and altered the base pairing, which led to mitochondrial RNA (mt-RNA) metabolism failure and defects in mitochondrial protein synthesis. Bioinformatics analysis suggested that the m.5601C>T variant altered tRNAAla structure. Therefore, impaired mitochondrial functions caused by the ND4 m.11778G>A mutation may be enhanced by the mt-tRNAAla m.5601C>T variant. These findings suggested that the tRNAAla m.5601C>T variant might modulate the clinical manifestation of the LHON-associated primary mutation.
Collapse
Affiliation(s)
- Yu Ding
- Central Laboratory, School of Medicine, Hangzhou First People's Hospital, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yu-Feng Ye
- Department of Ophthalmology, School of Medicine, Hangzhou First People's Hospital, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Mei-Ya Li
- Analytical Testing Center, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Bo-Hou Xia
- Department of Pharmacy, Hunan Chinese Medical University, Changsha, Hunan 410208, P.R. China
| | - Jian-Hang Leng
- Central Laboratory, School of Medicine, Hangzhou First People's Hospital, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
24
|
Jancic J, Rovcanin B, Djuric V, Pepic A, Samardzic J, Nikolic B, Novakovic I, Kostic VS. Analysis of secondary mtDNA mutations in families with Leber's hereditary optic neuropathy: Four novel variants and their association with clinical presentation. Mitochondrion 2019; 50:132-138. [PMID: 31743754 DOI: 10.1016/j.mito.2019.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/12/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by subacute optic atrophy which results in severe visual impairment. The penetrance, clinical expression and disease onset are variable, and frequently associated with other extraocular symptoms. The disease phenotype remains to be an intriguing question which is dependent upon primary as well as secondary mtDNA mutations. In this study we analyzed the whole mtDNA sequence in six LHON families from Serbian population. The mtDNA sequencing was performed by Sanger's method and various bioinformatic tools were used for analysis of detected mutations. LHON patients carry all three (m.3460G > A, m.11778G > A and m.14484 T > C) primary mutations, together with numerous secondary mtDNA mutations. Four novel mutations (m.4516G > A, m.8779C > T, m.13138G > A and m.15986insG) in four different families were discovered. The m.8779C > T and m.13138G > A mutations could have a potential influence on LHON symptoms, but the issue of effect of secondary mtDNA mutations in LHON patients needs to be better clarified in future studies.
Collapse
Affiliation(s)
- Jasna Jancic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Branislav Rovcanin
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Djuric
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Pepic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Blazo Nikolic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Novakovic
- Institute for Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir S Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Sun D, Wei Y, Zheng HX, Jin L, Wang J. Contribution of Mitochondrial DNA Variation to Chronic Disease in East Asian Populations. Front Mol Biosci 2019; 6:128. [PMID: 31803756 PMCID: PMC6873657 DOI: 10.3389/fmolb.2019.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the main producers of energy in eukaryotic cells. Mitochondrial dysfunction is associated with specific mitochondrial DNA (mtDNA) variations (haplogroups), and these variations can contribute to human disease. East Asian populations show enrichment of many mitochondrial haplogroups, including A, B, D, G, M7, M8, M9, N9, R9, and exhibit half of the known haplogroups of worldwide. In this review, we summarize the current research in the field of mtDNA variation and associated disease in East Asian populations and discuss the physiological and pathological relevance of mitochondrial biology. mtDNA haplogroups are associated with various metabolic disorders ascribed to altered oxidative phosphorylation. The same mitochondrial haplogroup can show either a negative or positive association with different diseases. Mitochondrial dynamics, mitophagy, and mitochondrial oxidative stress, ultimately influence susceptibility to various diseases. In addition, mitochondrial retrograde signaling pathways may have profound effects on nuclear-mitochondrial interactions, affecting cellular morphology, and function. Other complex networks including proteostasis, mitochondrial unfolded protein response and reactive oxygen species signaling may also play pivotal roles in metabolic performance.
Collapse
Affiliation(s)
- Dayan Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Yang Wei
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong-Xiang Zheng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Mitochondrial DNA Haplogroup N9a Negatively Correlates with Incidence of Hepatocellular Carcinoma in Northern China. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:332-340. [PMID: 31629170 PMCID: PMC6807372 DOI: 10.1016/j.omtn.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 01/10/2023]
Abstract
Mitochondrial DNA (mtDNA) haplogroups are associated with various types of cancer; however, the molecular mechanisms by which mtDNA haplogroups affect primary hepatocellular carcinoma (HCC) are not known. In this study, we carried out a case-control study on 388 HCC patients and 511 geographically matched asymptomatic control subjects in northern China. We found that mtDNA haplogroup N9a and its diagnostic SNP, m.16257C > A, negatively correlated with the incidence of HCC in northern China (odds ratio [OR] 0.290, 95% confidence interval [CI] 0.123–0.685, p = 0.005), particularly in patients with infection of hepatitis B/C virus (HBV/HCV) (for haplogroup N9a: OR 0.213, 95% CI 0.077–0.590, p = 0.003; for m.16257C > A: OR 0.262, 95% CI 0.107–0.643, p = 0.003). However, mtDNA haplogroup N9a is not associated with clinical characteristics of HCC including serum alpha-fetoprotein (AFP) level and tumor size. In addition, cytoplasmic hybrid (cybrid) cells with N9a haplogroup (N9a10a and N9a1) had transcriptome profiles distinct from those with non-N9a (B5, D4, and D5) haplogroups. Gene set enrichment analysis (GSEA) showed that metabolic activity varied significantly between N9a and non-N9a haplogroups. Moreover, cells with haplogroup N9a negatively correlated with cell division and multiple liver cancer pathways compared with non-N9a cells. Although it is still unclear how N9a affects the aforementioned GSEA pathways, our data suggest that mtDNA haplogroup N9a is negatively correlated with the incidence and progression of HCC in northern China.
Collapse
|
27
|
Lyu Y, Xu M, Chen J, Ji Y, Guan MX, Zhang J. Frequency and spectrum of MT-TT variants associated with Leber's hereditary optic neuropathy in a Chinese cohort of subjects. MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:2266-2280. [PMID: 33365504 PMCID: PMC7687527 DOI: 10.1080/23802359.2019.1627921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Leber’s hereditary optic neuropathy (LHON) is a maternally inherited eye disease. In our previous investigations, we have reported the spectrum and frequency of mitochondrial MT-ND1, MT-ND4 and MT-ND6 gene in Chinese LHON population. This study aimed to assess the molecular epidemiology of MT-TT mutations in Chinese families with LHON. A cohort of 352 Chinese Han probands lacking the known LHON-associated mtDNA mutations and 376 control subjects underwent molecular analysis of mtDNA. All variants were evaluated for evolutionary conservation, structural and functional consequences. Fifteen variants were identified in the MT-TT gene by mitochondrial genome analysis of LHON pedigrees, which was substantially higher than that of individuals from general Chinese populations. The incidences of the two known LHON-associated mutations, m.15927G > A and m.15951A > G, were 2.27% and 1.14%, respectively. Nine putative LHON-associated variants were identified in 20 probands, translated into 2.1% cases of this cohort. Moreover, mtDNAs in 41 probands carrying the MT-TT mutation(s) were widely dispersed among nine Eastern Asian haplogroups. Our results suggest that the MT-TT gene is a mutational hotspot for these 352 Chinese families lacking the known LHON-associated mutations. These data further showed the molecular epidemiology of MT-TT mutations in Chinese Han LHON pedigrees.
Collapse
Affiliation(s)
- Yuanyuan Lyu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Man Xu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - YanChun Ji
- School of Medicine, Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Medicine, Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
28
|
Hwang IW, Kim K, Choi EJ, Jin HJ. Association of mitochondrial haplogroup F with physical performance in Korean population. Genomics Inform 2019; 17:e11. [PMID: 30929412 PMCID: PMC6459174 DOI: 10.5808/gi.2019.17.1.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Athletic performance is a complex multifactorial trait involving genetic and
environmental factors. The heritability of an athlete status was reported to be
about 70% in a twin study, and at least 155 genetic markers are known to be
related with athlete status. Mitochondrial DNA (mtDNA) encodes essential
proteins for oxidative phosphorylation, which is related to aerobic capacity.
Thus, mtDNA is a candidate marker for determining physical performance. Recent
studies have suggested that polymorphisms of mtDNA are associated with athlete
status and/or physical performance in various populations. Therefore, we
analyzed mtDNA haplogroups to assess their association with the physical
performance of Korean population. The 20 mtDNA haplogroups were determined using
the SNaPshot assay. Our result showed a significant association of the
haplogroup F with athlete status (odds ratio, 3.04; 95% confidence interval,
1.094 to 8.464; p = 0.012). Athletes with haplogroup F (60.64 ±
3.04) also demonstrated a higher Sargent jump than athletes with other
haplogroups (54.28 ± 1.23) (p = 0.041). Thus, our data imply
that haplogroup F may play a crucial role in the physical performance of Korean
athletes. Functional studies with larger sample sizes are necessary to further
substantiate these findings.
Collapse
Affiliation(s)
- In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Kicheol Kim
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Eun Ji Choi
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
29
|
Govindaraj P, Rani B, Sundaravadivel P, Vanniarajan A, Indumathi KP, Khan NA, Dhandapany PS, Rani DS, Tamang R, Bahl A, Narasimhan C, Rakshak D, Rathinavel A, Premkumar K, Khullar M, Thangaraj K. Mitochondrial genome variations in idiopathic dilated cardiomyopathy. Mitochondrion 2019; 48:51-59. [PMID: 30910572 DOI: 10.1016/j.mito.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/19/2019] [Indexed: 12/22/2022]
Abstract
Idiopathic dilated cardiomyopathy (DCM) is a structural heart disease with strong genetic background. The aim of this study was to assess the role of mitochondrial DNA (mtDNA) variations and haplogroups in Indian DCM patients. Whole mtDNA analysis of 221 DCM patients revealed 48 novel, 42 disease-associated and 97 private variations. The frequency of reported variations associated with hearing impairment, DEAF, SNHL and LHON are significantly high in DCM patients than controls. Haplogroups H and HV were over represented in DCM than controls. Functional analysis of two private variations (m.8812A>G & m.10320G>A) showed decrease in mitochondrial functions, suggesting the role of mtDNA variations in DCM.
Collapse
Affiliation(s)
- Periyasamy Govindaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Bindu Rani
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | | | - K P Indumathi
- Department of Biochemistry, Kongu Arts and Science College, Erode, India
| | | | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and disease, Institute of Stem Cell Biology and Regenerative Medicine(inStem), Bengaluru, India; The Knight Cardiovascular Institute, Departments of Medicine, Molecular and Medical Genetics, Oregon Health and Science University, Portland, USA
| | - Deepa Selvi Rani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Rakesh Tamang
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ajay Bahl
- Department of Cardiology, PGIMER, Chandigarh, India
| | | | | | - Andiappan Rathinavel
- Department of Cardio-Thoracic Surgery, Madurai Medical College & Government Rajaji hospital, Madurai, India
| | - Kumpati Premkumar
- Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | |
Collapse
|
30
|
Bybjerg-Grauholm J, Hagen CM, Gonçalves VF, Bækvad-Hansen M, Hansen CS, Hedley PL, Kanters JK, Nielsen J, Theisen M, Mors O, Kennedy J, Als TD, Demur AB, Nordentoft M, Børglum A, Mortensen PB, Werge TM, Hougaard DM, Christiansen M. Complex spatio-temporal distribution and genomic ancestry of mitochondrial DNA haplogroups in 24,216 Danes. PLoS One 2018; 13:e0208829. [PMID: 30543675 PMCID: PMC6292624 DOI: 10.1371/journal.pone.0208829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroups (hgs) are evolutionarily conserved sets of mtDNA SNP-haplotypes with characteristic geographical distribution. Associations of hgs with disease and physiological characteristics have been reported, but have frequently not been reproducible. Using 418 mtDNA SNPs on the PsychChip (Illumina), we assessed the spatio-temporal distribution of mtDNA hgs in Denmark from DNA isolated from 24,642 geographically un-biased dried blood spots (DBS), collected from 1981 to 2005 through the Danish National Neonatal Screening program. ADMIXTURE was used to establish the genomic ancestry of all samples using a reference of 100K+ autosomal SNPs in 2,248 individuals from nine populations. Median-joining analysis determined that the hgs were highly variable, despite being typically Northern European in origin, suggesting multiple founder events. Furthermore, considerable heterogeneity and variation in nuclear genomic ancestry was observed. Thus, individuals with hg H exhibited 95%, and U hgs 38.2% - 92.5%, Danish ancestry. Significant clines between geographical regions and rural and metropolitan populations were found. Over 25 years, macro-hg L increased from 0.2% to 1.2% (p = 1.1*E-10), and M from 1% to 2.4% (p = 3.7*E-8). Hg U increased among the R macro-hg from 14.1% to 16.5% (p = 1.9*E-3). Genomic ancestry, geographical skewedness, and sub-hg distribution suggested that the L, M and U increases are due to immigration. The complex spatio-temporal dynamics and genomic ancestry of mtDNA in the Danish population reflect repeated migratory events and, in later years, net immigration. Such complexity may explain the often contradictory and population-specific reports of mito-genomic association with disease.
Collapse
Affiliation(s)
| | - Christian M. Hagen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | | | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Christine S. Hansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Paula L. Hedley
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jimmi Nielsen
- Aalborg Psychiatric Hospital. Aalborg University Hospital, Aalborg, Denmark
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ole Mors
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - James Kennedy
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Thomas D. Als
- Institute of Medical Genetics, Aarhus University, Aarhus, Denmark
| | - Alfonso B. Demur
- Mental Health Centre, Sct Hans, Capital Region of Denmark, Denmark
| | | | - Anders Børglum
- Institute of Medical Genetics, Aarhus University, Aarhus, Denmark
| | - Preben B. Mortensen
- Center for Register Research, Institute of Economics, Aarhus University, Århus, Denmark
| | - Thomas M. Werge
- Mental Health Centre, Sct Hans, Capital Region of Denmark, Denmark
| | - David M. Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
31
|
Hagen CM, Gonçalves VF, Hedley PL, Bybjerg-Grauholm J, Bækvad-Hansen M, Hansen CS, Kanters JK, Nielsen J, Mors O, Demur AB, Als TD, Nordentoft M, Børglum A, Mortensen PB, Kennedy J, Werge TM, Hougaard DM, Christiansen M. Schizophrenia-associated mt-DNA SNPs exhibit highly variable haplogroup affiliation and nuclear ancestry: Bi-genomic dependence raises major concerns for link to disease. PLoS One 2018; 13:e0208828. [PMID: 30532134 PMCID: PMC6287820 DOI: 10.1371/journal.pone.0208828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/23/2018] [Indexed: 11/19/2022] Open
Abstract
Mitochondria play a significant role in human diseases. However, disease associations with mitochondrial DNA (mtDNA) SNPs have proven difficult to replicate. An analysis of eight schizophrenia-associated mtDNA SNPs, in 23,743 Danes without a psychiatric diagnosis and 2,538 schizophrenia patients, revealed marked inter-allelic differences in mitochondrial haplogroup affiliation and nuclear ancestry. This bi-genomic dependence could entail population stratification. Only two mitochondrial SNPs, m.15043A and m.15218G, were significantly associated with schizophrenia. However, these associations disappeared when corrected for haplogroup affiliation and nuclear ancestry. The extensive bi-genomic dependence documented here is a major concern when interpreting historic, as well as designing future, mtDNA association studies.
Collapse
Affiliation(s)
- Christian M. Hagen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | | | - Paula L. Hedley
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | | | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Christine S. Hansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jimmi Nielsen
- Aalborg Psychiatric Hospital, Aalborg University Hospital, Aalborg, Denmark
| | - Ole Mors
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alfonso B. Demur
- Mental Health Centre, Sct Hans, Capital Region of Denmark, Denmark
| | - Thomas D. Als
- Institute of Medical Genetics, Aarhus University, Aarhus, Denmark
| | | | - Anders Børglum
- Institute of Medical Genetics, Aarhus University, Aarhus, Denmark
| | - Preben B. Mortensen
- Center for Register Research, Institute of Economics, Aarhus University, Aarhus, Denmark
| | - James Kennedy
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Thomas M. Werge
- Mental Health Centre, Sct Hans, Capital Region of Denmark, Denmark
| | - David M. Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
32
|
Ji J, Xu M, Wang R, Wang Y, Qin Y, Li L, Zheng H, Yang S, Li S, Miao D, Jin L, Zhou L, Ling X, Xia Y, Lu C, Wang X. Human mitochondrial DNA haplogroup M8a influences the penetrance of m.8684C>T in Han Chinese men with non-obstructive azoospermia. Reprod Biomed Online 2018; 37:480-488. [PMID: 30236824 DOI: 10.1016/j.rbmo.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
RESEARCH QUESTION What is the role of mitochondrial DNA (mtDNA) in the pathogenesis of non-obstructive azoospermia (NOA)? DESIGN mtDNA genome sequencing followed by an independent population validation were performed in 628 NOA cases and 584 healthy controls. Antioxidant capacity of serum was evaluated in 54 randomly selected cases out of 536 and 49 out of 489 controls. RESULTS In the screening stage, 13 mtDNA haplogroups (hg) were ascertained, and 10 susceptible variants were observed. In the validation stage, hg M8* in individuals was found to be associated with increased risk of NOA [odds ratio (OR) 2.61, 95% confidence interval (CI) 1.47-4.61] (P=0.001). Unexpectedly, the frequency of m.8684C>T, the defining marker for hg M8a, was also higher in NOA (OR 4.14, 95% CI 1.56-11.03) (P=0.002). Subsequently, the frequency distributions were compared among the sub-hg of hg M8* (including hg M8a, C and Z) and, intriguingly, no significance was found in hg C and Z. Additionally, the level of total antioxidant capacity was significantly decreased (P<0.05) compared with the control group. CONCLUSIONS hg M8a background in general played an active role in the penetrance of 8684C>T in NOA, and mtDNA genetic variants (causing low antioxidant levels) might increase mtDNA damage and impair normal spermatogenesis.
Collapse
Affiliation(s)
- Juan Ji
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing210029, China
| | - Miaofei Xu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing210029, China
| | - Rong Wang
- Research Centre for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Ying Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing210029, China
| | - Yufeng Qin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle ParkNC27709, USA
| | - Lei Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai200433, China
| | - Hongxiang Zheng
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai200433, China
| | - Shuping Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai200433, China
| | - Shilin Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai200433, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing210029, China; Research Centre for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai200433, China
| | - Lin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing210029, China
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing210029, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing210029, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing210029, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing210029, China.
| |
Collapse
|
33
|
Mitochondrial DNA variants modulate genetic susceptibility to Parkinson's disease in Han Chinese. Neurobiol Dis 2018; 114:17-23. [DOI: 10.1016/j.nbd.2018.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/18/2018] [Accepted: 02/21/2018] [Indexed: 12/26/2022] Open
|
34
|
Caporali L, Iommarini L, La Morgia C, Olivieri A, Achilli A, Maresca A, Valentino ML, Capristo M, Tagliavini F, Del Dotto V, Zanna C, Liguori R, Barboni P, Carbonelli M, Cocetta V, Montopoli M, Martinuzzi A, Cenacchi G, De Michele G, Testa F, Nesti A, Simonelli F, Porcelli AM, Torroni A, Carelli V. Peculiar combinations of individually non-pathogenic missense mitochondrial DNA variants cause low penetrance Leber's hereditary optic neuropathy. PLoS Genet 2018; 14:e1007210. [PMID: 29444077 PMCID: PMC5828459 DOI: 10.1371/journal.pgen.1007210] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 02/27/2018] [Accepted: 01/21/2018] [Indexed: 12/23/2022] Open
Abstract
We here report on the existence of Leber’s hereditary optic neuropathy (LHON) associated with peculiar combinations of individually non-pathogenic missense mitochondrial DNA (mtDNA) variants, affecting the MT-ND4, MT-ND4L and MT-ND6 subunit genes of Complex I. The pathogenic potential of these mtDNA haplotypes is supported by multiple evidences: first, the LHON phenotype is strictly inherited along the maternal line in one very large family; second, the combinations of mtDNA variants are unique to the two maternal lineages that are characterized by recurrence of LHON; third, the Complex I-dependent respiratory and oxidative phosphorylation defect is co-transferred from the proband’s fibroblasts into the cybrid cell model. Finally, all but one of these missense mtDNA variants cluster along the same predicted fourth E-channel deputed to proton translocation within the transmembrane domain of Complex I, involving the ND1, ND4L and ND6 subunits. Hence, the definition of the pathogenic role of a specific mtDNA mutation becomes blurrier than ever and only an accurate evaluation of mitogenome sequence variation data from the general population, combined with functional analyses using the cybrid cell model, may lead to final validation. Our study conclusively shows that even in the absence of a clearly established LHON primary mutation, unprecedented combinations of missense mtDNA variants, individually known as polymorphisms, may lead to reduced OXPHOS efficiency sufficient to trigger LHON. In this context, we introduce a new diagnostic perspective that implies the complete sequence analysis of mitogenomes in LHON as mandatory gold standard diagnostic approach. Leber’s hereditary optic neuropathy (LHON) is a common cause of maternally inherited vision loss. In the large majority of cases LHON is due to mitochondrial DNA (mtDNA) point mutations, clearly distinct from common polymorphisms normally found in the general population, affecting the mitochondrial function, thus defined as pathogenic. For the first time, we here demonstrate, on the genetic and functional ground, that unusual combinations of otherwise polymorphic and non-pathogenic mtDNA variants are sufficient for causing low-penetrance maternally inherited optic neuropathy in pedigrees fitting the LHON clinical diagnosis. Our findings bridge the blurry border between “pathogenic” and “neutral” mutations in an overall continuum that truly depends on the specific and sometime unique combination of variants characterizing each mitogenome. As a result, we conclude that, for an accurate diagnosis of LHON and possibly of other mitochondrial diseases, the only approach that can disclose all possible causative sources is complete mitogenome sequencing.
Collapse
Affiliation(s)
- Leonardo Caporali
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessandra Maresca
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Maria Lucia Valentino
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Francesca Tagliavini
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Valentina Del Dotto
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Rocco Liguori
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Michele Carbonelli
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Studio Oculistico D’Azeglio, Bologna, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Andrea Martinuzzi
- IRCCS "E. Medea" Scientific Institute Conegliano-Pieve di Soligo Research Center, Pieve di Soligo, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giuseppe De Michele
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Anna Nesti
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Bologna, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Valerio Carelli
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
35
|
Hu C, He X, Li X, Sun L, Zheng C, Liang Q, Lv Z, Huang Z, Qi K, Yuan H, Zhu X, Yang Y, Zhou Q, Yang Z. Comparative Study for the Association of Mitochondrial Haplogroup F+ and Metabolic Syndrome between Longevity and Control Population in Guangxi Zhuang Autonomous Region, China. J Nutr Health Aging 2018; 22:302-307. [PMID: 29380859 DOI: 10.1007/s12603-017-0915-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Our previous study suggested that mitochondrial haplogroup F (mtDNA F) was a longevity-associated biomarker, but the effect of mitochondrial haplogroup F on longevity individuals with metabolic syndrome (MetS) was not clear. Thus we explored the association between mtDNA F and MetS among longevity and control population in Guangxi Zhuang Autonomous Region, China. METHOD A total of 793 individuals consisting of 307 long-lived participants and 486 local healthy controls were involved in this study. Genotypes of mtDNA F were amplified by polymerase chain reaction and Sanger sequenced. MetS was defined according to the revised National Cholesterol Education Program's Adult Treatment Panel III (NCEP ATPIII ) criteria. RESULTS The prevalence of MetS in longevity group (28.0%) was higher than that (18.5%) in control group (P=0.002). Through the case-control stratify analysis, the prevalence of MetS in mtDNA F+ longevity individuals (29.8%) was 4.6 fold higher than that (5.3%) in local control group (P<0.001). However, after further longevity-only analysis, no association between MetS and mtDNA F+ in longevity group was observed (P=0.167). Following same analysis of two variables in control group, we found that the prevalence of MetS in mtDNA F- (95.8%) was higher than that in mtDNA F+ (5.3%); conversely, the prevalence of non-metabolic syndrome (NMetS) in mtDNA F+ (94.7%) was markedly higher than that in mtDNA F- (4.2%) (P<0.001). CONCLUSION We demonstrated that mtDNA F+ , as a molecuar biomarker, might not only confer beneficial effect to resistance against MetS but also function as a positive factor for long-life span among the population in Guangxi Zhuang Autonomous Region, China.
Collapse
Affiliation(s)
- C Hu
- Ze Yang, Ph.D. The MOH key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology. No.1 DaHua Road, Dong Dan, Beijing 100730, P.R.China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Finsterer J, Mancuso M, Pareyson D, Burgunder JM, Klopstock T. Mitochondrial disorders of the retinal ganglion cells and the optic nerve. Mitochondrion 2017; 42:1-10. [PMID: 29054473 DOI: 10.1016/j.mito.2017.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To summarise and discuss recent findings and future perspectives concerning mitochondrial disorders (MIDs) affecting the retinal ganglion cells and the optic nerve (mitochondrial optic neuropathy. MON). METHOD Literature review. RESULTS MON in MIDs is more frequent than usually anticipated. MON may occur in specific as well as non-specific MIDs. In specific and non-specific MIDs, MON may be a prominent or non-prominent phenotypic feature and due to mutations in genes located either in the mitochondrial DNA (mtDNA) or the nuclear DNA (nDNA). Clinically, MON manifests with painless, bilateral or unilateral, slowly or rapidly progressive visual impairment and visual field defects. In some cases, visual impairment may spontaneously recover. The most frequent MIDs with MON include LHON due to mutations in mtDNA-located genes and autosomal dominant optic atrophy (ADOA) or autosomal recessive optic atrophy (AROA) due to mutations in nuclear genes. Instrumental investigations for diagnosing MON include fundoscopy, measurement of visual acuity, visual fields, and color vision, visually-evoked potentials, optical coherence tomography, fluorescein angiography, electroretinography, and MRI of the orbita and cerebrum. In non-prominent MON, work-up of the muscle biopsy with transmission electron microscopy may indicate mitochondrial destruction. Treatment is mostly supportive but idebenone has been approved for LHON and experimental approaches are promising. CONCLUSIONS MON needs to be appreciated, requires extensive diagnostic work-up, and supportive treatment should be applied although loss of vision, as the most severe outcome, can often not be prevented.
Collapse
Affiliation(s)
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - Davide Pareyson
- Department of Clinical Neurosciences, C. Besta Neurological Institute, IRCCS Foundation, Milan, Italy.
| | - Jean-Marc Burgunder
- Department of Neurology, University of Bern, Switzerland; Department of Neurology, Sun Yat Sen University, Guangzhou, China; Department of Neurology, Sichuan University, Chendgu, China.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur Institute, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
37
|
Ji Y, Qiao L, Liang X, Zhu L, Gao Y, Zhang J, Jia Z, Wei QP, Liu X, Jiang P, Guan MX. Leber's hereditary optic neuropathy is potentially associated with a novel m.5587T>C mutation in two pedigrees. Mol Med Rep 2017; 16:8997-9004. [PMID: 28990081 DOI: 10.3892/mmr.2017.7734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/21/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial (mt)DNA mutations have been revealed to be associated with Leber's hereditary optic neuropathy (LHON). The present study conducted clinical, genetic and molecular evaluations of two Han Chinese families. A total of 4 (3 men and 1 female) out of 14 matrilineal relatives in the families exhibited visual impairment with variable severity and age of onset. The average age of onset of visual loss was 20.5 years old. Molecular analysis of the complete mitochondrial genome in these pedigrees demonstrated that the three primary mutations associated with LHON were not detected; however, the homoplasmic m.5587T>C mutation was identified, which was localized at the end of the mitochondrially encoded transfer (t)RNA alanine gene and may alter the tertiary structure of this tRNA. Subsequently, this structural alteration may result in tRNA metabolism failure. In addition, distinct sets of mtDNA polymorphisms belonging to haplogroup F1 were detected in both families tested. The findings of the present study suggested that the m.5587T>C mutation may be involved in the pathogenesis of visual impairment. In addition, the mtDNA variant m.15024G>A(p.C93H) in the mitochondrially encoded cytochrome B gene was detected in both families, which exhibited evolutionary conservation, indicating it may serve a potential modifying role in the development of visual impairment associated with m.5587T>C mutation in these families. Furthermore, other modifying factors, including nuclear modifier genes, and environmental and personal factors may also contribute to the development of LHON in subjects carrying this mutation.
Collapse
Affiliation(s)
- Yanchun Ji
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Lihua Qiao
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiaoyang Liang
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Ling Zhu
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Yinglong Gao
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325025, P.R. China
| | - Zidong Jia
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Qi-Ping Wei
- Department of Ophthalmology, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xiaoling Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325025, P.R. China
| | - Pingping Jiang
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Min-Xin Guan
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
38
|
Venter M, van der Westhuizen FH, Elson JL. The aetiology of cardiovascular disease: a role for mitochondrial DNA? Cardiovasc J Afr 2017; 29:122-132. [PMID: 28906532 PMCID: PMC6009096 DOI: 10.5830/cvja-2017-037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease (CVD) is a world-wide cause of mortality in humans and its incidence is on the rise in Africa. In this review, we discuss the putative role of mitochondrial dysfunction in the aetiology of CVD and consequently identify mitochondrial DNA (mtDNA) variation as a viable genetic risk factor to be considered. We then describe the contribution and pitfalls of several current approaches used when investigating mtDNA in relation to complex disease. We also propose an alternative approach, the adjusted mutational load hypothesis, which would have greater statistical power with cohorts of moderate size, and is less likely to be affected by population stratification. We therefore address some of the shortcomings of the current haplogroup association approach. Finally, we discuss the unique challenges faced by studies done on African populations, and recommend the most viable methods to use when investigating mtDNA variation in CVD and other common complex disease.
Collapse
Affiliation(s)
- Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, United Kingdom
| |
Collapse
|
39
|
Caporali L, Maresca A, Capristo M, Del Dotto V, Tagliavini F, Valentino ML, La Morgia C, Carelli V. Incomplete penetrance in mitochondrial optic neuropathies. Mitochondrion 2017; 36:130-137. [PMID: 28716668 DOI: 10.1016/j.mito.2017.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 01/06/2023]
Abstract
Incomplete penetrance characterizes the two most frequent inherited optic neuropathies, Leber's Hereditary Optic Neuropathy (LHON) and dominant optic atrophy (DOA), due to genetic errors in the mitochondrial DNA (mtDNA) and the nuclear DNA (nDNA), respectively. For LHON, compelling evidence has accumulated on the complex interplay of mtDNA haplogroups and environmental interacting factors, whereas the nDNA remains essentially non informative. However, a compensatory mechanism of activated mitochondrial biogenesis and increased mtDNA copy number, possibly driven by a permissive nDNA background, is documented in LHON; when successful it maintains unaffected the mutation carriers, but in some individuals it might be hampered by tobacco smoking or other environmental factors, resulting in disease onset. In females, mitochondrial biogenesis is promoted and maintained within the compensatory range by estrogens, partially explaining the gender bias in LHON. Concerning DOA, none of the above mechanisms has been fully explored, thus mtDNA haplogroups, environmental factors such as tobacco and alcohol, and further nDNA variants may all participate as protective factors or, on the contrary, favor disease expression and severity. Next generation sequencing, complemented by transcriptomics and proteomics, may provide some answers in the next future, even if the multifactorial model that seems to apply to incomplete penetrance in mitochondrial optic neuropathies remains problematic, and careful stratification of patients will play a key role for data interpretation. The deep understanding of which factors impinge on incomplete penetrance may shed light on the pathogenic mechanisms leading to optic nerve atrophy, on their possible compensation and, thus, on development of therapeutic strategies.
Collapse
Affiliation(s)
- Leonardo Caporali
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | | | - Valentina Del Dotto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Francesca Tagliavini
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
40
|
Ji J, Xu M, Huang Z, Li L, Zheng H, Yang S, Li S, Jin L, Ling X, Xia Y, Lu C, Wang X. Mitochondrial DNA sequencing and large-scale genotyping identifies MT-ND4 gene mutation m.11696G>A associated with idiopathic oligoasthenospermia. Oncotarget 2017; 8:52975-52982. [PMID: 28881787 PMCID: PMC5581086 DOI: 10.18632/oncotarget.17675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/13/2017] [Indexed: 01/07/2023] Open
Abstract
Genetic variants of mitochondrial DNA (mtDNA) were implicated to be associated with male infertility. Our previous whole mitochondrial genome sequencing and association study has identified two susceptibility mtDNA variants for oligoasthenospermia in Han Chinese men. In this study, we tested promising associations in an extended validation using 670 idiopathic oligoasthenospermia cases and 793 healthy controls to identify additional risk variants. We found that the genetic variant of m.11696G>A showed significantly higher frequency in the case group than that in the control group (odds ratio (OR) 2.21, 95% CI 1.21-4.04) (P=7.90×10−3). To elucidate the exact role of the genetic variants in spermatogenesis, two main sperm parameters (sperm count and motility) were taken into account. We found that m.11696G>A was associated with low sperm motility, with the OR of 2.38 (95 % CI 1.27-4.46) (P =5.22×10−3). These results advance our understanding of the genetic susceptibility to oligoasthenospermia and more functional studies are needed to provide insights into its pathogenic mechanism.
Collapse
Affiliation(s)
- Juan Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China.,Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Miaofei Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Lei Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hongxiang Zheng
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Shuping Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Shilin Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
41
|
In silico analysis for predicting pathogenicity of five unclassified mitochondrial DNA mutations associated with mitochondrial cytopathies' phenotypes. Eur J Med Genet 2017; 60:172-177. [DOI: 10.1016/j.ejmg.2016.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 11/17/2022]
|
42
|
Bi R, Logan I, Yao YG. Leber Hereditary Optic Neuropathy: A Mitochondrial Disease Unique in Many Ways. Handb Exp Pharmacol 2017; 240:309-336. [PMID: 27787713 DOI: 10.1007/164_2016_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Leber hereditary optic neuropathy (LHON) was the first mitochondrial disease to be identified as being caused by mutations in the mitochondrial DNA (mtDNA). This disease has been studied extensively in the past two decades, particularly in Brazilian, Chinese and European populations; and many primary mutations have been reported. However, the disease is enigmatic with many unique features, and there still are several important questions to be resolved. The incomplete penetrance, the male-biased disease expression and the prevalence in young adults all defy a proper explanation. It has been reported that the development of LHON is affected by the interaction between mtDNA mutations, mtDNA haplogroup background, nuclear genes, environmental factors and epigenetics. Furthermore, with the help of new animal models for LHON that have been created in recent years, we are continuing to learn more about the mechanism of this disease. The stage has now been reached at which there is a good understanding of both the genetic basis of the disease and its epidemiology, but just how the blindness that follows from the death of cells in the optic nerve can be prevented remains to be a pharmacological challenge. In this chapter, we summarize the progress that has been made in various recent studies on LHON, focusing on the molecular pathogenic mechanisms, clinical features, biochemical effects, the pharmacology and its treatment.
Collapse
Affiliation(s)
- Rui Bi
- Division of Medical Genetics & Evolutionary Medicine, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | - Yong-Gang Yao
- Division of Medical Genetics & Evolutionary Medicine, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
43
|
Guo L, Yuan Y, Bi R. Mitochondrial DNA mutation m.5512A > G in the acceptor-stem of mitochondrial tRNATrp causing maternally inherited essential hypertension. Biochem Biophys Res Commun 2016; 479:800-807. [DOI: 10.1016/j.bbrc.2016.09.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 09/25/2016] [Indexed: 02/06/2023]
|
44
|
Mitochondrial genome variations and functional characterization in Han Chinese families with schizophrenia. Schizophr Res 2016; 171:200-6. [PMID: 26822593 DOI: 10.1016/j.schres.2016.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 12/09/2015] [Accepted: 01/04/2016] [Indexed: 11/23/2022]
Abstract
The relationship between mitochondrial DNA (mtDNA) variants and schizophrenia has been strongly debated. To test whether mtDNA variants are involved in schizophrenia in Han Chinese patients, we sequenced the entire mitochondrial genomes of probands from 11 families with a family history and maternal inheritance pattern of schizophrenia. Besides the haplogroup-specific variants, we found 11 nonsynonymous private variants, one rRNA variant, and one tRNA variant in 5 of 11 probands. Among the nonsynonymous private variants, mutations m.15395 A>G and m.8536 A>G were predicted to be deleterious after web-based searches and in silico program affiliated analysis. Functional characterization further supported the potential pathogenicity of the two variants m.15395 A>G and m.8536 A>G to cause mitochondrial dysfunction at the cellular level. Our results showed that mtDNA variants were actively involved in schizophrenia in some families with maternal inheritance of this disease.
Collapse
|
45
|
Xie S, Zhang J, Sun J, Zhang M, Zhao F, Wei QP, Tong Y, Liu X, Zhou X, Jiang P, Ji Y, Guan MX. Mitochondrial haplogroup D4j specific variant m.11696G > a(MT-ND4) may increase the penetrance and expressivity of the LHON-associated m.11778G > a mutation in Chinese pedigrees. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 28:434-441. [PMID: 27159682 DOI: 10.3109/19401736.2015.1136304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) is one of the most common mitochondrial disorders. We report here the clinical, genetic and molecular analysis of mitochondrial DNA (mtDNA) in eight Han Chinese families carrying the known mitochondrial 11778G > A(MT-ND4) mutation. Thirty-seven (26 males/11 females) of 77 matrilineal relatives in these families exhibited the variable severity and age-at-onset of optic neuropathy. The penetrances were from 25% to 75%, with the average of 42%, and the age-at-onset for visual impairment varied from 10 to 25 years, with the average of 17 in these Chinese pedigrees. Molecular analysis of their mtDNA identified distinct sets of variants belonging to the Eastern Asian haplogroupD4j. Except the known m.11778G > A mutation, the m.11696G > A(MT-ND4) mutation caused the substitution of an isoleucine for valineat amino acid position 313, located in a predicted transmembrane region of ND4. And, it is reported that the m.11696G > A mutation was associated with LHON, and appeared to contribute to higher penetrance in these nine Chinese families than other Chinese families carrying only the m.11778G > A mutation. Therefore, the mitochondrial haplogroup D4j specific m.11696G > A mutation may act in synergy with the primary LHON-associated m.11778G > A mutation, thereby increasing the penetrance and expressivity of visual loss in these Chinese families.
Collapse
Affiliation(s)
- Shipeng Xie
- a Department of Ophthalmology , Xingtai Eye Hospital , Xingtai , Hebei , China
| | - Juanjuan Zhang
- b Institute of Genetics , Zhejiang University School of Medicine , Hangzhou , Zhejiang , China.,c School of Ophthalmology and Optometry , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Jiji Sun
- b Institute of Genetics , Zhejiang University School of Medicine , Hangzhou , Zhejiang , China
| | - Minglian Zhang
- a Department of Ophthalmology , Xingtai Eye Hospital , Xingtai , Hebei , China
| | - Fuxin Zhao
- c School of Ophthalmology and Optometry , Wenzhou Medical University , Wenzhou , Zhejiang , China.,d Attardi Institute of Mitochondrial Biomedicine , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Qi-Ping Wei
- e Department of Ophthalmology , Dongfang Hospital, Beijing University of Chinese Medicine and Pharmacology , Beijing , China
| | - Yi Tong
- c School of Ophthalmology and Optometry , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Xiaoling Liu
- c School of Ophthalmology and Optometry , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Xiangtian Zhou
- c School of Ophthalmology and Optometry , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Pingping Jiang
- b Institute of Genetics , Zhejiang University School of Medicine , Hangzhou , Zhejiang , China.,f Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Zhejiang University , Hangzhou , China
| | - Yanchun Ji
- b Institute of Genetics , Zhejiang University School of Medicine , Hangzhou , Zhejiang , China
| | - Min-Xin Guan
- a Department of Ophthalmology , Xingtai Eye Hospital , Xingtai , Hebei , China.,f Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Zhejiang University , Hangzhou , China.,g Division of Pathology , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
46
|
Jin X, Wang L, Gong Y, Chen B, Wang Y, Chen T, Wei S. Leber's Hereditary Optic Neuropathy is Associated with Compound Primary Mutations of Mitochondrial ND1 m.3635G > A and ND6 m.14502 T > C. Ophthalmic Genet 2015; 36:291-8. [PMID: 24417559 DOI: 10.3109/13816810.2013.871637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To describe the clinical and molecular characteristics of a Chinese Leber hereditary optic neuropathy (LHON) pedigree with compound mitochondrial DNA (mtDNA) mutations of m.3635G > A and m.14502T > C. METHODS A total of 22 individuals (2 affected, 20 unaffected) from a five-generation Chinese family with LHON underwent comprehensive ophthalmic examination, including visual acuity, slit lamp examination, fundoscopy, visual field examination and visual evoked potentials (VEP). The complete mtDNA genome of the two patients were amplified by polymerase chain reaction, sequenced using a Bigdye terminator v3.1 cycle sequencing kit and analyzed on an ABI 3700XL Genetic Analyzer. RESULTS Two LHON patients in the family presented typical features of LHON: painless and progressive deterioration of bilateral vision, bilateral optic atrophy, centrocecal scotomata in both eyes and significant prolonged P100 latency and low amplitude potential in VEP. Compound primary mtDNA mutations of m.3635G > A and m.14502T > C were identified in these two patients and another 12 living matrilineal members of the pedigree. Haplogroup analysis showed the patients in this LHON family belonged to the N9b1 haplogroup. Modeled mutant structure showed the mutations altered the molecular local space conformation on the surface of ND1 and ND6. CONCLUSIONS Compound mtDNA mutations of m.3635G > A and m.14502T > C presented with low penetration, and the patients with these compound mutations exhibited mild visual impairment. The biological information analysis suggested that m.14502T > C might play a protective role in LHON associated with m.3635G > A. The haplogroup analysis indicated that the mtDNA haplogroup might be an important factor affecting the expression of LHON associated with m.3635G > A and/or m.14502T > C.
Collapse
Affiliation(s)
- Xin Jin
- a Department of Ophthalmology , General Hospital of Chinese People's Liberation Army , Beijing , China
| | - Lifeng Wang
- b Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Fourth Military Medical University , Xi'an , China , and
| | - Yan Gong
- a Department of Ophthalmology , General Hospital of Chinese People's Liberation Army , Beijing , China
| | - Bing Chen
- a Department of Ophthalmology , General Hospital of Chinese People's Liberation Army , Beijing , China
| | - Yanhua Wang
- a Department of Ophthalmology , General Hospital of Chinese People's Liberation Army , Beijing , China .,c The Hospital of the Chinese People's Armed Police Forces , Jingzhong , China
| | - Tingjun Chen
- a Department of Ophthalmology , General Hospital of Chinese People's Liberation Army , Beijing , China
| | - Shihui Wei
- a Department of Ophthalmology , General Hospital of Chinese People's Liberation Army , Beijing , China
| |
Collapse
|
47
|
Mitochondrial DNA Haplogroup A Decreases the Risk of Drug Addiction but Conversely Increases the Risk of HIV-1 Infection in Chinese Addicts. Mol Neurobiol 2015; 53:3873-3881. [PMID: 26162319 DOI: 10.1007/s12035-015-9323-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/24/2015] [Indexed: 01/19/2023]
Abstract
Drug addiction is one of the most serious social problems in the world today and addicts are always at a high risk of acquiring HIV infection. Mitochondrial impairment has been reported in both drug addicts and in HIV patients undergoing treatment. In this study, we aimed to investigate whether mitochondrial DNA (mtDNA) haplogroup could affect the risk of drug addiction and HIV-1 infection in Chinese. We analyzed mtDNA sequence variations of 577 Chinese intravenous drug addicts (289 with HIV-1 infection and 288 without) and compared with 2 control populations (n = 362 and n = 850). We quantified the viral load in HIV-1-infected patients with and without haplogroup A status and investigated the potential effect of haplogroup A defining variants m.4824A > G and m.8794C > T on the cellular reactive oxygen species (ROS) levels by using an allotopic expression assay. mtDNA haplogroup A had a protective effect against drug addiction but appeared to confer an increased risk of HIV infection in addicts. HIV-1-infected addicts with haplogroup A had a trend for a higher viral load, although the mean viral load was similar between carriers of haplogroup A and those with other haplogroup. Hela cells overexpressing allele m.8794 T showed significantly decreased ROS levels as compared to cells with the allele m.8794C (P = 0.03). Our results suggested that mtDNA haplogroup A might protect against drug addiction but increase the risk of HIV-1 infection. The contradictory role of haplogroup A might be caused by an alteration in mitochondrial function due to a particular mtDNA ancestral variant.
Collapse
|
48
|
Li W, Wen C, Li W, Wang H, Guan X, Zhang W, Ye W, Lu J. The tRNA(Gly) T10003C mutation in mitochondrial haplogroup M11b in a Chinese family with diabetes decreases the steady-state level of tRNA(Gly), increases aberrant reactive oxygen species production, and reduces mitochondrial membrane potential. Mol Cell Biochem 2015; 408:171-9. [PMID: 26134044 DOI: 10.1007/s11010-015-2493-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/18/2015] [Indexed: 11/28/2022]
Abstract
Mitochondrial diabetes originates mainly from mutations located in maternally transmitted, mitochondrial tRNA-coding genes. In a genetic screening program of type 2 diabetes conducted with a Chinese Han population, we found one family with suggestive maternally transmitted diabetes. The proband's mitochondrial genome was analyzed using DNA sequencing. Total 42 known nucleoside changes and 1 novel variant were identified, and the entire mitochondrial DNA sequence was assigned to haplogroup M11b. Phylogenetic analysis showed that a homoplasmic mutation, 10003T>C transition, occurred at the highly conserved site in the gene encoding tRNA(Gly). Using a transmitochondrial cybrid cell line harboring this mutation, we observed that the steady-state level of tRNA(Gly) significantly affected and the amount of tRNA(Gly) decreased by 97%, production of reactive oxygen species was enhanced, and mitochondrial membrane potential, mtDNA copy number and cellular oxygen consumption rate were remarkably decreased compared with wild-type cybrid cells. The homoplasmic 10003T>C mutation in the mitochondrial tRNA(Gly) gene suggested to be as a pathogenesis-related mutation which might contribute to the maternal inherited diabetes in the Han Chinese family.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, 325035, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou, 325035, Zhejiang, People's Republic of China.,Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Higher Education Park, Chashan Town, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Chaowei Wen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Weixing Li
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Hailing Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Xiaomin Guan
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Wanlin Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Wei Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Jianxin Lu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, 325035, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou, 325035, Zhejiang, People's Republic of China. .,Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Higher Education Park, Chashan Town, Wenzhou, 325035, Zhejiang, People's Republic of China.
| |
Collapse
|
49
|
Meyerson C, Van Stavern G, McClelland C. Leber hereditary optic neuropathy: current perspectives. Clin Ophthalmol 2015; 9:1165-76. [PMID: 26170609 PMCID: PMC4492634 DOI: 10.2147/opth.s62021] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Leber hereditary optic neuropathy (LHON) is one of the most common inherited optic neuropathies causing bilateral central vision loss. The disorder results from point mutations in mitochondrial DNA and subsequent mitochondrial dysfunction. The primary cell type that is lost in LHON is the retinal ganglion cell, which is highly susceptible to disrupted ATP production and oxidative stress. Inheritance of LHON follows that of mitochondrial genetics, and it has a highly variable clinical phenotype, as other genetic and environmental factors also play a role. Although LHON usually presents with isolated vision loss, some patients suffer other neurological sequelae. For ill-defined reasons, male LHON mutation carriers are more affected than females. Most LHON patients remain legally blind, but a small proportion can experience spontaneous partial recovery, often within the first year of symptom onset. Unfortunately, at this time there are no established curative interventions and treatment is largely supportive. Patients should be offered low vision services and counseled on mitigating risk factors for additional vision loss, such as smoking and consuming alcohol. Encouraging treatments currently undergoing investigation includes ubiquinone analogs, such as idebenone, as well as gene therapy and stem cells to restore ATP synthesis and provide neuroprotection to surviving retinal ganglion cells.
Collapse
Affiliation(s)
- Cherise Meyerson
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Greg Van Stavern
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Collin McClelland
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
50
|
Zhang JX, Wang NL, Lu QJ. Development of gene and stem cell therapy for ocular neurodegeneration. Int J Ophthalmol 2015; 8:622-30. [PMID: 26086019 DOI: 10.3980/j.issn.2222-3959.2015.03.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022] Open
Abstract
Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews the development of the gene and stem cell therapies in ophthalmology.
Collapse
Affiliation(s)
- Jing-Xue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Ning-Li Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Qing-Jun Lu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| |
Collapse
|