1
|
Shimomura Y. Molecular Basis of Hereditary Hair Diseases. Keio J Med 2025; 74:27-36. [PMID: 37407443 DOI: 10.2302/kjm.2023-0007-ir] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The hair follicle is an appendage of the skin that undergoes hair cycles throughout life. Recently, numerous genes expressed in the hair follicles have been identified, and variants in some of these genes are now known to underlie hereditary hair diseases in humans. Hereditary hair diseases are classified into non-syndromic and syndromic forms. In the Japanese population, the non-syndromic form of autosomal recessive woolly hair, which is caused by founder pathogenic variants in the lipase H (LIPH) gene, is the most prevalent hereditary hair disease. In addition, other types of hereditary hair diseases are known in Japan, such as Marie-Unna hereditary hypotrichosis, hypohidrotic ectodermal dysplasia, and tricho-rhino-phalangeal syndrome. To ensure correct diagnoses and appropriate patient care, dermatologists must understand the characteristics of each hair disorder. Elucidation of the molecular basis of hereditary hair diseases can directly tell us which genes are crucial for morphogenesis and development of hair follicles in humans. Therefore, continuation of "wet laboratory" research for these diseases remains important. To date, several syndromic forms of hereditary hair diseases have been approved as designated intractable diseases in Japan. As part of our efforts in the Project for Research on Intractable Diseases through the Ministry of Health, Labour, and Welfare of Japan, we anticipate that more hereditary hair diseases be recognized as designated intractable diseases in the future, which will be to the benefit of the affected individuals.
Collapse
Affiliation(s)
- Yutaka Shimomura
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
2
|
Gutiérrez-Cerrajero C, González-Sarmiento R, Hernández-Martín Á. ICHTHYOSIS: Clinical and molecular update. Part 2: Syndromic ichthyosis. Diagnostic and therapeutic approach of ichthyosis. ACTAS DERMO-SIFILIOGRAFICAS 2025:S0001-7310(24)01061-5. [PMID: 39755146 DOI: 10.1016/j.ad.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 01/06/2025] Open
Abstract
Syndromic ichthyoses are a group of disorders whose genetic alterations impact both epidermal and non-epidermal tissues. Therefore, patients present symptoms in other organs. Most are extraordinary and, in some, ichthyosiform desquamation has been poorly described. Their patterns of inheritance are diverse; their extracutaneous clinical signs, heterogeneous; and the skin symptoms, highly variable, which hinders a proper clinical classification. Ichthyosis diagnosis starts with proper anamnesis, detailed physical examination, and detection of associated analytic and/or histologic findings. Genetic testing is indispensable, not only for diagnostic certainty, but also because understanding the molecular substrate for each patient is the first step towards finding an individualized therapeutic regimen. While it will almost invariably involve facilitating desquamation and maintaining skin hydration using topical exfoliants and emollients, recently, replacement therapies aiming at substituting the proteins and lipids specifically altered in each patient are being developed and gene therapy approaches with the ultimate goal of curing the disease are being assessed. In part 2 of this review, we'll be updating the clinical and genetic findings of syndromic entities, ichthyosis diagnosis and treatment.
Collapse
Affiliation(s)
- C Gutiérrez-Cerrajero
- Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Salamanca, España; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, España
| | - R González-Sarmiento
- Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Salamanca, España; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, España
| | | |
Collapse
|
3
|
Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:891-914. [PMID: 39127989 PMCID: PMC11607015 DOI: 10.1007/s00223-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable skeletal dysplasia characterized by bone fragility and deformity, growth deficiency, and other secondary connective tissue defects. OI is now understood as a collagen-related disorder caused by defects of genes whose protein products interact with collagen for folding, post-translational modification, processing and trafficking, affecting bone mineralization and osteoblast differentiation. This review provides the latest updates on genetics of OI, including new developments in both dominant and rare OI forms, as well as the signaling pathways involved in OI pathophysiology. There is a special emphasis on discoveries of recessive mutations in TENT5A, MESD, KDELR2 and CCDC134 whose causality of OI types XIX, XX, XXI and XXI, respectively, is now established and expends the complexity of mechanisms underlying OI to overlap LRP5/6 and MAPK/ERK pathways. We also review in detail new discoveries connecting the known OI types to each other, which may underlie an eventual understanding of a final common pathway in OI cellular and bone biology.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Adolescent Bone and Body Composition, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Wang H, Wu Y, Bassetti JA, Wang Z, Oza VS, Rangu SA, McGivern B, Peng S, Liang L, Huang S, Gong Z, Xu Z, Lin Z. A gain-of-function variant in SREBF1 causes generalized skin hyperpigmentation with congenital cataracts. Br J Dermatol 2024; 191:805-815. [PMID: 39005171 DOI: 10.1093/bjd/ljae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Lipid metabolism has essential roles in skin barrier formation and the regulation of skin inflammation. Lipid homeostasis regulates skin melanogenesis, although the underlying mechanism remains largely unknown. Sterol regulatory element binding protein 1 (SREBP-1) is a key transcription factor essential for cellular lipid metabolism. Loss-of-function variants in SREBF1 are responsible for autosomal-dominant ichthyosis follicularis, alopecia and photophobia syndrome, emphasizing the significance of lipid homeostasis in skin keratinization. OBJECTIVES To identify the genetic basis of a new entity featuring diffuse skin hyperpigmentation with congenital cataracts, and to unravel the underlying mechanism for the pathogenesis of the SREBF1 variant. METHODS Whole-exome sequencing was performed to identify underlying genetic variants. Quantitative polymerase chain reaction, Western blot and immunofluorescence staining were used to assess the expression and the subcellular localization of the SREBF1 variant. The transcriptional activity of mutant SREBP-1 was determined by a luciferase reporter assay. A transgenic zebrafish model was constructed. RESULTS Two unrelated patients presented with generalized skin hyperpigmentation with skin xerosis, congenital cataracts and extracutaneous symptoms. We identified a de novo nonsense variant c.1289C>A (p.Ser430*) in SREBF1 in both patients. The variant encoded a truncated protein that showed preferential nucleus localization, in contrast to wild-type SREBP-1 which - in sterol-sufficient conditions - is mainly localized in the cytoplasm. The luciferase reporter assay revealed that the p.Ser430* mutant exhibited enhanced transcriptional activity. Cultured patient primary melanocytes showed increased melanin synthesis vs. those from healthy controls. At 35 days postfertilization, the p.Ser430* transgenic zebrafish model exhibited more black spots, along with upregulated expression of melanogenic genes. CONCLUSIONS We demonstrated that a gain-of-function variant of SREBF1 causes a previously undescribed disorder characterized by generalized skin hyperpigmentation and congenital cataracts. Our study reveals the involvement of SREBP-1 in melanogenesis and lens development, and paves the way for the development of novel therapeutic targets for skin dyspigmentation or cataracts.
Collapse
Affiliation(s)
- Huijun Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Wu
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | | | - Zhaoyang Wang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Vikash S Oza
- Department of Dermatology and Pediatrics, The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sneha A Rangu
- Albert Einstein College of Medicine, New York, NY, USA
| | | | - Sha Peng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lina Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Shimiao Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhuoqing Gong
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zigang Xu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhimiao Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Ford NC, Benedeck RE, Mattoon MT, Peterson JK, Mesler AL, Veniaminova NA, Gardon DJ, Tsai SY, Uchida Y, Wong SY. Hair follicles modulate skin barrier function. Cell Rep 2024; 43:114347. [PMID: 38941190 PMCID: PMC11317994 DOI: 10.1016/j.celrep.2024.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/30/2024] Open
Abstract
Our skin provides a protective barrier that shields us from our environment. Barrier function is typically associated with the interfollicular epidermis; however, whether hair follicles influence this process remains unclear. Here, we utilize a potent genetic tool to probe barrier function by conditionally ablating a quintessential epidermal barrier gene, Abca12, which is mutated in the most severe skin barrier disease, harlequin ichthyosis. With this tool, we deduced 4 ways by which hair follicles modulate skin barrier function. First, the upper hair follicle (uHF) forms a functioning barrier. Second, barrier disruption in the uHF elicits non-cell-autonomous responses in the epidermis. Third, deleting Abca12 in the uHF impairs desquamation and blocks sebum release. Finally, barrier perturbation causes uHF cells to move into the epidermis. Neutralizing IL-17a, whose expression is enriched in the uHF, partially alleviated some disease phenotypes. Altogether, our findings implicate hair follicles as multi-faceted regulators of skin barrier function.
Collapse
Affiliation(s)
- Noah C Ford
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel E Benedeck
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew T Mattoon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie K Peterson
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arlee L Mesler
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalia A Veniaminova
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danielle J Gardon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shih-Ying Tsai
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Sunny Y Wong
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Liaqat K, Treat K, Mantcheva L, Nasir A, Weaver DD, Conboy E, Vetrini F. A case of MBTPS1-related disorder due to compound heterozygous variants in MBTPS1 gene: Genotype-phenotype expansion and the emergence of a novel syndrome. Am J Med Genet A 2024; 194:e63499. [PMID: 38135440 DOI: 10.1002/ajmg.a.63499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
MBTPS1 (NM_003791.4) encodes Site-1 protease, a serine protease that functions sequentially with Site-2 protease regulating cholesterol homeostasis and endoplasmic reticulum stress response. MBTPS1 pathogenic variants are associated with spondyloepiphyseal dysplasia, Kondo-Fu type (MIM:618392; cataract, alopecia, oral mucosal disorder, and psoriasis-like syndrome, and Silver-Russell-like syndrome). In this report, we describe a 14-year-old female with a complex medical history including white matter volume loss, early-onset cataracts, retrognathia, laryngomalacia, inguinal hernia, joint hypermobility, feeding dysfunction, and speech delay. Additionally, features of ectodermal dysplasia that she has include decreased sweating, heat intolerance, dysplastic nails, chronically dry skin, and abnormal hair growth issues. Exome sequencing analysis identified compound heterozygous variants in the MBTPS1 gene: c.2255G > T p.(Gly752Val) predicted to affect important function of the protein, which was inherited from the mother, and a splice site variant c.2831 + 5G > T, which was inherited from the father. The RNA-seq analysis of the splice variant showed skipping of exon 21, predicted to result in frameshifting p.(Ser901fs28*) leading to non-sense mediated decay. To our knowledge, only eight studies have been published that described the MBPTS1-related disorders. Interestingly, we observed the features of ectodermal dysplasia in our patient that further expands the phenotypic spectrum of MBTPS1 gene-related disorders.
Collapse
Affiliation(s)
- Khurram Liaqat
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Undiagnosed Rare Disease Clinic (URDC), Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kayla Treat
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Undiagnosed Rare Disease Clinic (URDC), Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lili Mantcheva
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Undiagnosed Rare Disease Clinic (URDC), Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abdul Nasir
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Erin Conboy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Undiagnosed Rare Disease Clinic (URDC), Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Undiagnosed Rare Disease Clinic (URDC), Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Ford NC, Benedeck RE, Mattoon MT, Peterson JK, Mesler AL, Veniaminova NA, Gardon DJ, Tsai SY, Uchida Y, Wong SY. Hair follicles modulate skin barrier function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590728. [PMID: 38712094 PMCID: PMC11071379 DOI: 10.1101/2024.04.23.590728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Our skin provides a protective barrier that shields us from our environment. Barrier function is typically associated with interfollicular epidermis; however, whether hair follicles influence this process remains unclear. Here, we utilize a potent genetic tool to probe barrier function by conditionally ablating a quintessential epidermal barrier gene, Abca12, which is mutated in the most severe skin barrier disease, harlequin ichthyosis. With this tool, we deduced 4 ways by which hair follicles modulate skin barrier function. First, the upper hair follicle (uHF) forms a functioning barrier. Second, barrier disruption in the uHF elicits non-cell autonomous responses in the epidermis. Third, deleting Abca12 in the uHF impairs desquamation and blocks sebum release. Finally, barrier perturbation causes uHF cells to move into the epidermis. Neutralizing Il17a, whose expression is enriched in the uHF, partially alleviated some disease phenotypes. Altogether, our findings implicate hair follicles as multi-faceted regulators of skin barrier function.
Collapse
Affiliation(s)
- Noah C. Ford
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel E. Benedeck
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Matthew T. Mattoon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie K. Peterson
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arlee L. Mesler
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalia A. Veniaminova
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danielle J. Gardon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shih-Ying Tsai
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Sunny Y. Wong
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Sun Y, Li L, Wang J, Liu H, Wang H. Emerging Landscape of Osteogenesis Imperfecta Pathogenesis and Therapeutic Approaches. ACS Pharmacol Transl Sci 2024; 7:72-96. [PMID: 38230285 PMCID: PMC10789133 DOI: 10.1021/acsptsci.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic disorder characterized by shortness of stature, hearing loss, poor bone mass, recurrent fractures, and skeletal abnormalities. Pathogenic variations have been found in over 20 distinct genes that are involved in the pathophysiology of OI, contributing to the disorder's clinical and genetic variability. Although medications, surgical procedures, and other interventions can partially alleviate certain symptoms, there is still no known cure for OI. In this Review, we provide a comprehensive overview of genetic pathogenesis, existing treatment modalities, and new developments in biotechnologies such as gene editing, stem cell reprogramming, functional differentiation, and transplantation for potential future OI therapy.
Collapse
Affiliation(s)
- Yu Sun
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Lin Li
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Jiajun Wang
- Medical
School of Hubei Minzu University, Enshi 445000, China
| | - Huiting Liu
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Hu Wang
- Department
of Neurology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Liu Y, Lin W, Qian H, Yang Y, Zhou X, Wu C, Pan X, Liu Y, Wang G. Integrated multi-omic analysis and experiment reveals the role of endoplasmic reticulum stress in lung adenocarcinoma. BMC Med Genomics 2024; 17:12. [PMID: 38167084 PMCID: PMC10763289 DOI: 10.1186/s12920-023-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lung cancer is a highly prevalent malignancy worldwide and is associated with high mortality rates. While the involvement of endoplasmic reticulum (ER) stress in the development of lung adenocarcinoma (LUAD) has been established, the underlying mechanism remains unclear. METHODS In this study, we utilized data from The Cancer Genome Atlas (TCGA) to identify differentially expressed endoplasmic reticulum stress-related genes (ERSRGs) between LUAD and normal tissues. We performed various bioinformatics analyses to investigate the biological functions of these ERSRGs. Using LASSO analysis and multivariate stepwise regression, we constructed a novel prognostic model based on the ERSRGs. We further validated the performance of the model using two independent datasets from the Gene Expression Omnibus (GEO). Additionally, we conducted functional enrichment analysis, immune checkpoint analysis, and immune infiltration analysis and drug sensitivity analysis of LUAD patients to explore the potential biological function of the model. Furthermore, we conducted a battery of experiments to verify the expression of ERSRGs in a real-world cohort. RESULTS We identified 106 ERSRGs associated with LUAD, which allowed us to classify LUAD patients into two subtypes based on gene expression differences. Using six prognostic genes (NUPR1, RHBDD2, VCP, BAK1, EIF2AK3, MBTPS2), we constructed a prognostic model that exhibited excellent predictive performance in the training dataset and was successfully validated in two independent external datasets. The risk score derived from this model emerged as an independent prognostic factor for LUAD. Confirmation of the linkage between this risk model and immune infiltration was affirmed through the utilization of Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The q-PCR results verified significant differences in the expression of prognostic genes between cancer and paracancer tissues. Notably, the protein expression of NUPR1, as determined by immunohistochemistry (IHC), exhibited an opposite pattern compared to the mRNA expression patterns. CONCLUSION This study establishes a novel prognostic model for LUAD based on six ER stress-related genes, facilitating the prediction of LUAD prognosis. Additionally, NUPR1 was identified as a potential regulator of stress in LUAD.
Collapse
Affiliation(s)
- Ying Liu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Wei Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hongyan Qian
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Ying Yang
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xuan Zhou
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chen Wu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xiaoxia Pan
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yuan Liu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Gaoren Wang
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
10
|
Caengprasath N, Nizon M, Panchaprateep R, Cogne B, Cuinat S, Auburt H, Jonca N, Porntaveetus T, Shotelersuk V. Two novel MBTPS2 missense mutations impairing S2P proteolytic activity lead to IFAP syndrome with new phenotypic anomalies. J Dermatol Sci 2023; 112:166-169. [PMID: 37923657 DOI: 10.1016/j.jdermsci.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Natarin Caengprasath
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Mathilde Nizon
- CHU Nantes, Service de Génétique Médicale, Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Ratchathorn Panchaprateep
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Benjamin Cogne
- CHU Nantes, Service de Génétique Médicale, Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Silvestre Cuinat
- CHU Nantes, Service de Génétique Médicale, Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | | | - Nathalie Jonca
- CHU Toulouse, Hôpital Purpan, Laboratoire de Biologie Cellulaire et Cytologie, Institut Fédératif de Biologie, Toulouse, France; Infinity, University of Toulouse, CNRS, INSERM, Université Paul Sabatier, Toulouse, France
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
11
|
Danyukova T, Alimy AR, Velho RV, Yorgan TA, Di Lorenzo G, von Kroge S, Tidow H, Wiegert JS, Hermans-Borgmeyer I, Schinke T, Rolvien T, Pohl S. Mice heterozygous for an osteogenesis imperfecta-linked MBTPS2 variant display a compromised subchondral osteocyte lacunocanalicular network associated with abnormal articular cartilage. Bone 2023; 177:116927. [PMID: 37797712 DOI: 10.1016/j.bone.2023.116927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Missense variants in the MBTPS2 gene, located on the X chromosome, have been associated with an X-linked recessive form of osteogenesis imperfecta (X-OI), an inherited bone dysplasia characterized by multiple and recurrent bone fractures, short stature, and various skeletal deformities in affected individuals. The role of site-2 protease, encoded by MBTPS2, and the molecular pathomechanism underlying the disease are to date elusive. This study is the first to report on the generation of two Mbtps2 mouse models, a knock-in mouse carrying one of the disease-causative MBTPS2 variants (N455S) and a Mbtps2 knock-out (ko) mouse. Because both loss-of-function variants lead to embryonic lethality in hemizygous male mutant mice, we performed a comprehensive skeletal analysis of heterozygous Mbtps2+/N455S and Mbtps2+/ko female mice. Both models displayed osteochondral abnormalities such as thinned subchondral bone, altered subchondral osteocyte interconnectivity as well as thickened articular cartilage with chondrocyte clustering, altogether resembling an early osteoarthritis (OA) phenotype. However, distant from the joints, no alterations in the bone mass and turnover could be detected in either of the mutant mice. Based on our findings we conclude that MBTPS2 haploinsufficiency results in early OA-like alterations in the articular cartilage and underlying subchondral bone, which likely precede the development of typical OI phenotype in bone. Our study provides first evidence for a potential role of site-2 protease for maintaining homeostasis of both bone and cartilage.
Collapse
Affiliation(s)
- Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Renata Voltolini Velho
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Giorgia Di Lorenzo
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - J Simon Wiegert
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Tim Rolvien
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
12
|
Kim S, Jeong H, Ko JM, Kwon O, Oh JY. Recurrent Vascularizing Keratitis in Infants With Hereditary Mucoepithelial Dysplasia Related to SREBF1 Mutation. Cornea 2023; 42:1586-1589. [PMID: 37699567 DOI: 10.1097/ico.0000000000003381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE This study aims to present ophthalmic manifestations of 2 infants with hereditary mucoepithelial dysplasia (HMD) related to SREBF1 mutation over a 5-year period. METHODS Two female infants with an unremarkable perinatal history were evaluated for photophobia that had been manifest since 3 months after birth and diffuse scalp alopecia. Complete ocular examinations under anesthesia were performed, as well as genetic and systemic workup. RESULTS Both patients had vascularizing keratitis in both eyes, characterized by the growth of corneal new vessels from the 360 degrees periphery to the center and the formation of stromal leucomatous opacity at the leading edge. The keratitis partially regressed in response to topical corticosteroids and waxed and waned during the 5 years of follow-up. In addition, the loss of scalp hair developed in a cyclical pattern, causing diffuse scalp alopecia in the patients. Rheumatologic, nutritional, and developmental evaluations were within normal ranges. Whole-exome sequencing identified a heterozygous c.1669C>T (p.Arg557Cys) pathogenic variant in the SREBF1 gene associated with HMD in both patients. CONCLUSIONS In pediatric patients with recurrent vascularizing keratitis and diffuse scalp alopecia starting early in life, HMD should be considered, and genetic tests and collaboration with dermatologists and pediatricians on the diagnosis should be provided.
Collapse
Affiliation(s)
- Seonghwan Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyunchul Jeong
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea; and
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Lim PJ, Marcionelli G, Srikanthan P, Ndarugendamwo T, Pinner J, Rohrbach M, Giunta C. Perturbations in fatty acid metabolism and collagen production infer pathogenicity of a novel MBTPS2 variant in Osteogenesis imperfecta. Front Endocrinol (Lausanne) 2023; 14:1195704. [PMID: 37305034 PMCID: PMC10248412 DOI: 10.3389/fendo.2023.1195704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable and chronically debilitating skeletal dysplasia. Patients with OI typically present with reduced bone mass, tendency for recurrent fractures, short stature and bowing deformities of the long bones. Mutations causative of OI have been identified in over 20 genes involved in collagen folding, posttranslational modification and processing, and in bone mineralization and osteoblast development. In 2016, we described the first X-linked recessive form of OI caused by MBTPS2 missense variants in patients with moderate to severe phenotypes. MBTPS2 encodes site-2 protease, a Golgi transmembrane protein that activates membrane-tethered transcription factors. These transcription factors regulate genes involved in lipid metabolism, bone and cartilage development, and ER stress response. The interpretation of genetic variants in MBTPS2 is complicated by the gene's pleiotropic properties; MBTPS2 variants can also cause the dermatological conditions Ichthyosis Follicularis, Atrichia and Photophobia (IFAP), Keratosis Follicularis Spinulosa Decalvans (KFSD) and Olmsted syndrome (OS) without skeletal abnormalities typical of OI. Using control and patient-derived fibroblasts, we previously identified gene expression signatures that distinguish MBTPS2-OI from MBTPS2-IFAP/KFSD and observed stronger suppression of genes involved in fatty acid metabolism in MBTPS2-OI than in MBTPS2-IFAP/KFSD; this was coupled with alterations in the relative abundance of fatty acids in MBTPS2-OI. Furthermore, we observed a reduction in collagen deposition in the extracellular matrix by MBTPS2-OI fibroblasts. Here, we extrapolate our observations in the molecular signature unique to MBTPS2-OI to infer the pathogenicity of a novel MBTPS2 c.516A>C (p.Glu172Asp) variant of unknown significance in a male proband. The pregnancy was terminated at gestational week 21 after ultrasound scans showed bowing of femurs and tibiae and shortening of long bones particularly of the lower extremity; these were further confirmed by autopsy. By performing transcriptional analyses, gas chromatography-tandem mass spectrometry-based quantification of fatty acids and immunocytochemistry on fibroblasts derived from the umbilical cord of the proband, we observed perturbations in fatty acid metabolism and collagen production similar to what we previously described in MBTPS2-OI. These findings support pathogenicity of the MBTPS2 variant p.Glu172Asp as OI-causative and highlights the value of extrapolating molecular signatures identified in multiomics studies to characterize novel genetic variants.
Collapse
Affiliation(s)
- Pei Jin Lim
- Connective Tissue Unit, Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Giulio Marcionelli
- Connective Tissue Unit, Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Pakeerathan Srikanthan
- Department of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Timothée Ndarugendamwo
- Connective Tissue Unit, Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jason Pinner
- Centre for Clinical Genetics, Sydney Children’s Hospital, Sydney, Australia
- UNSW Medicine and Health, University of New South Wales, Sydney, Australia
| | - Marianne Rohrbach
- Connective Tissue Unit, Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Cecilia Giunta
- Connective Tissue Unit, Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Panzaru MC, Florea A, Caba L, Gorduza EV. Classification of osteogenesis imperfecta: Importance for prophylaxis and genetic counseling. World J Clin Cases 2023; 11:2604-2620. [PMID: 37214584 PMCID: PMC10198117 DOI: 10.12998/wjcc.v11.i12.2604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous monogenic disease characterized by decreased bone mass, bone fragility, and recurrent fractures. The phenotypic spectrum varies considerably ranging from prenatal fractures with lethal outcomes to mild forms with few fractures and normal stature. The basic mechanism is a collagen-related defect, not only in synthesis but also in folding, processing, bone mineralization, or osteoblast function. In recent years, great progress has been made in identifying new genes and molecular mechanisms underlying OI. In this context, the classification of OI has been revised several times and different types are used. The Sillence classification, based on clinical and radiological characteristics, is currently used as a grading of clinical severity. Based on the metabolic pathway, the functional classification allows identifying regulatory elements and targeting specific therapeutic approaches. Genetic classification has the advantage of identifying the inheritance pattern, an essential element for genetic counseling and prophylaxis. Although genotype-phenotype correlations may sometimes be challenging, genetic diagnosis allows a personalized management strategy, accurate family planning, and pregnancy management decisions including options for mode of delivery, or early antenatal OI treatment. Future research on molecular pathways and pathogenic variants involved could lead to the development of genotype-based therapeutic approaches. This narrative review summarizes our current understanding of genes, molecular mechanisms involved in OI, classifications, and their utility in prophylaxis.
Collapse
Affiliation(s)
- Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Andreea Florea
- Department of Medical Genetics - Medical Genetics resident, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
15
|
Migliavacca MP, Fock RA, Almeida N, Cavalcanti T, Villela D, Perez ABA, Valle D, Wohler E, Sobreira NLDM, Raskin S. A Brazilian case of IFAP syndrome with severe congenital ichthyosis and limb malformations caused by a rare variant in MBTPS2. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2023; 41:e2022057. [PMID: 37042943 PMCID: PMC10108828 DOI: 10.1590/1984-0462/2023/41/2022057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/11/2022] [Indexed: 04/13/2023]
Abstract
OBJECTIVE The classic triad, which defines IFAP syndrome, is ichthyosis follicularis, alopecia, and photophobia. It is a rare X-linked genetic disorder characterized by multiple congenital anomalies with variable severity, caused by pathogenic variants in the MBTPS2 gene, which encodes a zinc metalloprotease that is essential for normal development. This study aimed to report a case of a Brazilian patient with IFAP syndrome presenting skeletal anomalies, which is a rare finding among patients from different families. CASE DESCRIPTION We describe a male proband with IFAP syndrome showing severe ichthyosis congenita, cryptorchidism, limb malformation, and comprising the BRESHECK syndrome features. Using whole-exome sequencing, we identified a rare missense variant in hemizygosity in the MBTPS2 gene, which had not been identified in other family members. COMMENTS This is the first diagnosis of IFAP syndrome in Brazil with a molecular investigation. The present case study thus expands our knowledge on the mutational spectrum of MBPTS2 associated with IFAP syndrome.
Collapse
Affiliation(s)
- Michele Patricia Migliavacca
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Nadia Almeida
- Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | | | | | | | - David Valle
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Salmo Raskin
- Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
16
|
Gutiérrez-Cerrajero C, Sprecher E, Paller AS, Akiyama M, Mazereeuw-Hautier J, Hernández-Martín A, González-Sarmiento R. Ichthyosis. Nat Rev Dis Primers 2023; 9:2. [PMID: 36658199 DOI: 10.1038/s41572-022-00412-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 01/20/2023]
Abstract
The ichthyoses are a large, heterogeneous group of skin cornification disorders. They can be inherited or acquired, and result in defective keratinocyte differentiation and abnormal epidermal barrier formation. The resultant skin barrier dysfunction leads to increased transepidermal water loss and inflammation. Disordered cornification is clinically characterized by skin scaling with various degrees of thickening, desquamation (peeling) and erythema (redness). Regardless of the type of ichthyosis, many patients suffer from itching, recurrent infections, sweating impairment (hypohidrosis) with heat intolerance, and diverse ocular, hearing and nutritional complications that should be monitored periodically. The characteristic clinical features are considered to be a homeostatic attempt to repair the skin barrier, but heterogeneous clinical presentation and imperfect phenotype-genotype correlation hinder diagnosis. An accurate molecular diagnosis is, however, crucial for predicting prognosis and providing appropriate genetic counselling. Most ichthyoses severely affect patient quality of life and, in severe forms, may cause considerable disability and even death. So far, treatment provides only symptomatic relief. It is lifelong, expensive, time-consuming, and often provides disappointing results. A better understanding of the molecular mechanisms that underlie these conditions is essential for designing pathogenesis-driven and patient-tailored innovative therapeutic solutions.
Collapse
Affiliation(s)
- Carlos Gutiérrez-Cerrajero
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amy S Paller
- Departments of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | - Rogelio González-Sarmiento
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
17
|
Ning B, Liu Y, Xu T, Li Y, Wei D, Huang T, Wei Y. Construction and validation of a prognostic model for osteosarcoma patients based on autophagy-related genes. Discov Oncol 2022; 13:146. [PMID: 36586072 PMCID: PMC9805482 DOI: 10.1007/s12672-022-00608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Osteosarcoma is the most frequent primary bone malignancy with a poor prognosis because of pulmonary metastasis. Autophagy is strongly associated with tumor metastasis, and it is valuable to construct an autophagy-related gene risk model for predicting the prognosis of osteosarcoma. METHODS We obtained ARGs from the Human Autophagy Database and RNA-sequencing data of osteosarcoma patients from the Gene Expression Omnibus (GEO) database. Subsequently, univariate and multivariate cox regression analyses were performed to construct a three-gene prognostic model and its accuracy was further confirmed in the Therapeutic Applications Research to Generate Effective Treatments (TARGET) database. Afterward, we detected the expression levels and effects on osteosarcoma cells metastasis of MYC and MBTPS2, which were involved in the model. RESULTS In both training and verification cohorts, patients with lower risk scores had longer OS, and the model was identified as an independent prognostic factor in osteosarcoma. Besides, the ROC curve demonstrated the reliability of the model. Furthermore, RT-qPCR, Western Blotting and IHC results indicated that MYC and MBTPS2 were differently expressed in osteosarcoma tissues and cell lines. MYC knockdown or MBTPS2 overexpression prevented the capacity of migration and invasion in osteosarcoma cell lines through inhibiting cellular autophagy. CONCLUSION The risk model based on three ARGs had a strong ability to predict the prognosis of osteosarcoma patients. Our findings also suggested that MYC and MBTPS2 were two major factors regulating autophagy in osteosarcoma, and could serve as potential therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Biao Ning
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Tianzi Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Yi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Dongyi Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China.
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China.
| |
Collapse
|
18
|
Chen G, Wang M, Wang P, Liang B. An intronic splice‐site variant in
MBTPS2
underlies ichthyosis follicularis with atrichia and photophobia syndrome. J Dermatol 2022; 50:715-719. [PMID: 36539961 DOI: 10.1111/1346-8138.16684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Ichthyosis follicularis with atrichia and photophobia (IFAP) syndrome is a rare genodermatosis characterized by a classic triad of follicular ichthyosis, alopecia, and photophobia. We report a Chinese patient displaying features of IFAP triad along with painful palmoplantar keratoderma, recurrent infections, periorificial keratotic plaques, nail dystrophy, and pachyonychia. Whole-exome sequencing revealed an intronic variant (NM_015884.3: exon7:c.970+5G>A) in the gene MBTPS2. Sanger sequencing confirmed that the variant segerated with phenotype in the family. Sequencing of cDNAs derived from the patient indicated the variant introduced a new splice donor site, leading to partial skipping of exon 7 (r.951_970del). An in vitro mini-gene assay also revealed abnormal splicing of exon 7. This study presents a case complicated with X-linked IFAP syndrome and Olmsted syndrome, and highlights the significance of using validation assays to identify the pathogenicity of intronic variants in MBTPS2.
Collapse
Affiliation(s)
- Gang Chen
- Department of Dermatology and Venereology The First Affiliated Hospital, Anhui Medical University Hefei China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province Anhui Medical University Hefei China
- Key Laboratory of Dermatology (Anhui Medical University) Ministry of Education Hefei China
| | - Mengwei Wang
- Key Laboratory of Dermatology (Anhui Medical University) Ministry of Education Hefei China
| | - Peiguang Wang
- Department of Dermatology and Venereology The First Affiliated Hospital, Anhui Medical University Hefei China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province Anhui Medical University Hefei China
- Key Laboratory of Dermatology (Anhui Medical University) Ministry of Education Hefei China
| | - Bo Liang
- Department of Dermatology and Venereology The First Affiliated Hospital, Anhui Medical University Hefei China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province Anhui Medical University Hefei China
- Key Laboratory of Dermatology (Anhui Medical University) Ministry of Education Hefei China
- Department of Clinical Laboratory The First Affiliated Hospital, Anhui Medical University Hefei China
| |
Collapse
|
19
|
Rajesh S, Loganathan E, Shanmukhappa AG. Ichthyosis Follicularis with Alopecia and Photophobia Syndrome with Coexisting Palmoplantar Keratoderma Treated with Acitretin. Int J Trichology 2022; 14:213-215. [PMID: 37034548 PMCID: PMC10075349 DOI: 10.4103/ijt.ijt_9_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/14/2022] [Indexed: 03/14/2023] Open
Abstract
Ichthyosis follicularis with alopecia and photophobia (IFAP) syndrome is a rare congenital genetic disorder characterized clinically by a triad of follicular ichthyosis, alopecia and photophobia. The genetic inheritance pattern in IFAP syndrome is said to be X-linked with mutations of the membrane-bound transcription factor peptidase, site 2 gene. Histopathology of the skin shows dilated hair follicles with keratin plugs extending above the surface of the skin. In this case report, we describe a 6-year-old girl with clinical features of IFAP along with palmoplantar keratoderma. Skin biopsy was done to confirm the diagnosis after which she was started on acitretin (10 mg per day). Good improvement in cutaneous features was observed after 1 month.
Collapse
Affiliation(s)
- Supriya Rajesh
- Department of Dermatology, Venerology and Leprosy, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Eswari Loganathan
- Department of Dermatology, Venerology and Leprosy, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Asha Gowrappala Shanmukhappa
- Department of Dermatology, Venerology and Leprosy, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| |
Collapse
|
20
|
Liu Y, Xu D, Wang L, Du W, Zhang L, Xiang X. MBTPS2 exacerbates albuminuria in streptozotocin-induced type I diabetic nephropathy by promoting endoplasmic reticulum stress-mediated renal damage. Arch Physiol Biochem 2022; 128:1050-1057. [PMID: 32255378 DOI: 10.1080/13813455.2020.1749084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The membrane-bound transcription factor protease site 2 (MBTPS2) is an intramembranous metalloprotease involved in the regulation of ER stress response, however, whether it is associated with DN is unknown. RESULTS We report that MBTPS2 expression is upregulated in the renal cortex of diabetic mice induced by streptozotocin (STZ), a murine model of insulinopenic type 1 DN. Functionally, in vivo, MBTPS2 overexpression exacerbates and its knockdown attenuates albuminuria, which indicate a detrimental role of MBTPS2 played in albuminuria development in DN mice. We further show that MBTPS2 promotes ER stress and renal damage in DN mice, and that reducing ER stress via a chemical chaperone 4-phenylbutyric acid (4-PBA) markedly rescues MBTPS2-exacerbated renal damage and albuminuria severity. CONCLUSIONS Collectively, our study associates the function of MBTPS2 in DN albuminuria with ER stress regulation, thus underscoring the notorious role of maladaptive ER response in influencing DN albuminuria.
Collapse
Affiliation(s)
- Yongliang Liu
- Central of Translation Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Dayu Xu
- Department of Urology, Zibo Central Hospital, Shandong University, Zibo, China
| | - Linping Wang
- Central of Translation Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Wenyan Du
- Central of Translation Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Limei Zhang
- Department of Endocrinology, Zibo Central Hospital, Shandong University, Zibo, China
| | - Xinxin Xiang
- Central of Translation Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| |
Collapse
|
21
|
Hassan A, Mir YR, Kuchay RAH. Ocular findings and genomics of X-linked recessive disorders: A review. Indian J Ophthalmol 2022; 70:2386-2396. [PMID: 35791118 PMCID: PMC9426149 DOI: 10.4103/ijo.ijo_252_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Advent of new sequencing technologies and modern diagnostic procedures has opened the door for a deeper understanding of disorders about which little was known previously. Discovery of novel genes, new genetic variants in previously known genes and better techniques of functional validation has immensely contributed to unraveling the molecular basis of genetic disorders. Availability of knockout animal models like the zebrafish and gene editing tools like CRISPR-Cas9 has elucidated the function of many new genes and helped us to better understand the functional consequences of various gene defects. This has also led to better diagnosis and therapeutic interventions. In this context, a good body of research work has been done on X-linked recessive disorders with ocular findings. This review will focus on ocular and genetic findings of these rare disorders. To our knowledge, this is the first comprehensive review encompassing ocular and genomic spectrum of X-linked recessive disorders.
Collapse
Affiliation(s)
- Asima Hassan
- Department of Health and Medical Education, Srinagar, Jammu and Kashmir, India
| | - Yaser R Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Raja A H Kuchay
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| |
Collapse
|
22
|
Jovanovic M, Guterman-Ram G, Marini JC. Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocr Rev 2022; 43:61-90. [PMID: 34007986 PMCID: PMC8755987 DOI: 10.1210/endrev/bnab017] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteogenesis imperfecta (OI) is a phenotypically and genetically heterogeneous skeletal dysplasia characterized by bone fragility, growth deficiency, and skeletal deformity. Previously known to be caused by defects in type I collagen, the major protein of extracellular matrix, it is now also understood to be a collagen-related disorder caused by defects in collagen folding, posttranslational modification and processing, bone mineralization, and osteoblast differentiation, with inheritance of OI types spanning autosomal dominant and recessive as well as X-linked recessive. This review provides the latest updates on OI, encompassing both classical OI and rare forms, their mechanism, and the signaling pathways involved in their pathophysiology. There is a special emphasis on mutations in type I procollagen C-propeptide structure and processing, the later causing OI with strikingly high bone mass. Types V and VI OI, while notably different, are shown to be interrelated by the interferon-induced transmembrane protein 5 p.S40L mutation that reveals the connection between the bone-restricted interferon-induced transmembrane protein-like protein and pigment epithelium-derived factor pathways. The function of regulated intramembrane proteolysis has been extended beyond cholesterol metabolism to bone formation by defects in regulated membrane proteolysis components site-2 protease and old astrocyte specifically induced-substance. Several recently proposed candidate genes for new types of OI are also presented. Discoveries of new OI genes add complexity to already-challenging OI management; current and potential approaches are summarized.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gali Guterman-Ram
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Hellicar J, Stevenson NL, Stephens DJ, Lowe M. Supply chain logistics - the role of the Golgi complex in extracellular matrix production and maintenance. J Cell Sci 2022; 135:273996. [PMID: 35023559 PMCID: PMC8767278 DOI: 10.1242/jcs.258879] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The biomechanical and biochemical properties of connective tissues are determined by the composition and quality of their extracellular matrix. This, in turn, is highly dependent on the function and organisation of the secretory pathway. The Golgi complex plays a vital role in directing matrix output by co-ordinating the post-translational modification and proteolytic processing of matrix components prior to their secretion. These modifications have broad impacts on the secretion and subsequent assembly of matrix components, as well as their function in the extracellular environment. In this Review, we highlight the role of the Golgi in the formation of an adaptable, healthy matrix, with a focus on proteoglycan and procollagen secretion as example cargoes. We then discuss the impact of Golgi dysfunction on connective tissue in the context of human disease and ageing.
Collapse
Affiliation(s)
- John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
24
|
Shin JO, Roh D, Shin K, Kim WI, Yang MY, Lee WK, Kim HS, Kim BS, Kim MB, Ko HC. A Novel Mutation in the MBTPS2 Gene Resulting in Ichthyosis Follicularis, Atrichia, and Photophobia Syndrome. Ann Dermatol 2022; 34:59-62. [PMID: 35221597 PMCID: PMC8831308 DOI: 10.5021/ad.2022.34.1.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Ichthyosis follicularis, atrichia, and photophobia (IFAP) syndrome is a rare genetic disorder caused by mutations in the MBTPS2 gene. It is characterized by ichthyosis and alopecia from birth. Photophobia may be present in infancy or early childhood. Its mode of inheritance is X-linked recessive; thus, it mostly affects male. The disease severity varies, ranging from mild cases limited to the skin to the severe variant involving multiple extracutaneous features. A 7-year-old boy presented with scanty hair on scalp and eyebrows at birth. On physical examination, scaly patches were observed on the whole body and spiky follicular hyperkeratotic papules were observed on the face and trunk. He also suffered from severe photophobia. Histopathological examination of the scalp showed miniaturized hair follicles without perifollicular fibrosis. Genetic analysis revealed a novel mutation in the MBTPS2 gene which was a homozygous missense mutation of c.245T>C leading to an amino-acid substitution from phenylalanine to serine (p.Phe82Ser). We diagnosed this patient with IFAP syndrome. To date, 25 pathogenic MBTPS2 gene mutations have been identified. To our knowledge, c.245T>C is a novel homozygous missense mutation in the MBTPS2 gene, which has not been reported in Human Gene Mutation Database, ClinVar Database, and Leiden Open Variation Database. Previous reports suggested genotype-phenotype correlations in the MBTPS2 gene mutations. Supported by a previous notion that genotype correlates with phenotype, this novel mutation can be a predictive factor for the mild form of IFAP syndrome, restricted to the classic symptom triad.
Collapse
Affiliation(s)
- Jun-Oh Shin
- Department of Dermatology, School of Medicine, Pusan National University, Busan, Korea
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Dongyoung Roh
- Department of Dermatology, School of Medicine, Pusan National University, Busan, Korea
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Kihyuk Shin
- Department of Dermatology, School of Medicine, Pusan National University, Busan, Korea
| | - Woo-Il Kim
- Department of Dermatology, School of Medicine, Pusan National University, Busan, Korea
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Min-Young Yang
- Department of Dermatology, School of Medicine, Pusan National University, Busan, Korea
| | - Won-Ku Lee
- Department of Dermatology, School of Medicine, Pusan National University, Busan, Korea
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hoon-Soo Kim
- Department of Dermatology, School of Medicine, Pusan National University, Busan, Korea
| | - Byung-Soo Kim
- Department of Dermatology, School of Medicine, Pusan National University, Busan, Korea
| | - Moon-Bum Kim
- Department of Dermatology, School of Medicine, Pusan National University, Busan, Korea
| | - Hyun-Chang Ko
- Department of Dermatology, School of Medicine, Pusan National University, Busan, Korea
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
25
|
Strong A, March ME, Cardinale CJ, Kim SE, Merves J, Whitworth H, Raffini L, Larosa C, Copelovitch L, Hou C, Slater D, Vaccaro C, Watson D, Zackai EH, Billheimer J, Hakonarson H. A novel MBTPS2 variant associated with BRESHECK syndrome impairs sterol-regulated transcription and the endoplasmic reticulum stress response. Am J Med Genet A 2021; 188:463-472. [PMID: 34655156 PMCID: PMC9293288 DOI: 10.1002/ajmg.a.62537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
Ichthyosis follicularis, atrichia, and photophobia syndrome (IFAP syndrome) is a rare, X-linked disorder caused by pathogenic variants in membrane-bound transcription factor protease, site 2 (MBTPS2). Pathogenic MBTPS2 variants also cause BRESHECK syndrome, characterized by the IFAP triad plus intellectual disability and multiple congenital anomalies. Here we present a patient with ichthyosis, sparse hair, pulmonic stenosis, kidney dysplasia, hypospadias, growth failure, thrombocytopenia, anemia, bone marrow fibrosis, and chronic diarrhea found by research-based exome sequencing to harbor a novel, maternally inherited MBTPS2 missense variant (c.766 G>A; (p.Val256Leu)). In vitro modeling supports variant pathogenicity, with impaired cell growth in cholesterol-depleted media, attenuated activation of the sterol regulatory element-binding protein pathway, and failure to activate the endoplasmic reticulum stress response pathway. Our case expands both the genetic and phenotypic spectrum of BRESHECK syndrome to include a novel MBTPS2 variant and cytopenias, bone marrow fibrosis, and chronic diarrhea.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael E March
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christopher J Cardinale
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sophia E Kim
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jamie Merves
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hilary Whitworth
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Leslie Raffini
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christopher Larosa
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lawrence Copelovitch
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cuiping Hou
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Diana Slater
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Courtney Vaccaro
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Deborah Watson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey Billheimer
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Danyukova T, Schöneck K, Pohl S. Site-1 and site-2 proteases: A team of two in regulated proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119138. [PMID: 34619164 DOI: 10.1016/j.bbamcr.2021.119138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
The site-1 and site-2 proteases (S1P and S2P) were identified over 20 years ago, and the functions of both have been addressed in numerous studies ever since. Whereas S1P processes a set of substrates independently of S2P, the latter acts in concert with S1P in a mechanism, called regulated intramembrane proteolysis, that controls lipid metabolism and response to unfolded proteins. This review summarizes the molecular roles that S1P and S2P jointly play in these processes. As S1P and S2P deficiencies mainly affect connective tissues, yet with varying phenotypes, we discuss the segregated functions of S1P and S2P in terms of cell homeostasis and maintenance of the connective tissues. In addition, we provide experimental data that point at S2P, but not S1P, as a critical regulator of cell adaptation to proteotoxicity or lipid imbalance. Therefore, we hypothesize that S2P can also function independently of S1P activity.
Collapse
Affiliation(s)
- Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Kenneth Schöneck
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
27
|
Eckl KM, Gruber R, Brennan L, Marriott A, Plank R, Moosbrugger-Martinz V, Blunder S, Schossig A, Altmüller J, Thiele H, Nürnberg P, Zschocke J, Hennies HC, Schmuth M. Cystatin M/E Variant Causes Autosomal Dominant Keratosis Follicularis Spinulosa Decalvans by Dysregulating Cathepsins L and V. Front Genet 2021; 12:689940. [PMID: 34322157 PMCID: PMC8312243 DOI: 10.3389/fgene.2021.689940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Keratosis follicularis spinulosa decalvans (KFSD) is a rare cornification disorder with an X-linked recessive inheritance in most cases. Pathogenic variants causing X-linked KFSD have been described in MBTPS2, the gene for a membrane-bound zinc metalloprotease that is involved in the cleavage of sterol regulatory element binding proteins important for the control of transcription. Few families have been identified with an autosomal dominant inheritance of KFSD. We present two members of an Austrian family with a phenotype of KFSD, a mother and her son. The disease was not observed in her parents, pointing to a dominant inheritance with a de novo mutation in the index patient. Using whole-exome sequencing, we identified a heterozygous missense variant in CST6 in DNA samples from the index patient and her affected son. In line with family history, the variant was not present in samples from her parents. CST6 codes for cystatin M/E, a cysteine protease inhibitor. Patient keratinocytes showed increased expression of cathepsin genes CTSL and CTSV and reduced expression of transglutaminase genes TGM1 and TGM3. A relative gain of active, cleaved transglutaminases was found in patient keratinocytes compared to control cells. The variant found in CST6 is expected to affect protein targeting and results in marked disruption of the balance between cystatin M/E activity and its target proteases and eventually transglutaminases 1 and 3. This disturbance leads to an impairment of terminal epidermal differentiation and proper hair shaft formation seen in KFSD.
Collapse
Affiliation(s)
- Katja M. Eckl
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - Robert Gruber
- Department of Dermatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Louise Brennan
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - Andrew Marriott
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - Roswitha Plank
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Stefan Blunder
- Department of Dermatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Schossig
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Altmüller
- Cologne Center for Genomics, Faculty of Medicine and Cologne University Hospital, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, Faculty of Medicine and Cologne University Hospital, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, Faculty of Medicine and Cologne University Hospital, University of Cologne, Cologne, Germany
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hans Christian Hennies
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Cologne Center for Genomics, Faculty of Medicine and Cologne University Hospital, University of Cologne, Cologne, Germany
| | - Matthias Schmuth
- Department of Dermatology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Limbal Stem Cell Dysfunction in Ichthyosis Follicularis, Alopecia, and Photophobia Syndrome. Cornea 2021; 39:1321-1324. [PMID: 32482964 DOI: 10.1097/ico.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe the presentation and management of limbal stem cell dysfunction in ichthyosis follicularis, alopecia, and photophobia (IFAP) syndrome. METHODS A retrospective case report. RESULTS A 6-day-old male infant was diagnosed with IFAP syndrome based on family history and a mutation detected in the MBTPS2 gene. Initial examination showed hyperkeratotic eyelids, madarosis, and lagophthalmos, but otherwise clear corneas. He developed bilateral central corneal epithelial defects spontaneously 6 months later, which were managed with aggressive lubrication, prophylactic antibiotics, and bilateral permanent lateral tarsorrhaphies at 7 months of age. During the procedure, the patient was noted to have bilateral limbal thickening, peripheral corneal pannus with underlying stromal scarring, and late fluorescein staining of the corneal surface. Anterior segment optical coherence tomography demonstrated a significantly abnormal and hyperreflective epithelial surface overlying a thinned corneal stroma, suggestive of limbal stem cell dysfunction. The corneal surface was maintained with lubrication and tarsorrhaphy and has remained stable since. CONCLUSIONS The progressive conjunctivalization, spontaneous epithelial defects, and anterior segment optical coherence tomography features are highly suggestive of limbal stem cell dysfunction in IFAP syndrome. Optimizing the ocular surface is of importance in the management of children with this rare disease.
Collapse
|
29
|
Lim PJ, Marfurt S, Lindert U, Opitz L, Ndarugendamwo T, Srikanthan P, Poms M, Hersberger M, Langhans CD, Haas D, Rohrbach M, Giunta C. Omics Profiling of S2P Mutant Fibroblasts as a Mean to Unravel the Pathomechanism and Molecular Signatures of X-Linked MBTPS2 Osteogenesis Imperfecta. Front Genet 2021; 12:662751. [PMID: 34093655 PMCID: PMC8176293 DOI: 10.3389/fgene.2021.662751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Osteogenesis imperfecta (OI) is an inherited skeletal dysplasia characterized by low bone density, bone fragility and recurrent fractures. The characterization of its heterogeneous genetic basis has allowed the identification of novel players in bone development. In 2016, we described the first X-linked recessive form of OI caused by hemizygous MBTPS2 missense variants resulting in moderate to severe phenotypes. MBTPS2 encodes site-2 protease (S2P), which activates transcription factors involved in bone (OASIS) and cartilage development (BBF2H7), ER stress response (ATF6) and lipid metabolism (SREBP) via regulated intramembrane proteolysis. In times of ER stress or sterol deficiency, the aforementioned transcription factors are sequentially cleaved by site-1 protease (S1P) and S2P. Their N-terminal fragments shuttle to the nucleus to activate gene transcription. Intriguingly, missense mutations at other positions of MBTPS2 cause the dermatological spectrum condition Ichthyosis Follicularis, Atrichia and Photophobia (IFAP) and Keratosis Follicularis Spinulosa Decalvans (KFSD) without clinical overlap with OI despite the proximity of some of the pathogenic variants. To understand how single amino acid substitutions in S2P can lead to non-overlapping phenotypes, we aimed to compare the molecular features of MBTPS2-OI and MBTPS2-IFAP/KFSD, with the ultimate goal to unravel the pathomechanisms underlying MBTPS2-OI. RNA-sequencing-based transcriptome profiling of primary skin fibroblasts from healthy controls (n = 4), MBTPS2-OI (n = 3), and MBTPS2-IFAP/KFSD (n = 2) patients was performed to identify genes that are differentially expressed in MBTPS2-OI and MBTPS2-IFAP/KFSD individuals compared to controls. We observed that SREBP-dependent genes are more downregulated in OI than in IFAP/KFSD. This is coupled to alterations in the relative abundance of fatty acids in MBTPS2-OI fibroblasts in vitro, while no consistent alterations in the sterol profile were observed. Few OASIS-dependent genes are suppressed in MBTPS2-OI, while BBF2H7- and ATF6-dependent genes are comparable between OI and IFAP/KFSD patients and control fibroblasts. Importantly, we identified genes involved in cartilage physiology that are differentially expressed in MBTPS2-OI but not in MBTPS2-IFAP/KFSD fibroblasts. In conclusion, our data provide clues to how pathogenic MBTPS2 mutations cause skeletal deformities via altered fatty acid metabolism or cartilage development that may affect bone development, mineralization and endochondral ossification.
Collapse
Affiliation(s)
- Pei Jin Lim
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland.,University of Zürich, Zurich, Switzerland
| | - Severin Marfurt
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland.,University of Zürich, Zurich, Switzerland
| | - Uschi Lindert
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland.,University of Zürich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Timothée Ndarugendamwo
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland.,University of Zürich, Zurich, Switzerland
| | - Pakeerathan Srikanthan
- University of Zürich, Zurich, Switzerland.,Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Poms
- University of Zürich, Zurich, Switzerland.,Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Hersberger
- University of Zürich, Zurich, Switzerland.,Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Claus-Dieter Langhans
- Department of Pediatrics, Centre for Pediatric and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital, Heidelberg, Germany
| | - Dorothea Haas
- Department of Pediatrics, Centre for Pediatric and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital, Heidelberg, Germany
| | - Marianne Rohrbach
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland.,University of Zürich, Zurich, Switzerland
| | - Cecilia Giunta
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland.,University of Zürich, Zurich, Switzerland
| |
Collapse
|
30
|
Irurzun I, Natale MI, Agostinelli ML, Lamberti M, Montero D, Granda C, Mássimo JA, Manzur GB, Valinotto LE. Ichthyosis follicularis, atrichia and photophobia (IFAP) and hereditary mucoepithelial dysplasia: Two syndromes that share a common clinical spectrum. Pediatr Dermatol 2021; 38:568-574. [PMID: 33742461 DOI: 10.1111/pde.14560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ichthyosis follicularis, atrichia and photophobia syndrome (IFAP) is an X-linked inherited disease caused by pathogenic variants in the gene encoding the membrane-bound transcription factor peptidase, site 2 (MBTPS2). Clinical presentation includes ichthyosis follicularis, alopecia, photophobia and developmental delay. Hereditary mucoepithelial dysplasia (HMD) is a dominantly inherited disease characterized by keratitis, non-scarring alopecia, skin lesions including follicular keratosis, perineal erythema, and mucosal involvement. Recently, variants in SREBF1, a gene coding for a transcription factor related to cholesterol and fatty acid synthesis, have been associated with the disease. These two syndromes share a common clinical spectrum. Here, we describe an IFAP syndrome patient with a novel variant in the MBTPS2 gene and an HMD patient with a previously reported variant in the SREBF1 gene. In addition, we present a review of the literature describing the triad characterized by non-scarring alopecia, keratosis follicularis, and ocular symptoms common in both IFAP and HMD patients to raise awareness of these underdiagnosed diseases. We also highlight the subtle differences in clinical presentation between the two disorders to better enable differentiation.
Collapse
Affiliation(s)
- Inés Irurzun
- Dermatology Unit, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mónica I Natale
- Center in Investigation of Genodermatosis and Epidermolysis Bullosa (CEDIGEA), University of Buenos Aires, Buenos Aires, Argentina
| | | | - Magdalena Lamberti
- Dermatology Unit, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Dolores Montero
- Dermatology Unit, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Cecilia Granda
- Pathological Anatomy, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - José A Mássimo
- Dermatology Unit, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Graciela B Manzur
- Dermatology Unit, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina.,Center in Investigation of Genodermatosis and Epidermolysis Bullosa (CEDIGEA), University of Buenos Aires, Buenos Aires, Argentina
| | - Laura E Valinotto
- Center in Investigation of Genodermatosis and Epidermolysis Bullosa (CEDIGEA), University of Buenos Aires, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
31
|
Caengprasath N, Theerapanon T, Porntaveetus T, Shotelersuk V. MBTPS2, a membrane bound protease, underlying several distinct skin and bone disorders. J Transl Med 2021; 19:114. [PMID: 33743732 PMCID: PMC7981912 DOI: 10.1186/s12967-021-02779-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
The MBTPS2 gene on the X-chromosome encodes the membrane-bound transcription factor protease, site-2 (MBTPS2) or site-2 protease (S2P) which cleaves and activates several signaling and regulatory proteins from the membrane. The MBTPS2 is critical for a myriad of cellular processes, ranging from the regulation of cholesterol homeostasis to unfolded protein responses. While its functional role has become much clearer in the recent years, how mutations in the MBTPS2 gene lead to several human disorders with different phenotypes including Ichthyosis Follicularis, Atrichia and Photophobia syndrome (IFAP) with or without BRESHECK syndrome, Keratosis Follicularis Spinulosa Decalvans (KFSD), Olmsted syndrome, and Osteogenesis Imperfecta type XIX remains obscure. This review presents the biological role of MBTPS2 in development, summarizes its mutations and implicated disorders, and discusses outstanding unanswered questions.
Collapse
Affiliation(s)
- Natarin Caengprasath
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
32
|
Hereditary Mucoepithelial Dysplasia and Autosomal-Dominant IFAP Syndrome Is a Clinical Spectrum Due to SREBF1 Variants. J Invest Dermatol 2020; 141:1596-1598. [PMID: 33253727 DOI: 10.1016/j.jid.2020.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022]
|
33
|
Wang H, Humbatova A, Liu Y, Qin W, Lee M, Cesarato N, Kortüm F, Kumar S, Romano MT, Dai S, Mo R, Sivalingam S, Motameny S, Wu Y, Wang X, Niu X, Geng S, Bornholdt D, Kroisel PM, Tadini G, Walter SD, Hauck F, Girisha KM, Calza AM, Bottani A, Altmüller J, Buness A, Yang S, Sun X, Ma L, Kutsche K, Grzeschik KH, Betz RC, Lin Z. Mutations in SREBF1, Encoding Sterol Regulatory Element Binding Transcription Factor 1, Cause Autosomal-Dominant IFAP Syndrome. Am J Hum Genet 2020; 107:34-45. [PMID: 32497488 DOI: 10.1016/j.ajhg.2020.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
IFAP syndrome is a rare genetic disorder characterized by ichthyosis follicularis, atrichia, and photophobia. Previous research found that mutations in MBTPS2, encoding site-2-protease (S2P), underlie X-linked IFAP syndrome. The present report describes the identification via whole-exome sequencing of three heterozygous mutations in SREBF1 in 11 unrelated, ethnically diverse individuals with autosomal-dominant IFAP syndrome. SREBF1 encodes sterol regulatory element-binding protein 1 (SREBP1), which promotes the transcription of lipogenes involved in the biosynthesis of fatty acids and cholesterols. This process requires cleavage of SREBP1 by site-1-protease (S1P) and S2P and subsequent translocation into the nucleus where it binds to sterol regulatory elements (SRE). The three detected SREBF1 mutations caused substitution or deletion of residues 527, 528, and 530, which are crucial for S1P cleavage. In vitro investigation of SREBP1 variants demonstrated impaired S1P cleavage, which prohibited nuclear translocation of the transcriptionally active form of SREBP1. As a result, SREBP1 variants exhibited significantly lower transcriptional activity compared to the wild-type, as demonstrated via luciferase reporter assay. RNA sequencing of the scalp skin from IFAP-affected individuals revealed a dramatic reduction in transcript levels of low-density lipoprotein receptor (LDLR) and of keratin genes known to be expressed in the outer root sheath of hair follicles. An increased rate of in situ keratinocyte apoptosis, which might contribute to skin hyperkeratosis and hypotrichosis, was also detected in scalp samples from affected individuals. Together with previous research, the present findings suggest that SREBP signaling plays an essential role in epidermal differentiation, skin barrier formation, hair growth, and eye function.
Collapse
Affiliation(s)
- Huijun Wang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Aytaj Humbatova
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany
| | - Yuanxiang Liu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wen Qin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Mingyang Lee
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Nicole Cesarato
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sheetal Kumar
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany
| | - Maria Teresa Romano
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany
| | - Shangzhi Dai
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Ran Mo
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Sugirthan Sivalingam
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Medical Faculty, 53127 Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty, 53127 Bonn, Germany
| | - Susanne Motameny
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Yuan Wu
- Department of Ophthalmology, Peking University First Hospital, Beijing 100034, China
| | - Xiaopeng Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xinwu Niu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dorothea Bornholdt
- Centre for Human Genetics, University of Marburg, 35033 Marburg, Germany
| | - Peter M Kroisel
- Institute of Human Genetics, Medical University of Graz, 8010 Graz, Austria
| | - Gianluca Tadini
- Pediatric Dermatology Unit, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Scott D Walter
- Retina Consultants, P.C., 43 Woodland Street, Suite 100, Hartford, CT 06105, USA
| | - Fabian Hauck
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anne-Marie Calza
- Department of Dermatology and Venereology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Armand Bottani
- Service of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Medical Faculty, 53127 Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty, 53127 Bonn, Germany
| | - Shuxia Yang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Xiujuan Sun
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Lin Ma
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany.
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China.
| |
Collapse
|
34
|
Ye J. Transcription factors activated through RIP (regulated intramembrane proteolysis) and RAT (regulated alternative translocation). J Biol Chem 2020; 295:10271-10280. [PMID: 32487748 DOI: 10.1074/jbc.rev120.012669] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Transmembrane proteins are membrane-anchored proteins whose topologies are important for their functions. These properties enable regulation of certain transmembrane proteins by regulated intramembrane proteolysis (RIP) and regulated alternative translocation (RAT). RIP enables a protein fragment of a transmembrane precursor to function at a new location, and RAT leads to an inverted topology of a transmembrane protein by altering the direction of its translocation across membranes during translation. RIP mediated by site-1 protease (S1P) and site-2 protease (S2P) is involved in proteolytic activation of membrane-bound transcription factors. In resting cells, these transcription factors remain in the endoplasmic reticulum (ER) as inactive transmembrane precursors. Upon stimulation by signals within the ER, they are translocated from the ER to the Golgi. There, they are cleaved first by S1P and then by S2P, liberating their N-terminal domains from membranes and enabling them to activate genes in the nucleus. This signaling pathway regulates lipid metabolism, unfolded protein responses, secretion of extracellular matrix proteins, and cell proliferation. Remarkably, ceramide-induced RIP of cAMP response element-binding protein 3-like 1 (CREB3L1) also involves RAT. In resting cells, RIP of CREB3L1 is blocked by transmembrane 4 L6 family member 20 (TM4SF20). Ceramide inverts the orientation of newly synthesized TM4SF20 in membranes through RAT, converting TM4SF20 from an inhibitor to an activator of RIP of CREB3L1. Here, I review recent insights into RIP of membrane-bound transcription factors, focusing on CREB3L1 activation through both RIP and RAT, and discuss current open questions about these two signaling pathways.
Collapse
Affiliation(s)
- Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
35
|
Hereditary Mucoepithelial Dysplasia Results from Heterozygous Variants at p.Arg557 Mutational Hotspot in SREBF1, Encoding a Transcription Factor Involved in Cholesterol Homeostasis. J Invest Dermatol 2020; 140:1289-1292.e2. [DOI: 10.1016/j.jid.2019.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 11/18/2022]
|
36
|
Murase C, Takeichi T, Okuno Y, Ikumi K, Morita A, Akiyama M. Deep phenotyping of ichthyosis follicularis with atrichia and photophobia syndrome associated with MBTPS2 mutations. J Dermatol 2020; 47:e87-e88. [PMID: 31907960 DOI: 10.1111/1346-8138.15210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Chiaki Murase
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Kyoko Ikumi
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
37
|
Chen F, Wang J, Yao Z, Li M. A novel MBTPS2 start codon mutation causes a mild ichthyosis follicularis with atrichia and photophobia phenotype. Clin Exp Dermatol 2019; 45:505-507. [PMID: 31646662 DOI: 10.1111/ced.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/14/2019] [Accepted: 09/11/2019] [Indexed: 11/29/2022]
Affiliation(s)
- F Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - J Wang
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Z Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - M Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Palmer MA, Blakeborough L, Harries M, Haslam IS. Cholesterol homeostasis: Links to hair follicle biology and hair disorders. Exp Dermatol 2019; 29:299-311. [PMID: 31260136 DOI: 10.1111/exd.13993] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/24/2019] [Accepted: 06/19/2019] [Indexed: 01/10/2023]
Abstract
Lipids and lipid metabolism are critical factors in hair follicle (HF) biology, and cholesterol has long been suspected of influencing hair growth. Altered cholesterol homeostasis is involved in the pathogenesis of primary cicatricial alopecia, mutations in a cholesterol transporter are associated with congenital hypertrichosis, and dyslipidaemia has been linked to androgenic alopecia. The underlying molecular mechanisms by which cholesterol influences pathways involved in proliferation and differentiation within HF cell populations remain largely unknown. As such, expanding our knowledge of the role for cholesterol in regulating these processes is likely to provide new leads in the development of treatments for disorders of hair growth and cycling. This review describes the current state of knowledge with respect to cholesterol homeostasis in the HF along with known and putative links to hair pathologies.
Collapse
Affiliation(s)
- Megan A Palmer
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Liam Blakeborough
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Matthew Harries
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Iain S Haslam
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
39
|
Park K, Lee SE, Shin KO, Uchida Y. Insights into the role of endoplasmic reticulum stress in skin function and associated diseases. FEBS J 2019; 286:413-425. [PMID: 30586218 DOI: 10.1111/febs.14739] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/29/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022]
Abstract
Endoplasmic reticulum (ER) stress is a mechanism that allows the protection of normal cellular functions in response to both internal perturbations, such as accumulation of unfolded proteins, and external perturbations, for example redox stress, UVB irradiation, and infection. A hallmark of ER stress is the accumulation of misfolded and unfolded proteins. Physiological levels of ER stress trigger the unfolded protein response (UPR) that is required to restore normal ER functions. However, the UPR can also initiate a cell death program/apoptosis pathway in response to excessive or persistent ER stress. Recently, it has become evident that chronic ER stress occurs in several diseases, including skin diseases such as Darier's disease, rosacea, vitiligo and melanoma; furthermore, it is suggested that ER stress is directly involved in the pathogenesis of these disorders. Here, we review the role of ER stress in skin function, and discuss its significance in skin diseases.
Collapse
Affiliation(s)
- Kyungho Park
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Korea
| | - Sang Eun Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Korea
| | - Yoshikazu Uchida
- Department of Dermatology, School of Medicine, University of California, San Francisco, CA, USA.,Northern California Institute for Research and Education, Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
40
|
Jiang Y, Jin H, Zeng Y. A novel mutation in MBTPS2 causes ichthyosis follicularis, alopecia, and photophobia syndrome. Mol Genet Genomic Med 2019; 7:e812. [PMID: 31215178 PMCID: PMC6687642 DOI: 10.1002/mgg3.812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background The ichthyosis follicularis, alopecia, and photophobia (IFAP) syndrome is a rare X‐linked genodermatosis characterized by noninflammatory spiny follicular hyperkeratosis, severe photophobia, and non‐scarring alopecia with variable severities. IFAP syndrome results from mutations in the gene encoding the membrane‐bound transcription factor peptidase, site 2 (MBTPS2). Methods We present an 11‐year‐old male with typical clinical features of IFAP syndrome, including diffuse follicular hyperkeratosis, alopecia, photophobia, psoriasiform plaques, short statue, nail dystrophy, mental retardation, and seizures. Results A novel missense mutation (NM_015884.4: c.1298T > C; NP_056968.1: p. L433P) in the membrane‐bound transcription factor peptidase, site 2 gene (MBTPS2) was identified in our patient. The heterozygous MBTPS2 mutation was identified in his mother but not his father. Conclusion This study demonstrated a novel MBTPS2 mutation in a patient with IFAP syndrome and thus expands the known MBPTS2 molecular repertoire.
Collapse
Affiliation(s)
- Yanyun Jiang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongzhong Jin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueping Zeng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
[Syndromes with scales and keratosis]. Hautarzt 2019; 70:497-505. [PMID: 31087125 DOI: 10.1007/s00105-019-4417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Approximately 9000 different phenotypes are known in medicine. The definition phenotype includes both manifest diseases as well as features without any disease value and the pure genetic disposition to develop a disease (e.g. tumors or complex diseases); however, most phenotypes are rare monogenic hereditary diseases. Approximately 6400 of these phenotypes have so far been elucidated by molecular genetics and are caused by mutations in 4064 different genes. Of all genetic diseases, an estimated one third are associated with skin symptoms. Genodermatoses are the phenotypes predominantly related to the skin, of which approximately 600 are familiar to dermatologists. The syndromes with scaling and keratosis include cornification disorders where the symptoms are not limited to the skin. They are associated with skin symptoms such as ichthyosis, erythroderma and palmoplantar keratoderma but show additional symptoms from other organ groups. The typical combination of symptoms may be unique to a syndrome and therefore seminal for the diagnosis.
Collapse
|
42
|
Schweitzer GG, Gan C, Bucelli RC, Wegner D, Schmidt RE, Shinawi M, Finck BN, Brookheart RT. A mutation in Site-1 Protease is associated with a complex phenotype that includes episodic hyperCKemia and focal myoedema. Mol Genet Genomic Med 2019; 7:e00733. [PMID: 31070020 PMCID: PMC6625134 DOI: 10.1002/mgg3.733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/25/2019] [Accepted: 04/04/2019] [Indexed: 01/04/2023] Open
Abstract
Background Site‐1 Protease (S1P) is a Golgi‐resident protein required for the activation of regulatory proteins that drive key cellular functions, including, the unfolded protein response (UPR) and lipid and cholesterol biosynthesis. While disruptions in S1P function have been widely characterized in animal models, to date, the implications of disrupted S1P function in human disease states are not completely known. Methods The patient and both parents underwent whole exome and mitochondrial DNA sequencing, and Sanger sequencing was used to confirm the mutation. Western blotting and immunofluorescence studies were performed on either proband‐derived fibroblasts or on an established cell line to assess protein expression and cellular localization of the mutated S1P protein. Quantitative real‐time PCR and luciferase reporter assays were used to examine activation of S1P target pathways in the context of the S1P mutation. Results We describe a female patient with a de novo heterozygous missense mutation in the transmembrane domain of S1P (p. Pro1003Ser). The patient presented to our neuromuscular clinic with episodic, activity‐induced, focal myoedema and myalgias with hyperCKemia. Her clinical phenotype was complex and included gastrointestinal hypomotility, ocular migraines, and polycystic ovary syndrome. Molecular analysis using proband‐derived fibroblasts and cell lines harboring the Pro1003Ser mutation demonstrated increased activation of UPR and lipid and cholesterol regulatory pathways and localization of S1P Pro1003Ser in the Golgi. Conclusion These findings suggest a critical function for S1P in several human organ systems and implicate an important role for S1P in various human disease states.
Collapse
Affiliation(s)
- George G Schweitzer
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Connie Gan
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Robert C Bucelli
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Marwan Shinawi
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.,Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Brian N Finck
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Rita T Brookheart
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
43
|
Integrating miRNA and mRNA expression profiles in plasma of laying hens associated with heat stress. Mol Biol Rep 2019; 46:2779-2789. [PMID: 30835041 DOI: 10.1007/s11033-019-04724-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
High temperature is one of the most common environmental stressors plaguing animal husbandry worldwide. Little is known about the regulatory roles of miRNAs in response to heat stress in laying hens. To systematically identify heat stress-responsive miRNAs and their targets in laying hens, the differential expression of miRNAs and mRNAs was compared under heat stress and normal temperature. We identified 16 miRNAs and 502 genes that were significantly changed in heat-stressed laying hens. By comparing the differentially expressed genes (DEGs) and the putative targets of the altered miRNAs based on bioinformatics prediction, 82 coordinated genes were identified. Gene ontology classification analyses of the 82 putative target genes showed that the biological category 'cellular response to stress' was prominently annotated. Notably, the response-related gene autophagy-related protein 9A was most likely controlled by the upregulated miRNAs gga-miR-92-5p, gga-miR-1618-5p, gga-miR-1737, and gga-miR-6557 in response to heat stress. Analysis of DEGs also revealed an increase in lipid metabolism in heat-stressed laying hens. Some of these genes were negatively correlated with the altered miRNAs, suggesting that they are potential targets of the miRNAs. Taken together, our results advance our understanding of the regulatory mechanism of heat-stress-induced injury in laying hens, specifically with regard to miRNAs.
Collapse
|
44
|
Affiliation(s)
- Arif O Khan
- a Eye Institute, Cleveland Clinic Abu Dhabi , Abu Dhabi , United Arab Emirates
- b Department of Ophthalmology , Cleveland Clinic Lerner College of Medicine of Case Western University , Cleveland , OH , USA
| | | |
Collapse
|
45
|
Comment on: Keratosis Pilaris and Its Subtypes: Associations, New Molecular and Pharmacologic Etiologies, and Therapeutic Options. Am J Clin Dermatol 2019; 20:165. [PMID: 30506428 DOI: 10.1007/s40257-018-0411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Youssefian L, Vahidnezhad H, Saeidian AH, Mahmoudi H, Karamzadeh R, Kariminejad A, Huang J, Li L, Jannace TF, Fortina P, Zeinali S, White TW, Uitto J. A novel autosomal recessive GJB2-associated disorder: Ichthyosis follicularis, bilateral severe sensorineural hearing loss, and punctate palmoplantar keratoderma. Hum Mutat 2018; 40:217-229. [PMID: 30431684 DOI: 10.1002/humu.23686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 11/07/2022]
Abstract
Ichthyosis follicularis, a distinct cutaneous entity reported in combination with atrichia, and photophobia has been associated with mutations in MBTPS2. We sought the genetic cause of a novel syndrome of ichthyosis follicularis, bilateral severe sensorineural hearing loss and punctate palmoplantar keratoderma in two families. We performed whole exome sequencing on three patients from two families. The pathogenicity and consequences of mutations were studied in the Xenopus oocyte expression system and by molecular modeling analysis. Compound heterozygous mutations in the GJB2 gene were discovered: a pathogenic c.526A>G; p.Asn176Asp, and a common frameshift mutation, c.35delG; p.Gly12Valfs*2. The p.Asn176Asp missense mutation was demonstrated to significantly reduce the cell-cell gap junction channel activity and increase the nonjunctional hemichannel activity in the Xenopus oocyte expression system. Molecular modeling analyses of the mutant Cx26 protein revealed significant changes in the structural characteristics and electrostatic potential of the Cx26, either in hemichannel or gap junction conformation. Thus, association of a new syndrome of an autosomal recessive disorder of ichthyosis follicularis, bilateral severe sensorineural hearing loss and punctate palmoplantar keratoderma with mutations in GJB2, expands the phenotypic spectrum of the GJB2-associated disorders. The findings attest to the complexity of the clinical consequences of different mutations in GJB2.
Collapse
Affiliation(s)
- Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Biotechnology Research Center, Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hamidreza Mahmoudi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Karamzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Jianhe Huang
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leping Li
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Thomas F Jannace
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Sirous Zeinali
- Biotechnology Research Center, Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
47
|
van den Bogaard EHJ, van Geel M, van Vlijmen-Willems IMJJ, Jansen PAM, Peppelman M, van Erp PEJ, Atalay S, Venselaar H, Simon MEH, Joosten M, Schalkwijk J, Zeeuwen PLJM. Deficiency of the human cysteine protease inhibitor cystatin M/E causes hypotrichosis and dry skin. Genet Med 2018; 21:1559-1567. [PMID: 30425301 PMCID: PMC6752276 DOI: 10.1038/s41436-018-0355-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023] Open
Abstract
Purpose We aimed to assess the biological and clinical significance of the human cysteine protease inhibitor cystatin M/E, encoded by the CTS6 gene, in diseases of human hair and skin. Methods Exome and Sanger sequencing was performed to reveal the genetic cause in two related patients with hypotrichosis. Immunohistochemical, biophysical, and biochemical measurements were performed on patient skin and 3D-reconstructed skin from patient-derived keratinocytes. Results We identified a homozygous variant c.361C>T (p.Gln121*), resulting in a premature stop codon in exon 2 of CST6 associated with hypotrichosis, eczema, blepharitis, photophobia and impaired sweating. Enzyme assays using recombinant mutant cystatin M/E protein, generated by site-directed mutagenesis, revealed that this p.Gln121* variant was unable to inhibit any of its three target proteases (legumain and cathepsins L and V). Three-dimensional protein structure prediction confirmed the disturbance of the protease/inhibitor binding sites of legumain and cathepsins L and V in the p.Gln121* variant. Conclusion The herein characterized autosomal recessive hypotrichosis syndrome indicates an important role of human cystatin M/E in epidermal homeostasis and hair follicle morphogenesis.
Collapse
Affiliation(s)
- Ellen H J van den Bogaard
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Michel van Geel
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research Institute for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ivonne M J J van Vlijmen-Willems
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Patrick A M Jansen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Malou Peppelman
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Piet E J van Erp
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Selma Atalay
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, RIMLS, Radboudumc, Nijmegen, The Netherlands
| | - Marleen E H Simon
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marieke Joosten
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands.
| |
Collapse
|
48
|
Yang Z, Xu Z, Xing H, Ma L. Novel MBTPS2 mutation causes a mild phenotype of ichthyosis follicularis with atrichia and photophobia syndrome in a Chinese pedigree. J Dermatol 2018; 46:e126-e128. [PMID: 30294811 DOI: 10.1111/1346-8138.14660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhou Yang
- Department of Dermatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Zhe Xu
- Department of Dermatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Huan Xing
- Department of Dermatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Lin Ma
- Department of Dermatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Chen C, Xu C, Li H, Jia M, Tang S. Novel mutation in MBTPS2 causes keratosis follicularis spinulosa decalvans in a large Chinese family. Int J Dermatol 2018; 58:493-496. [PMID: 29951998 DOI: 10.1111/ijd.14129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/08/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Chong Chen
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Chenyang Xu
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Huanzheng Li
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Manli Jia
- Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Shaohua Tang
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China.,Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
50
|
Neri G, Schwartz CE, Lubs HA, Stevenson RE. X-linked intellectual disability update 2017. Am J Med Genet A 2018; 176:1375-1388. [PMID: 29696803 DOI: 10.1002/ajmg.a.38710] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/23/2018] [Accepted: 03/23/2018] [Indexed: 12/28/2022]
Abstract
The X-chromosome comprises only about 5% of the human genome but accounts for about 15% of the genes currently known to be associated with intellectual disability. The early progress in identifying the X-linked intellectual disability (XLID)-associated genes through linkage analysis and candidate gene sequencing has been accelerated with the use of high-throughput technologies. In the 10 years since the last update, the number of genes associated with XLID has increased by 96% from 72 to 141 and duplications of all 141 XLID genes have been described, primarily through the application of high-resolution microarrays and next generation sequencing. The progress in identifying genetic and genomic alterations associated with XLID has not been matched with insights that improve the clinician's ability to form differential diagnoses, that bring into view the possibility of curative therapies for patients, or that inform scientists of the impact of the genetic alterations on cell organization and function.
Collapse
Affiliation(s)
- Giovanni Neri
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina.,Istituto di Medicina Genomica, Università Cattolica del S. Cuore, Rome, Italy
| | - Charles E Schwartz
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Herbert A Lubs
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Roger E Stevenson
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| |
Collapse
|