1
|
Li X, Ma Y, Li G, Jin G, Xu L, Li Y, Wei P, Zhang L. Leprosy: treatment, prevention, immune response and gene function. Front Immunol 2024; 15:1298749. [PMID: 38440733 PMCID: PMC10909994 DOI: 10.3389/fimmu.2024.1298749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Since the leprosy cases have fallen dramatically, the incidence of leprosy has remained stable over the past years, indicating that multidrug therapy seems unable to eradicate leprosy. More seriously, the emergence of rifampicin-resistant strains also affects the effectiveness of treatment. Immunoprophylaxis was mainly carried out through vaccination with the BCG but also included vaccines such as LepVax and MiP. Meanwhile, it is well known that the infection and pathogenesis largely depend on the host's genetic background and immunity, with the onset of the disease being genetically regulated. The immune process heavily influences the clinical course of the disease. However, the impact of immune processes and genetic regulation of leprosy on pathogenesis and immunological levels is largely unknown. Therefore, we summarize the latest research progress in leprosy treatment, prevention, immunity and gene function. The comprehensive research in these areas will help elucidate the pathogenesis of leprosy and provide a basis for developing leprosy elimination strategies.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yun Ma
- Chronic Infectious Disease Control Section, Nantong Center for Disease Control and Prevention, Nantong, China
| | - Guoli Li
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Guangjie Jin
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Li Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yunhui Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Lianhua Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
2
|
Wang Z, Liu T, Li W, Yu G, Mi Z, Wang C, Liao X, Huai P, Chu T, Liu D, Sun L, Fu X, Sun Y, Wang H, Wang N, Liu J, Liu H, Zhang F. Genome-wide meta-analysis and fine-mapping prioritize potential causal variants and genes related to leprosy. MedComm (Beijing) 2023; 4:e415. [PMID: 38020709 PMCID: PMC10674079 DOI: 10.1002/mco2.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
To date, genome-wide association studies (GWASs) have discovered 35 susceptible loci of leprosy; however, the cumulative effects of these loci can only partially explain the overall risk of leprosy, and the causal variants and genes within these loci remain unknown. Here, we conducted out new GWASs in two independent cohorts of 5007 cases and 4579 controls and then a meta-analysis in these newly generated and multiple previously published (2277 cases and 3159 controls) datasets were performed. Three novel and 15 previously reported risk loci were identified from these datasets, increasing the known leprosy risk loci of explained genetic heritability from 23.0 to 38.5%. A comprehensive fine-mapping analysis was conducted, and 19 causal variants and 14 causal genes were identified. Specifically, manual checking of epigenomic information from the Epimap database revealed that the causal variants were mainly located within the immune-relevant or immune-specific regulatory elements. Furthermore, by using gene-set, tissue, and cell-type enrichment analyses, we highlighted the key roles of immune-related tissues and cells and implicated the PD-1 signaling pathways in the pathogenetic mechanism of leprosy. Collectively, our study identified candidate causal variants and elucidated the potential regulatory and coding mechanisms for genes associated with leprosy.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of BiostatisticsSchool of Public HealthCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Tingting Liu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Wenchao Li
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Gongqi Yu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Zihao Mi
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Chuan Wang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Xiaojie Liao
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Pengcheng Huai
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Tongsheng Chu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Dianchang Liu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Lele Sun
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Xi'an Fu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Yonghu Sun
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Honglei Wang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Na Wang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Jianjun Liu
- Department of Human Genetics, Genome Institute of SingaporeSingaporeSingapore
| | - Hong Liu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Furen Zhang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
3
|
Wang C, Liu T, Wang Z, Li W, Zhao Q, Mi Z, Xue X, Shi P, Sun Y, Zhang Y, Wang N, Bao F, Chen W, Liu H, Zhang F. IL-23/IL-23R Promote Macrophage Pyroptosis and T Helper 1/T Helper 17 Cell Differentiation in Mycobacterial Infection. J Invest Dermatol 2023; 143:2264-2274.e18. [PMID: 37187409 DOI: 10.1016/j.jid.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Pathogen-induced epigenetic modifications can reshape anti-infection immune processes and control the magnitude of host responses. DNA methylation profiling has identified crucial aberrant methylation changes associated with diseases, thus providing biological insights into the roles of epigenetic factors in mycobacterial infection. In this study, we performed a genome-wide methylation analysis of skin biopsies from patients with leprosy and healthy controls. T helper 17 differentiation pathway was found to be significantly associated with leprosy through functional enrichment analysis. As a key gene in this pathway, IL-23R was found to be critical to mycobacterial immunity in leprosy, according to integrated analysis with DNA methylation, RNA sequencing, and GWASs. Functional analysis revealed that IL-23/IL-23R-enhanced bacterial clearance by activating caspase-1/GSDMD-mediated pyroptosis in a manner dependent on NLRP3 through signal transducer and activator of transcription 3 signaling in macrophages. Moreover, IL23/IL-23R promoted T helper 1 and T helper 17 cell differentiation and proinflammatory cytokine secretion, thereby increasing host bactericidal activity. IL-23R knockout attenuated the effects and increased susceptibility to mycobacterial infection mentioned earlier. These findings illustrate the biological functions of IL-23/IL-23R in modulating intracellular bacterial clearance in macrophages and further support their regulatory effects in T helper cell differentiation. Our study highlights that IL-23/IL-23R might serve as potential targets for the prevention and treatment of leprosy and other mycobacterial infections.
Collapse
Affiliation(s)
- Chuan Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tingting Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenchao Li
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Zhao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Peidian Shi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Na Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fangfang Bao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenjie Chen
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
4
|
Wu Y, Song J, Liu M, Ma H, Zhang J. Integrating GWAS and proteome data to identify novel drug targets for MU. Sci Rep 2023; 13:10437. [PMID: 37369724 DOI: 10.1038/s41598-023-37177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Mouth ulcers have been associated with numerous loci in genome wide association studies (GWAS). Nonetheless, it remains unclear what mechanisms are involved in the pathogenesis of mouth ulcers at these loci, as well as what the most effective ulcer drugs are. Thus, we aimed to screen hub genes responsible for mouth ulcer pathogenesis. We conducted an imputed/in-silico proteome-wide association study to discover candidate genes that impact the development of mouth ulcers and affect the expression and concentration of associated proteins in the bloodstream. The integrative analysis revealed that 35 genes play a significant role in the development of mouth ulcers, both in terms of their protein and transcriptional levels. Following this analysis, the researchers identified 6 key genes, namely BTN3A3, IL12B, BPI, FAM213A, PLXNB2, and IL22RA2, which were related to the onset of mouth ulcers. By combining with multidimensional data, six genes were found to correlate with mouth ulcer pathogenesis, which can be useful for further biological and therapeutic research.
Collapse
Affiliation(s)
- Yadong Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China.
| | - Manyi Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Ma
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China.
| | - Junmei Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, 550002, China.
| |
Collapse
|
5
|
An Integrative Analysis of Identified Schizophrenia-Associated Brain Cell Types and Gene Expression Changes. Int J Mol Sci 2022; 23:ijms231911581. [PMID: 36232882 PMCID: PMC9569514 DOI: 10.3390/ijms231911581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Schizophrenia (SCZ) is a severe mental disorder that may result in hallucinations, delusions, and extremely disordered thinking. How each cell type in the brain contributes to SCZ occurrence is still unclear. Here, we leveraged the human dorsolateral prefrontal cortex bulk RNA-seq data, then used the RNA-seq deconvolution algorithm CIBERSORTx to generate SCZ brain single-cell RNA-seq data for a comprehensive analysis to understand SCZ-associated brain cell types and gene expression changes. Firstly, we observed that the proportions of brain cell types in SCZ differed from normal samples. Among these cell types, astrocyte, pericyte, and PAX6 cells were found to have a higher proportion in SCZ patients (astrocyte: SCZ = 0.163, control = 0.145, P.adj = 4.9 × 10-4, effect size = 0.478; pericyte: SCZ = 0.057, control = 0.066, P.adj = 1.1 × 10-4, effect size = 0.519; PAX6: SCZ = 0.014, control = 0.011, P.adj = 0.014, effect size = 0.377), while the L5/6_IT_CAR3 cells and LAMP5 cells are the exact opposite (L5/6_IT_Car3: SCZ = 0.102, control = 0.108, P.adj = 0.016, effect size = 0.369; LAMP5: SCZ = 0.057, control = 0.066, P.adj = 2.2 × 10-6, effect size = 0.617). Next, we investigated gene expression in cell types and functional pathways in SCZ. We observed chemical synaptic transmission dysregulation in two types of GABAergic neurons (PVALB and LAMP5), and immune reaction involvement in GABAergic neurons (SST) and non-neuronal cell types (endothelial and oligodendrocyte). Furthermore, we observed that some differential expression genes from bulk RNA-seq displayed cell-type-specific abnormalities in the expression of molecules in SCZ. Finally, the cell types with the SCZ-related transcriptomic changes could be considered to belong to the same module since we observed two major similar coordinated transcriptomic changes across these cell types. Together, our results offer novel insights into cellular heterogeneity and the molecular mechanisms underlying SCZ.
Collapse
|
6
|
Gilchrist JJ, Auckland K, Parks T, Mentzer AJ, Goldblatt L, Naranbhai V, Band G, Rockett KA, Toure OB, Konate S, Sissoko S, Djimdé AA, Thera MA, Doumbo OK, Sow S, Floyd S, Pönnighaus JM, Warndorff DK, Crampin AC, Fine PEM, Fairfax BP, Hill AVS. Genome-wide association study of leprosy in Malawi and Mali. PLoS Pathog 2022; 18:e1010312. [PMID: 36121873 PMCID: PMC9624411 DOI: 10.1371/journal.ppat.1010312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/01/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10-9; OR = 0.51 [95% CI 0.40 - 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations.
Collapse
Affiliation(s)
- James J. Gilchrist
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MRC–Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (JJG); (AVSH)
| | - Kathryn Auckland
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tom Parks
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Alexander J. Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Vivek Naranbhai
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Gavin Band
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kirk A. Rockett
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ousmane B. Toure
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Salimata Konate
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sibiri Sissoko
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye A. Djimdé
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou A. Thera
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Samba Sow
- Center for Vaccine Development, Bamako, Mali
| | - Sian Floyd
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jörg M. Pönnighaus
- Malawi Epidemiology and Intervention Research Unit (formerly Karonga Prevention Study), Chilumba, Malawi
| | - David K. Warndorff
- Malawi Epidemiology and Intervention Research Unit (formerly Karonga Prevention Study), Chilumba, Malawi
| | - Amelia C. Crampin
- Malawi Epidemiology and Intervention Research Unit (formerly Karonga Prevention Study), Chilumba, Malawi
| | - Paul E. M. Fine
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Benjamin P. Fairfax
- MRC–Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Adrian V. S. Hill
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
- * E-mail: (JJG); (AVSH)
| |
Collapse
|
7
|
Human genetic polymorphism and Leishmaniasis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105203. [PMID: 34990851 DOI: 10.1016/j.meegid.2021.105203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 01/03/2023]
Abstract
Leishmaniasis is a disease of the subtropical and tropical spheres of the earth and has various clinical manifestations. The different form of leishmaniasis includes cutaneous leishmaniasis, mucocutaneous leishmaniasis, most lethal visceral leishmaniasis and PKDL form. These different forms depend on many factors such as parasite and vector species, geographical, environmental conditions and population ethnicity. Host genetic factors have been widely investigated for their role in developing the disease in various infections. There are several reports on associations or resistance between candidate gene polymorphisms and the risk and outcome of Leishmania infection. Polymorphism in genes involved in both innate and adaptive immune systems, as well as genes of metabolic processes contributes to disease manifestation. The wide availability and advancement of molecular techniques permits to exploration of hereditary factors related to leishmaniasis. Many candidate gene studies were conducted on family-based and population to identify novel biomarkers for understanding disease pathogenesis pathways and possible drug targets. This comprehensive review presents an update on various human genes polymorphism that influence the outcome of different forms of Leishmania infection in endemic regions of the world. Various electronic databases were searched systematically for relevant publications and thoroughly analyzed. Most of the candidate gene studies were found with discrepancies in findings. Genetic and functional studies with adequate power are needed to validate the contribution of host genes in susceptibility or resistance towards Leishmania infection and understanding pathogenesis.
Collapse
|
8
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:3934-3944. [DOI: 10.1093/hmg/ddac101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
|
9
|
Fava VM, Dallmann-Sauer M, Orlova M, Correa-Macedo W, Van Thuc N, Thai VH, Alcaïs A, Abel L, Cobat A, Schurr E. Deep resequencing identifies candidate functional genes in leprosy GWAS loci. PLoS Negl Trop Dis 2021; 15:e0010029. [PMID: 34879060 PMCID: PMC8687567 DOI: 10.1371/journal.pntd.0010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/20/2021] [Accepted: 11/27/2021] [Indexed: 11/18/2022] Open
Abstract
Leprosy is the second most prevalent mycobacterial disease globally. Despite the existence of an effective therapy, leprosy incidence has consistently remained above 200,000 cases per year since 2010. Numerous host genetic factors have been identified for leprosy that contribute to the persistently high case numbers. In the past decade, genetic epidemiology approaches, including genome-wide association studies (GWAS), identified more than 30 loci contributing to leprosy susceptibility. However, GWAS loci commonly encompass multiple genes, which poses a challenge to define causal candidates for each locus. To address this problem, we hypothesized that genes contributing to leprosy susceptibility differ in their frequencies of rare protein-altering variants between cases and controls. Using deep resequencing we assessed protein-coding variants for 34 genes located in GWAS or linkage loci in 555 Vietnamese leprosy cases and 500 healthy controls. We observed 234 nonsynonymous mutations in the targeted genes. A significant depletion of protein-altering variants was detected for the IL18R1 and BCL10 genes in leprosy cases. The IL18R1 gene is clustered with IL18RAP and IL1RL1 in the leprosy GWAS locus on chromosome 2q12.1. Moreover, in a recent GWAS we identified an HLA-independent signal of association with leprosy on chromosome 6p21. Here, we report amino acid changes in the CDSN and PSORS1C2 genes depleted in leprosy cases, indicating them as candidate genes in the chromosome 6p21 locus. Our results show that deep resequencing can identify leprosy candidate susceptibility genes that had been missed by classic linkage and association approaches.
Collapse
Affiliation(s)
- Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Monica Dallmann-Sauer
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | | | - Vu Hong Thai
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale 1163, Paris, France
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale 1163, Paris, France
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale 1163, Paris, France
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
10
|
Souza RDC, Louvain de Souza T, Ferreira CDS, Nascimento LS, Nahn EP, Peixoto-Rangel AL. Associations Between the Purinergic Receptor P2X7 and Leprosy Disease. Front Genet 2021; 12:730991. [PMID: 34795692 PMCID: PMC8593470 DOI: 10.3389/fgene.2021.730991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Leprosy is an infectious disease still highly prevalent in Brazil, having been detected around 27,863 new cases in 2019. Exposure to Mycobacterium leprae may not be sufficient to trigger the disease, which seems to be influenced by host immunogenetics to determine resistance or susceptibility. The purinergic receptor P2X7 plays a crucial role in immunity, inflammation, neurological function, bone homeostasis, and neoplasia and is associated with several infectious and non-infectious diseases. Here, we first compare the P2RX7 expression in RNA-seq experiments from 16 leprosy cases and 16 healthy controls to establish the magnitude of allele-specific expression for single-nucleotide polymorphisms of the gene P2RX7 and to determine the level of gene expression in healthy and diseased skin. In addition, we also evaluated the association of two P2RX7 single-nucleotide polymorphisms (c.1513A>C/rs3751143 and c.1068A>G/rs1718119) with leprosy risk. The expression of P2RX7 was found significantly upregulated at macrophage cells from leprosy patients compared with healthy controls, mainly in macrophages from lepromatous patients. Significant risk for leprosy disease was associated with loss function of rs3751143 homozygous mutant CC [CC vs. AA: p = 0.001; odds ratio (OR) = 1.676, 95% CI = 1.251–2.247] but not with heterozygous AC (AC vs. AA: p = 0.001; OR = 1.429, 95% CI = 1.260–1.621). Contrary, the polymorphic A allele from the gain function of rs1718119 was associated with protection for the development of leprosy, as observed in the dominant model (AA + AG × GG p = 0.0028; OR = 0.03516; CI = 0.1801–0.6864). So, our results suggest that the functional P2X7 purinergic receptor may exert a key role in the Mycobacterium death inside macrophages and inflammatory response, which is necessary to control the disease.
Collapse
Affiliation(s)
- Rebeka da Conceição Souza
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thaís Louvain de Souza
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Brazil.,Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Cristina Dos Santos Ferreira
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Letícia Silva Nascimento
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | | - Alba Lucínia Peixoto-Rangel
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
11
|
Long SY, Wang L, Jiang HQ, Shi Y, Zhang WY, Xiong JS, Sun PW, Chen YQ, Mei YM, Pan C, Ge G, Wang ZZ, Wu ZW, Yu MW, Wang HS. Single-Nucleotide Polymorphisms Related to Leprosy Risk and Clinical Phenotypes Among Chinese Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:813-821. [PMID: 34285550 PMCID: PMC8285297 DOI: 10.2147/pgpm.s314861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
Background Genome-wide association studies (GWASs) have identified some immune-related single-nucleotide polymorphisms (SNPs) to be associated with leprosy. Methods This study investigated the association of 17 SNPs based on previously published GWAS studies with susceptibility to leprosy, different polar forms and immune states of leprosy in a case–control study from southwestern China, including 1344 leprosy patients and 2732 household contacts (HHCs) (1908 relatives and 824 genetically unrelated contact individuals). The differences of allele distributions were analyzed using chi-squared analysis and logistic regression. Results After adjusting covariate factors, rs780668 and rs3764147 polymorphisms influenced susceptibilities to genetically related or unrelated leprosy contact individuals. rs142179458 was associated with onset early cases, rs73058713 A allele and rs3764147 A allele increased the risk of reversal reaction, while rs3764147 G allele had higher risk to present lepromatous leprosy and erythema nodosum leprosum. Conclusion Our results demonstrated that genetic variants in the LACC1, HIF1A, SLC29A3 and CDH18 genes were positively correlated with the occurrence of leprosy and leprosy clinical phenotypes, providing new insights into the immunogenetics of the disease.
Collapse
Affiliation(s)
- Si-Yu Long
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Le Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.,National Centre for Leprosy Control, China CDC, Nanjing, People's Republic of China
| | - Hai-Qin Jiang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Ying Shi
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Wen-Yue Zhang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Jing-Shu Xiong
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Pei-Wen Sun
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.,National Centre for Leprosy Control, China CDC, Nanjing, People's Republic of China
| | - Yan-Qing Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - You-Ming Mei
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Chun Pan
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Gai Ge
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Zhen-Zhen Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Zi-Wei Wu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Mei-Wen Yu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.,National Centre for Leprosy Control, China CDC, Nanjing, People's Republic of China
| | - Hong-Sheng Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.,National Centre for Leprosy Control, China CDC, Nanjing, People's Republic of China.,Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Childebayeva A, Harman T, Weinstein J, Day T, Brutsaert TD, Bigham AW. Genome-Wide DNA Methylation Changes Associated With High-Altitude Acclimatization During an Everest Base Camp Trek. Front Physiol 2021; 12:660906. [PMID: 34262470 PMCID: PMC8273439 DOI: 10.3389/fphys.2021.660906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
The individual physiological response to high-altitude hypoxia involves both genetic and non-genetic factors, including epigenetic modifications. Epigenetic changes in hypoxia factor pathway (HIF) genes are associated with high-altitude acclimatization. However, genome-wide epigenetic changes that are associated with short-term hypoxia exposure remain largely unknown. We collected a series of DNA samples from 15 participants of European ancestry trekking to Everest Base Camp to identify DNA methylation changes associated with incremental altitude ascent. We determined genome-wide DNA methylation levels using the Illumina MethylationEPIC chip comparing two altitudes: baseline 1,400 m (day 0) and elevation 4,240 m (day 7). The results of our epigenome-wide association study revealed 2,873 significant differentially methylated positions (DMPs) and 361 significant differentially methylated regions (DMRs), including significant positions and regions in hypoxia inducible factor (HIF) and the renin–angiotensin system (RAS) pathways. Our pathway enrichment analysis identified 95 significant pathways including regulation of glycolytic process (GO:0006110), regulation of hematopoietic stem cell differentiation (GO:1902036), and regulation of angiogenesis (GO:0045765). Lastly, we identified an association between the ACE gene insertion/deletion (I/D) polymorphism and oxygen saturation, as well as average ACE methylation. These findings shed light on the genes and pathways experiencing the most epigenetic change associated with short-term exposure to hypoxia.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States.,Department of Environmental Sciences, School of Public Health, Ann Arbor, MI, United States.,Department of Archaeogenetics, Max Planck Institute for the Study of Human History, Jena, Germany
| | - Taylor Harman
- Department of Anthropology, Syracuse University, Syracuse, NY, United States
| | - Julien Weinstein
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States
| | - Trevor Day
- Department of Biology, Mount Royal University, Calgary, AB, Canada
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Predictive nomogram for leprosy using genetic and epidemiological risk factors in Southwestern China: Case-control and prospective analyses. EBioMedicine 2021; 68:103408. [PMID: 34051440 PMCID: PMC8176313 DOI: 10.1016/j.ebiom.2021.103408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022] Open
Abstract
Background There is a high incidence of leprosy among house-contacts compared with the general population. We aimed to establish a predictive model using these genetic factors along with epidemiological factors to predict leprosy risk of leprosy household contacts (HHCs). Methods Weighted genetic risk score (wGRS) encompassing genome wide association studies (GWAS) variants and five non-genetic factors were examined in a case–control design associated with leprosy risk including 589 cases and 647 controls from leprosy HHCs. We constructed a risk prediction nomogram and evaluated its performance by concordance index (C-index) and calibration curve. The results were validated using bootstrap resampling with 1000 resamples and a prospective design including 1100 HHCs of leprosy patients. Finding The C-index for the risk model was 0·792 (95% confidence interval [CI] 0·768-0·817), and was confirmed to be 0·780 through bootstrapping validation. The calibration curve for the probability of leprosy showed good agreement between the prediction of the nomogram and actual observation. HHCs were then divided into the low-risk group (nomogram score ≤ 81) and the high-risk group (nomogram score > 81). In prospective analysis, 12 of 1100 participants had leprosy during 63 months’ follow-up. We generated the nomogram for leprosy in the validation cohort (C-index 0·773 [95%CI 0·658-0·888], sensitivity75·0%, specificity 66·8%). Interpretation The nomogram achieved an effective prediction of leprosy in HHCs. Using the model, the risk of an individual contact developing leprosy can be determined, which can lead to a rational preventive choice for tracing higher-risk leprosy contacts. Funding The ministry of health of China, ministry of science and technology of China, Chinese academy of medical sciences, Jiangsu provincial department of science and technology, Nanjing municipal science and technology bureau.
Collapse
|
14
|
Patrick KL, Watson RO. Mitochondria: Powering the Innate Immune Response to Mycobacterium tuberculosis Infection. Infect Immun 2021; 89:e00687-20. [PMID: 33558322 PMCID: PMC8090963 DOI: 10.1128/iai.00687-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Within the last decade, we have learned that damaged mitochondria activate many of the same innate immune pathways that evolved to sense and respond to intracellular pathogens. These shared responses include cytosolic nucleic acid sensing and type I interferon (IFN) expression, inflammasome activation that leads to pyroptosis, and selective autophagy (called mitophagy when mitochondria are the cargo). Because mitochondria were once bacteria, parallels between how cells respond to mitochondrial and bacterial ligands are not altogether surprising. However, the potential for cross talk or synergy between bacterium- and mitochondrion-driven innate immune responses during infection remains poorly understood. This interplay is particularly striking, and intriguing, in the context of infection with the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb). Multiple studies point to a role for Mtb infection and/or specific Mtb virulence factors in disrupting the mitochondrial network in macrophages, leading to metabolic changes and triggering potent innate immune responses. Research from our laboratories and others argues that mutations in mitochondrial genes can exacerbate mycobacterial disease severity by hyperactivating innate responses or activating them at the wrong time. Indeed, growing evidence supports a model whereby different mitochondrial defects or mutations alter Mtb infection outcomes in distinct ways. By synthesizing the current literature in this minireview, we hope to gain insight into the molecular mechanisms driving, and consequences of, mitochondrion-dependent immune polarization so that we might better predict tuberculosis patient outcomes and develop host-directed therapeutics designed to correct these imbalances.
Collapse
Affiliation(s)
- Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, Texas, USA
| |
Collapse
|
15
|
Zhang DF, Li HL, Zheng Q, Bi R, Xu M, Wang D, Zhu GP, Li YY, Yao YG. Mapping leprosy-associated coding variants of interleukin genes by targeted sequencing. Clin Genet 2021; 99:802-811. [PMID: 33646620 DOI: 10.1111/cge.13945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/30/2022]
Abstract
Previous genotyping-based assays have identified non-coding variants of several interleukins (ILs) being associated with genetic susceptibility to leprosy. However, understanding of the involvement of coding variants within all IL family genes in leprosy was still limited. To obtain the full mutation spectrum of all ILs in leprosy, we performed a targeted deep sequencing of coding regions of 58 ILs genes in 798 leprosy patients (age 56.2 ± 14.4; female 31.5%) and 990 healthy controls (age 38.1 ± 14.0; female 44.3%) from Yunnan, Southwest China. mRNA expression alterations of ILs in leprosy skin lesions or in response to M. leprae treatment were estimated by using publicly available expression datasets. Two coding variants in IL27 (rs17855750, p.S59A, p = 4.02 × 10-8 , odds ratio [OR] = 1.748) and IL1RN (rs45507693, p.A106T, p = 1.45 × 10-5 , OR = 3.629) were significantly associated with leprosy risk. mRNA levels of IL27 and IL1RN were upregulated in whole blood cells after M. leprae stimulation. These data showed that IL27 and IL1RN are leprosy risk genes. Further functional study is required for characterizing the exact role of ILs in leprosy.
Collapse
Affiliation(s)
- Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Hui-Long Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Quanzhen Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dong Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guo-Ping Zhu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yu-Ye Li
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Polymorphisms in mitochondrial ribosomal protein S5 (MRPS5) are associated with leprosy risk in Chinese. PLoS Negl Trop Dis 2020; 14:e0008883. [PMID: 33362202 PMCID: PMC7757804 DOI: 10.1371/journal.pntd.0008883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/13/2020] [Indexed: 01/15/2023] Open
Abstract
Leprosy is an infectious disease caused by Mycobacterium leprae (M. leprae), with about 210,000 new cases per year worldwide. Although numerous risk loci have been uncovered by genome-wide association studies, the effects of common genetic variants are relatively modest. To identify possible new genetic locus involved in susceptibility to leprosy, whole exome sequencing was performed for 28 subjects including 14 patients and 12 unaffected members from 8 leprosy-affected families as well as another case and an unrelated control, and then the follow-up SNP genotyping of the candidate variants was studied in case-control sample sets. A rare missense variant in mitochondrial ribosomal protein S5 (MRPS5), rs200730619 (c. 95108402T>C [p. Tyr137Cys]) was identified and validated in 369 cases and 270 controls of Chinese descent (Padjusted = 0.006, odds ratio [OR] = 2.74) as a contributing factor to leprosy risk. Moreover, the mRNA level of MRPS5 was downregulated in M. leprae sonicate-stimulated peripheral blood mononuclear cells. Our results indicated that MRPS5 may be involved in leprosy pathogenesis. Further studies are needed to determine if defective MRPS5 could lead to impairment of energy metabolism of host immune cells, which could further cause defect in clearing M. leprae and increase susceptibility to infection.
Collapse
|
17
|
Shen YL, Long SY, Kong WM, Wu LM, Fei LJ, Yao Q, Wang HS. <p>Single-Nucleotide Polymorphisms in Genes Predisposing to Leprosy in Leprosy Household Contacts in Zhejiang Province, China</p>. Pharmgenomics Pers Med 2020; 13:767-773. [PMID: 33376384 PMCID: PMC7762432 DOI: 10.2147/pgpm.s286270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yun-Liang Shen
- Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, Huzhou, People’s Republic of China
| | - Si-Yu Long
- Laboratory of Leprosy and Other Mycobacterial Infections, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People’s Republic of China
| | - Wen-Ming Kong
- Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, Huzhou, People’s Republic of China
| | - Li-Mei Wu
- Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, Huzhou, People’s Republic of China
| | - Li-Juan Fei
- Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, Huzhou, People’s Republic of China
| | - Qiang Yao
- Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, Huzhou, People’s Republic of China
- Qiang Yao Department of Leprosy Control, Zhejiang Provincial Institute of Dermatology, St 61, Wuyuan, Huzhou, Zhejiang313200, People’s Republic of China Email
| | - Hong-Sheng Wang
- Laboratory of Leprosy and Other Mycobacterial Infections, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People’s Republic of China
- Correspondence: Hong-Sheng Wang Laboratory of Leprosy and Other Mycobacterial Infections, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, St 12 Jiangwangmiao, Nanjing, Jiangsu210042, People’s Republic of China Email
| |
Collapse
|
18
|
Wang H, Wang C, Wang Z, Fu X, Yu G, Sun L, Zhang F, Liu H. Identification of ZFP36L1 as an early-onset psoriasis risk gene demonstrates opposite associations with leprosy and psoriasis in the Chinese population. J Eur Acad Dermatol Venereol 2020; 34:e520-e523. [PMID: 32277516 DOI: 10.1111/jdv.16437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- H Wang
- Shandong Provincial Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - C Wang
- Shandong Provincial Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Z Wang
- Shandong Provincial Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - X Fu
- Shandong Provincial Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - G Yu
- Shandong Provincial Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - L Sun
- Shandong Provincial Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - F Zhang
- Shandong Provincial Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - H Liu
- Shandong Provincial Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| |
Collapse
|
19
|
Mi Z, Liu H, Zhang F. Advances in the Immunology and Genetics of Leprosy. Front Immunol 2020; 11:567. [PMID: 32373110 PMCID: PMC7176874 DOI: 10.3389/fimmu.2020.00567] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Leprosy, a disease caused by the intracellular parasite Mycobacterium leprae or Mycobacterium lepromatosis, has affected humans for more than 4,000 years and is a stigmatized disease even now. Since clinical manifestations of leprosy patients present as an immune-related spectrum, leprosy is regarded as an ideal model for studying the interaction between host immune response and infection; in fact, the landscape of leprosy immune responses has been extensively investigated. Meanwhile, leprosy is to some extent a genetic disease because the genetic factors of hosts have long been considered major contributors to this disease. Many immune-related genes have been discovered to be associated with leprosy. However, immunological and genetic findings have rarely been studied and discussed together, and as a result, the effects of gene variants on leprosy immune responses and the molecular mechanisms of leprosy pathogenesis are largely unknown. In this context, we summarized advances in both the immunology and genetics of leprosy and discussed the perspective of the combination of immunological and genetic approaches in studying the molecular mechanism of leprosy pathogenesis. In our opinion, the integrating of immunological and genetic approaches in the future may be promising to elucidate the molecular mechanism of leprosy onset and how leprosy develops into different types of leprosy.
Collapse
Affiliation(s)
- Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
20
|
Zhao Q, Sun Y, Liu H, Zhang F. Prevention and Treatment of Leprosy - China, 2009-2019. China CDC Wkly 2020; 2:53-56. [PMID: 34594761 PMCID: PMC8393067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Qing Zhao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China,Furen Zhang,
| |
Collapse
|
21
|
Identification of susceptibility locus shared by IgA nephropathy and inflammatory bowel disease in a Chinese Han population. J Hum Genet 2019; 65:241-249. [PMID: 31857673 DOI: 10.1038/s10038-019-0699-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies (GWAS) had discovered several genetic risk loci for IgA nephropathy (IgAN), where the susceptibility genes of CARD9 and HORMAD2 for IgAN were also implicated in inflammatory bowel disease (IBD), suggesting a shared genetic etiology of these two diseases. The aim of this study is to explore the common susceptibility loci between IgAN and IBD and provide evidences to elucidate the shared pathogenesis between these two autoimmune diseases. Nineteen single-nucleotide polymorphisms (SNPs) associated with IBD in Asian populations were selected through the National Human Genome Research Institute (NHGRI) GWAS Catalog, and 2078 IgAN patients and 2085 healthy individuals of Chinese Han ancestry were included in the two-stage case-control association study. Serum levels of complement factor B (CFB) and complement split product C3a were detected by enzyme-linked immunosorbent assay (ELISA). One significant shared association at rs4151657 (OR = 1.28, 95%CI = 1.13-1.45, P = 1.42 × 10-4) was discovered between these two diseases, which implicated CFB as a susceptibility gene for IgAN. Genotype-phenotype correlation analysis found significant association of the rs4151657-C allele with decreased serum C3 levels. In addition, the rs4151657-C allele was also associated with higher CFB levels and C3a levels, which suggested a certain degree of systemic complement activation in IgAN patients with the rs4151657-CT or CC genotypes. Our study identified one risk locus (CFB) shared by IgAN and IBD, and genetic variants of CFB may affect complement activation and associate with the predisposition to IgAN.
Collapse
|
22
|
Abstract
Leprosy is a chronic infectious disease of the skin and peripheral nerves that presents a strong link with the host genetic background. Different approaches in genetic studies have been applied to leprosy and today leprosy is among the infectious diseases with the greatest number of genetic risk variants identified. Several leprosy genes have been implicated in host immune response to pathogens and point to specific pathways that are relevant for host defense to infection. In addition, host genetic factors are also involved in the heterogeneity of leprosy clinical manifestations and in excessive inflammatory responses that occur in some leprosy patients. Finally, genetic studies in leprosy have provided strong evidence of pleiotropic effects between leprosy and other complex diseases, such as immune-mediated or neurodegenerative diseases. These findings not only impact on the field of leprosy and infectious diseases but also make leprosy a good model for the study of complex immune-mediated diseases. Here, we summarize recent genetic findings in leprosy susceptibility and discuss the overlap of the genetic control in leprosy with Parkinson's disease and inflammatory bowel disease. Moreover, some limitations, challenges, and potential new avenues for future genetics studies of leprosy are also discussed in this review.
Collapse
|
23
|
Abstract
ABSTRACT
The rapid development of genomics and other “-omics” approaches has significantly impacted how we have investigated host-pathogen interactions since the turn of the millennium. Technologies such as next-generation sequencing, stem cell biology, and high-throughput proteomics have transformed the scale and sensitivity with which we interrogate biological samples. These approaches are impacting experimental design in the laboratory and transforming clinical management in health care systems. Here, we review this area from the perspective of research on bacterial pathogens.
Collapse
|
24
|
Identification of Potential Transcriptional Biomarkers Differently Expressed in Both S. aureus- and E. coli-Induced Sepsis via Integrated Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2487921. [PMID: 31093495 PMCID: PMC6481126 DOI: 10.1155/2019/2487921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 01/13/2023]
Abstract
Sepsis is a critical, complex medical condition, and the major causative pathogens of sepsis are both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Genome-wide studies identify differentially expressed genes for sepsis. However, the results for the identification of DEGs are inconsistent or discrepant among different studies because of heterogeneity of specimen sources, various data processing methods, or different backgrounds of the samples. To identify potential transcriptional biomarkers that are differently expressed in S. aureus- and E. coli-induced sepsis, we have analyzed four microarray datasets from GEO database and integrated results with bioinformatics tools. 42 and 54 DEGs were identified in both S. aureus and E. coli samples from any three different arrays, respectively. Hierarchical clustering revealed dramatic differences between control and sepsis samples. GO functional annotations suggested that DEGs in the S. aureus group were mainly involved in the responses of both defense and immune regulation, but DEGs in the E. coli group were mainly related to the regulation of endopeptidase activity involved in the apoptotic signaling pathway. Although KEGG showed inflammatory bowel disease in the E. coli group, the KEGG pathway analysis showed that these DEGs were mainly involved in the tumor necrosis factor signaling pathway, fructose metabolism, and mannose metabolism in both S. aureus- and E. coli-induced sepsis. Eight common genes were identified between sepsis patients with either S. aureus or E. coli infection and controls in this study. All the candidate genes were further validated to be differentially expressed by an ex-vivo human blood model, and the relative expression of these genes was performed by qPCR. The qPCR results suggest that GK and PFKFB3 might contribute to the progression of S. aureus-induced sepsis, and CEACAM1, TNFAIP6, PSTPIP2, SOCS3, and IL18RAP might be closely linked with E. coli-induced sepsis. These results provide new viewpoints for the pathogenesis of both sepsis and pathogen identification.
Collapse
|
25
|
Hedl M, Yan J, Witt H, Abraham C. IRF5 Is Required for Bacterial Clearance in Human M1-Polarized Macrophages, and IRF5 Immune-Mediated Disease Risk Variants Modulate This Outcome. THE JOURNAL OF IMMUNOLOGY 2018; 202:920-930. [PMID: 30593537 DOI: 10.4049/jimmunol.1800226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022]
Abstract
Common IFN regulatory factor 5 (IRF5) variants associated with multiple immune-mediated diseases are a major determinant of interindividual variability in pattern recognition receptor (PRR)-induced cytokines in macrophages. PRR-initiated pathways also contribute to bacterial clearance, and dysregulation of bacterial clearance can contribute to immune-mediated diseases. However, the role of IRF5 in macrophage-mediated bacterial clearance is not well defined. Furthermore, it is unclear if macrophages from individuals who are carriers of low IRF5-expressing genetic variants associated with protection for immune-mediated diseases might be at a disadvantage in bacterial clearance. We found that IRF5 was required for optimal bacterial clearance in PRR-stimulated, M1-differentiated human macrophages. Mechanisms regulated by IRF5 included inducing reactive oxygen species through p40phox, p47phox and p67phox, NOS2, and autophagy through ATG5. Complementing these pathways in IRF5-deficient M1 macrophages restored bacterial clearance. Further, these antimicrobial pathways required the activation of IRF5-dependent MAPK, NF-κB, and Akt2 pathways. Importantly, relative to high IRF5-expressing rs2004640/rs2280714 TT/TT immune-mediated disease risk-carrier human macrophages, M1-differentiated GG/CC carrier macrophages demonstrated less reactive oxygen species, NOS2, and autophagy pathway induction and, consequently, reduced bacterial clearance. Increasing IRF5 expression to the rs2004640/rs2280714 TT/TT levels restored these antimicrobial pathways. We define mechanisms wherein common IRF5 genetic variants modulate bacterial clearance, thereby highlighting that immune-mediated disease risk IRF5 carriers might be relatively protected from microbial-associated diseases.
Collapse
Affiliation(s)
- Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, CT 06520; and
| | - Jie Yan
- Department of Internal Medicine, Yale University, New Haven, CT 06520; and
| | - Heiko Witt
- Pediatric Nutritional Medicine, Technical University of Munich, 85354 Freising, Germany
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, CT 06520; and
| |
Collapse
|
26
|
Zhang X, Cheng Y, Zhang Q, Wang X, Lin Y, Yang C, Sun J, Huang H, Li Y, Sheng Y, Fan X, Sun Y, Zhang X, Zheng X, Zhang B, Yang S. Meta-Analysis Identifies Major Histocompatiblity Complex Loci in or Near HLA-DRB1, HLA-DQA1, HLA-C as Associated with Leprosy in Chinese Han Population. J Invest Dermatol 2018; 139:957-960. [PMID: 30389493 DOI: 10.1016/j.jid.2018.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/05/2018] [Accepted: 09/24/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Xuelei Zhang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yuyan Cheng
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qun Zhang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiaomeng Wang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yan Lin
- Department of Dermatology, The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Chao Yang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jingying Sun
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - He Huang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yang Li
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yujun Sheng
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xing Fan
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yonghu Sun
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, China
| | - Xuejun Zhang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China; Department of Dermatology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Xiaodong Zheng
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China.
| | - Bo Zhang
- Department of Dermatology, No. 2 Hospital, Anhui Medical University, Hefei, Anhui, China; School of Life Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Sen Yang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
27
|
Wang N, Wang Z, Wang C, Fu X, Yu G, Yue Z, Liu T, Zhang H, Li L, Chen M, Wang H, Niu G, Liu D, Zhang M, Xu Y, Zhang Y, Li J, Li Z, You J, Chu T, Li F, Liu D, Liu H, Zhang F. Prediction of leprosy in the Chinese population based on a weighted genetic risk score. PLoS Negl Trop Dis 2018; 12:e0006789. [PMID: 30231057 PMCID: PMC6166985 DOI: 10.1371/journal.pntd.0006789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/01/2018] [Accepted: 08/26/2018] [Indexed: 01/03/2023] Open
Abstract
Genome wide association studies (GWASs) have revealed multiple genetic variants associated with leprosy in the Chinese population. The aim of our study was to utilize the genetic variants to construct a risk prediction model through a weighted genetic risk score (GRS) in a Chinese set and to further assess the performance of the model in identifying higher-risk contact individuals in an independent set. The highest prediction accuracy, with an area under the curve (AUC) of 0.743 (95% confidence interval (CI): 0.729-0.757), was achieved with a GRS encompassing 25 GWAS variants in a discovery set that included 2,144 people affected by leprosy and 2,671 controls. Individuals in the high-risk group, based on genetic factors (GRS > 28.06), have a 24.65 higher odds ratio (OR) for developing leprosy relative to those in the low-risk group (GRS≤18.17). The model was then applied to a validation set consisting of 1,385 people affected by leprosy and 7,541 individuals in contact with leprosy, which yielded a discriminatory ability with an AUC of 0.707 (95% CI: 0.691-0.723). When a GRS cut-off value of 22.38 was selected with the optimal sensitivity and specificity, it was found that 39.31% of high risk contact individuals should be screened in order to detect leprosy in 64.9% of those people affected by leprosy. In summary, we developed and validated a risk model for the prediction of leprosy that showed good discrimination capabilities, which may help physicians in the identification of patients coming into contact with leprosy and are at a higher-risk of developing this condition.
Collapse
Affiliation(s)
- Na Wang
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Zhenzhen Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Chuan Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Xi'an Fu
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Gongqi Yu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Zhenhua Yue
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Tingting Liu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Huimin Zhang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Lulu Li
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Mingfei Chen
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Honglei Wang
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Guiye Niu
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Dan Liu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Mingkai Zhang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Yuanyuan Xu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Yan Zhang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Jinghui Li
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Zhen Li
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Jiabao You
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Tongsheng Chu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Furong Li
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Dianchang Liu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
- * E-mail: (HL); (FZ)
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
- * E-mail: (HL); (FZ)
| |
Collapse
|
28
|
The Diagnostic and Prognostic Role of Interleukin 12B and Interleukin 6R Gene Polymorphism in Patients With Ankylosing Spondylitis. J Clin Rheumatol 2018; 24:18-24. [PMID: 29200018 DOI: 10.1097/rhu.0000000000000610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Interleukin 23 (IL-23) pathway and IL-1 cluster genes play prominent role in the etiopathology of ankylosing spondylitis (AS). The aim of this study was to investigate the diagnostic and prognostic role of 5 single-nucleotide polymorphisms related to IL-23 pathway and IL-1 cluster genes in AS patients. METHODS Four hundred thirty-one patients with AS and 206 age- and sex-matched healthy controls were recruited in this prospective cohort study. Five potential single-nucleotide polymorphisms (IL-23R [rs11209026], IL-12B [rs6871626], TYK2 [rs6511701], IL-6R [rs4129267], and IL-1R2 [rs2192752]) related to IL-23 pathway and IL-1 cluster genes by analyzing previous studies were genotyped. Among 431 total AS patients, 198 active cases were treated and followed up for 24 weeks. RESULTS Frequencies of IL-12B AA (rs6871626) and IL-6R TT (rs4129267) genotypes were increased in AS patients compared with healthy controls (both P < 0.001), and IL-12B A (rs6871626) as well as IL-6R T (rs4129267) allele increased the risk of AS independently (both P < 0.001). The Bath Ankylosing Spondylitis Disease Activity Index score was found to be elevated in AS patients with IL-12B AA (rs6871626) compared with patients with the CA and CC genotypes (P = 0.002 and P < 0.001, respectively), and the Bath Ankylosing Spondylitis Functional Index score was also increased in AS patents with IL-12B AA (rs6871626) than in those with the CA and CC genotypes (P = 0.001 and P < 0.001). In addition, IL-6R T (rs4129267) allele could predict a worse ASAS-20 (Assessment of SpondyloArthritis international Society) response at week 24 as an independent factor by multivariate logistic regression analysis with additive model (P = 0.011). CONCLUSIONS Interleukin 12B (rs6871626) and IL-6R (rs4129267) gene polymorphisms could serve as promising biomarkers for diagnosis and prognosis in AS patients.
Collapse
|
29
|
Cambri G, Mira MT. Genetic Susceptibility to Leprosy-From Classic Immune-Related Candidate Genes to Hypothesis-Free, Whole Genome Approaches. Front Immunol 2018; 9:1674. [PMID: 30079069 PMCID: PMC6062607 DOI: 10.3389/fimmu.2018.01674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/06/2018] [Indexed: 01/15/2023] Open
Abstract
Genetics plays a crucial role in controlling susceptibility to infectious diseases by modulating the interplay between humans and pathogens. This is particularly evident in leprosy, since the etiological agent, Mycobacterium leprae, displays semiclonal characteristics not compatible with the wide spectrum of disease phenotypes. Over the past decades, genetic studies have unraveled several gene variants as risk factors for leprosy per se, disease clinical forms and the occurrence of leprosy reactions. As expected, several of these genes are immune-related; yet, hypothesis-free approaches have led to genes not classically linked to immune response. The PARK2, originally described as a Parkinson's disease gene, illustrates the case: Parkin-the protein coded by PARK2-was defined as an important player regulating innate and adaptive immune responses only years after its description as a leprosy susceptibility gene. Interestingly, even with the use of powerful hypothesis-free study designs such as genome-wide association studies, most of the major gene effect controlling leprosy susceptibility remains elusive. One hypothesis to explain this "hidden heritability" is that rare variants not captured by classic association studies are of critical importance. To address this question, massively parallel sequencing of large segments of the human genome-even whole exomes/genomes-is an alternative to properly identify rare, disease-causing mutations. These mutations may then be investigated through sophisticated approaches such as cell reprogramming and genome editing applied to create in vitro models for functional leprosy studies.
Collapse
Affiliation(s)
- Geison Cambri
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Marcelo Távora Mira
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
30
|
Abstract
The extracellular forms of the IL-1 cytokines are active through binding to specific receptors on the surface of target cells. IL-1 ligands bind to the extracellular portion of their ligand-binding receptor chain. For signaling to take place, a non-binding accessory chain is recruited into a heterotrimeric complex. The intracellular approximation of the Toll-IL-1-receptor (TIR) domains of the 2 receptor chains is the event that initiates signaling. The family of IL-1 receptors (IL-1R) includes 10 structurally related members, and the distantly related soluble protein IL-18BP that acts as inhibitor of the cytokine IL-18. Over the years the receptors of the IL-1 family have been known with many different names, with significant confusion. Thus, we will use here a recently proposed unifying nomenclature. The family includes several ligand-binding chains (IL-1R1, IL-1R2, IL-1R4, IL-1R5, and IL-1R6), 2 types of accessory chains (IL-1R3, IL-1R7), molecules that act as inhibitors of signaling (IL-1R2, IL-1R8, IL-18BP), and 2 orphan receptors (IL-1R9, IL-1R10). In this review, we will examine how the receptors of the IL-1 family regulate the inflammatory and anti-inflammatory functions of the IL-1 cytokines and are, more at large, involved in modulating defensive and pathological innate immunity and inflammation. Regulation of the IL-1/IL-1R system in the brain will be also described, as an example of the peculiarities of organ-specific modulation of inflammation.
Collapse
Affiliation(s)
- Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Paola Italiani
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Sabrina Weil
- Immunology FB08, Justus-Liebig-Universitat Giessen, Giessen, Germany
| | - Michael U Martin
- Immunology FB08, Justus-Liebig-Universitat Giessen, Giessen, Germany
| |
Collapse
|
31
|
Qi H, Zhang YB, Sun L, Chen C, Xu B, Xu F, Liu JW, Liu JC, Chen C, Jiao WW, Shen C, Xiao J, Li JQ, Guo YJ, Wang YH, Li QJ, Yin QQ, Li YJ, Wang T, Wang XY, Gu ML, Yu J, Shen AD. Discovery of susceptibility loci associated with tuberculosis in Han Chinese. Hum Mol Genet 2018; 26:4752-4763. [PMID: 29036319 DOI: 10.1093/hmg/ddx365] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies (GWASs) have revealed the worldwide heterogeneity of genetic factors in tuberculosis (TB) susceptibility. Despite having the third highest global TB burden, no TB-related GWAS has been performed in China. Here, we performed the first three-stage GWAS on TB in the Han Chinese population. In the stage 1 (discovery stage), after quality control, 691 388 SNPs present in 972 TB patients and 1537 controls were retained. After replication on an additional 3460 TB patients and 4862 controls (stages 2 and 3), we identified three significant loci associated with TB, the most significant of which was rs4240897 (logistic regression P = 1.41 × 10-11, odds ratio = 0.79). The aforementioned three SNPs were harbored by MFN2, RGS12 and human leukocyte antigen class II beta chain paralogue encoding genes, all of which are candidate immune genes associated with TB. Our findings provide new insight into the genetic background of TB in the Han Chinese population.
Collapse
Affiliation(s)
- Hui Qi
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yong-Biao Zhang
- Chinese Academy of Sciences and Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Sun
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Cheng Chen
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention, Jiangsu 210009, China
| | - Biao Xu
- School of Public Health, Fudan University, Shanghai 200433, China.,Department of Public Health Sciences (Global Health/IHCAR), Karolinska Institute, S-17177 Stockholm, Sweden
| | - Fang Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jia-Wen Liu
- Beijing Geriatric Hospital, Beijing 100095, China
| | - Jin-Cheng Liu
- Tuberculosis Hospital of Shaanxi Province 710100, Shaanxi Province, China
| | - Chen Chen
- Tuberculosis Hospital of Shaanxi Province 710100, Shaanxi Province, China
| | - Wei-Wei Jiao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Chen Shen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jing Xiao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jie-Qiong Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Ya-Jie Guo
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yong-Hong Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Qin-Jing Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Qing-Qin Yin
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Ying-Jia Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Ting Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xing-Yun Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Ming-Liang Gu
- Chinese Academy of Sciences and Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Yu
- Chinese Academy of Sciences and Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - A-Dong Shen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| |
Collapse
|
32
|
Wang D, Fan Y, Malhi M, Bi R, Wu Y, Xu M, Yu XF, Long H, Li YY, Zhang DF, Yao YG. Missense Variants in HIF1A and LACC1 Contribute to Leprosy Risk in Han Chinese. Am J Hum Genet 2018; 102:794-805. [PMID: 29706348 DOI: 10.1016/j.ajhg.2018.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWASs) and genome-wide linkage studies (GWLSs) have identified numerous risk genes affecting the susceptibility to leprosy. However, most of the reported GWAS hits are noncoding variants and account for only part of the estimated heritability for this disease. In order to identify additional risk genes and map the potentially functional variants within the GWAS loci, we performed a three-stage study combining whole-exome sequencing (WES; discovery stage), targeted next-generation sequencing (NGS; screening stage), and refined validation of risk missense variants in 1,433 individuals with leprosy and 1,625 healthy control individuals from Yunnan Province, Southwest China. We identified and validated a rare damaging variant, rs142179458 (c.1045G>A [p.Asp349Asn]) in HIF1A, as contributing to leprosy risk (p = 4.95 × 10-9, odds ratio [OR] = 2.266). We were able to show that affected individuals harboring the risk allele presented with multibacillary leprosy at an earlier age (p = 0.025). We also confirmed the association between missense variant rs3764147 (c.760A>G [p.Ile254Val]) in the GWAS hit LACC1 (formerly C13orf31) and leprosy (p = 6.11 × 10-18, OR = 1.605). By using the population attributable fraction, we have shown that HIF1A and LACC1 are the major genes with missense variants contributing to leprosy risk in our study groups. Consistently, mRNA expression levels of both HIF1A and LACC1 were upregulated in the skin lesions of individuals with leprosy and in Mycobacterium leprae-stimulated cells, indicating an active role of HIF1A and LACC1 in leprosy pathogenesis.
Collapse
|
33
|
Zhang H, Wang Z, Fu X, Sun Y, Mi Z, Yu G, Sun L, Wang N, Wang C, Zhao Q, Pan Q, Yue Z, Liu H, Zhang F. A pathway-based association analysis identified FMNL1-MAP3K14 as susceptibility genes for leprosy. Exp Dermatol 2018; 27:245-250. [PMID: 29283461 DOI: 10.1111/exd.13490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2017] [Indexed: 02/04/2023]
Abstract
The nuclear transcription factor-κB (NF-κB) plays a pivotal role in controlling both innate and adaptive immunity and regulates the expressions of many immunological mediators. Abundant evidences have showed the importance of NF-κB pathway in the host immune responses against Mycobacterium leprae in the development of leprosy. However, no particular association study between leprosy and NF-κB pathway-related gene polymorphisms was reported. Here, we performed a large-scale and two-stage candidate association study to investigate the association between 94 NF-κB pathway-related genes and leprosy. Our results showed that rs58744688 was significantly associated with leprosy (P = 7.57 × 10-7 , OR = 1.12) by combining the previous genomewide association data sets and four independent validation sample series, consisting of a total of 4631 leprosy cases and 6413 healthy controls. This founding implicated that MAP3K14 and FMNL1 were susceptibility genes for leprosy, which suggested the involvement of macrophage targeting and NF-κB pathway in the development of leprosy.
Collapse
Affiliation(s)
- Huimin Zhang
- Binzhou Medical University, Yantai, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Zhenzhen Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Xi'an Fu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Yonghu Sun
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Zihao Mi
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Gongqi Yu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lele Sun
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Na Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuan Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Qing Zhao
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Pan
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Zhenhua Yue
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Hong Liu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
| | - Furen Zhang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
- School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- National Clinical Key Project of Dermatology and Venereology, Jinan, Shandong, China
| |
Collapse
|
34
|
Liu H, Wang Z, Li Y, Yu G, Fu X, Wang C, Liu W, Yu Y, Bao F, Irwanto A, Liu J, Chu T, Andiappan AK, Maurer-Stroh S, Limviphuvadh V, Wang H, Mi Z, Sun Y, Sun L, Wang L, Wang C, You J, Li J, Foo JN, Liany H, Meah WY, Niu G, Yue Z, Zhao Q, Wang N, Yu M, Yu W, Cheng X, Khor CC, Sim KS, Aung T, Wang N, Wang D, Shi L, Ning Y, Zheng Z, Yang R, Li J, Yang J, Yan L, Shen J, Zhang G, Chen S, Liu J, Zhang F. Genome-Wide Analysis of Protein-Coding Variants in Leprosy. J Invest Dermatol 2017; 137:2544-2551. [PMID: 28842327 DOI: 10.1016/j.jid.2017.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/09/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
Although genome-wide association studies have greatly advanced our understanding of the contribution of common noncoding variants to leprosy susceptibility, protein-coding variants have not been systematically investigated. We carried out a three-stage genome-wide association study of protein-coding variants in Han Chinese, of whom were 7,048 leprosy patients and 14,398 were healthy control subjects. Seven coding variants of exome-wide significance were discovered, including two rare variants: rs145562243 in NCKIPSD (P = 1.71 × 10-9, odds ratio [OR] = 4.35) and rs149308743 in CARD9 (P = 2.09 × 10-8, OR = 4.75); three low-frequency variants: rs76418789 in IL23R (P = 1.03 × 10-10, OR = 1.36), rs146466242 in FLG (P = 3.39 × 10-12, OR = 1.45), and rs55882956 in TYK2 (P = 1.04 × 10-6, OR = 1.30); and two common variants: rs780668 in SLC29A3 (P = 2.17 × 10-9, OR = 1.14) and rs181206 in IL27 (P = 1.08 × 10-7, OR = 0.83). Discovered protein-coding variants, particularly low-frequency and rare ones, showed involvement of skin barrier and endocytosis/phagocytosis/autophagy, in addition to known innate and adaptive immunity, in the pathogenesis of leprosy, highlighting the merits of protein-coding variant studies for complex diseases.
Collapse
Affiliation(s)
- Hong Liu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; Shandong Provincial Medical Center for Dermatovenereology, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China
| | - Yi Li
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore; Computational Sciences, The Jackson Laboratory, Farmington, Connecticut, USA
| | - Gongqi Yu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China
| | - Xi'an Fu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; School of Medicine, Shandong University, Jinan, China
| | - Chuan Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China
| | - Wenting Liu
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Yongxiang Yu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China
| | - Fangfang Bao
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China
| | - Astrid Irwanto
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Jian Liu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China
| | - Tongsheng Chu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China
| | - Anand Kumar Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Biomolecular Function Discovery Division, Bioinformatics Institute, A*STAR, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Honglei Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; School of Medicine, Shandong University, Jinan, China
| | - Zihao Mi
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China
| | - Yonghu Sun
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China
| | - Lele Sun
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China
| | - Ling Wang
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Chaolong Wang
- Computational and Systems Biology, Genome Institute of Singapore, A*STAR, Singapore
| | - Jiabao You
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China
| | - Jinghui Li
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China
| | - Jia Nee Foo
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Herty Liany
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Wee Yang Meah
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Guiye Niu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China
| | - Zhenhua Yue
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; School of Medicine, Shandong University, Jinan, China
| | - Qing Zhao
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; School of Medicine, Shandong University, Jinan, China
| | - Na Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; School of Medicine, Shandong University, Jinan, China
| | - Meiwen Yu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wenjun Yu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiujun Cheng
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; School of Medicine, Shandong University, Jinan, China
| | - Chiea Chuen Khor
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Kar Seng Sim
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Tin Aung
- Singapore National Eye Centre, Glaucoma Department, Singapore
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing, China
| | - Deyun Wang
- Department of Otolaryngology, National University of Singapore, Singapore
| | - Li Shi
- Department of Otolaryngology, the Second Affiliated Hospital, Shandong University, Jinan, China
| | - Yong Ning
- Sichuan Provincial Institute of Dermatology, Sichuan, China
| | - Zhongyi Zheng
- Honghe Institute of Dermatology, Honghe, Yunnan, China
| | - Rongde Yang
- Wenshan Institute of Dermatology, Wenshan, Yunnan, China
| | - Jinlan Li
- Guizhou Provincial Center for Disease Control and Prevention, Guizhou, China
| | - Jun Yang
- Yunnan Provincial Center for Disease Control and Prevention, Yunnan, China
| | - Liangbin Yan
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jianping Shen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guocheng Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Shumin Chen
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Furen Zhang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; Shandong Provincial Medical Center for Dermatovenereology, Jinan, China; School of Medicine, Shandong University, Jinan, China; School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China; National Clinical Key Project of Dermatology and Venereology, Jinan, China.
| |
Collapse
|
35
|
Apt AS, Logunova NN, Kondratieva TK. Host genetics in susceptibility to and severity of mycobacterial diseases. Tuberculosis (Edinb) 2017; 106:1-8. [PMID: 28802396 DOI: 10.1016/j.tube.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 01/05/2023]
Abstract
The genetic analysis of susceptibility to infections has proven to be extremely useful for identification of key cells, molecules, pathways, and genes involved in the battle between two genomes - the essence of the infectious process. This is particularly true for tuberculosis and other mycobacterial infections which traditionally attracted much attention from both immunologists and geneticists. In this short review, we observe results of genetic studies performed in human populations and in animal models and compare relative input of forward and reverse genetic approaches in our knowledge about genetic control of and immune responses to mycobacterial infections.
Collapse
Affiliation(s)
- A S Apt
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia; Department of Immunology, School of Biology, Moscow State M. V. Lomonosov University, Russia.
| | - N N Logunova
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - T K Kondratieva
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| |
Collapse
|
36
|
Langlais D, Fodil N, Gros P. Genetics of Infectious and Inflammatory Diseases: Overlapping Discoveries from Association and Exome-Sequencing Studies. Annu Rev Immunol 2017; 35:1-30. [DOI: 10.1146/annurev-immunol-051116-052442] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada;, ,
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Nassima Fodil
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada;, ,
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Philippe Gros
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada;, ,
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
37
|
Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy. Sci Rep 2017; 7:43953. [PMID: 28277489 PMCID: PMC5344032 DOI: 10.1038/srep43953] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/31/2017] [Indexed: 12/13/2022] Open
Abstract
Giant cell arteritis (GCA) and Takayasu’s arteritis (TAK) are major forms of large-vessel vasculitis (LVV) that share clinical features. To evaluate their genetic similarities, we analysed Immunochip genotyping data from 1,434 LVV patients and 3,814 unaffected controls. Genetic pleiotropy was also estimated. The HLA region harboured the main disease-specific associations. GCA was mostly associated with class II genes (HLA-DRB1/HLA-DQA1) whereas TAK was mostly associated with class I genes (HLA-B/MICA). Both the statistical significance and effect size of the HLA signals were considerably reduced in the cross-disease meta-analysis in comparison with the analysis of GCA and TAK separately. Consequently, no significant genetic correlation between these two diseases was observed when HLA variants were tested. Outside the HLA region, only one polymorphism located nearby the IL12B gene surpassed the study-wide significance threshold in the meta-analysis of the discovery datasets (rs755374, P = 7.54E-07; ORGCA = 1.19, ORTAK = 1.50). This marker was confirmed as novel GCA risk factor using four additional cohorts (PGCA = 5.52E-04, ORGCA = 1.16). Taken together, our results provide evidence of strong genetic differences between GCA and TAK in the HLA. Outside this region, common susceptibility factors were suggested, especially within the IL12B locus.
Collapse
|
38
|
Fava VM, Manry J, Cobat A, Orlova M, Van Thuc N, Moraes MO, Sales-Marques C, Stefani MMA, Latini ACP, Belone AF, Thai VH, Abel L, Alcaïs A, Schurr E. A genome wide association study identifies a lncRna as risk factor for pathological inflammatory responses in leprosy. PLoS Genet 2017; 13:e1006637. [PMID: 28222097 PMCID: PMC5340414 DOI: 10.1371/journal.pgen.1006637] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/07/2017] [Accepted: 02/14/2017] [Indexed: 01/23/2023] Open
Abstract
Leprosy Type-1 Reactions (T1Rs) are pathological inflammatory responses that afflict a sub-group of leprosy patients and result in peripheral nerve damage. Here, we employed a family-based GWAS in 221 families with 229 T1R-affect offspring with stepwise replication to identify risk factors for T1R. We discovered, replicated and validated T1R-specific associations with SNPs located in chromosome region 10p21.2. Combined analysis across the three independent samples resulted in strong evidence of association of rs1875147 with T1R (p = 4.5x10-8; OR = 1.54, 95% CI = 1.32–1.80). The T1R-risk locus was restricted to a lncRNA-encoding genomic interval with rs1875147 being an eQTL for the lncRNA. Since a genetic overlap between leprosy and inflammatory bowel disease (IBD) has been detected, we evaluated if the shared genetic control could be traced to the T1R endophenotype. Employing the results of a recent IBD GWAS meta-analysis we found that 10.6% of IBD SNPs available in our dataset shared a common risk-allele with T1R (p = 2.4x10-4). This finding points to a substantial overlap in the genetic control of clinically diverse inflammatory disorders. Leprosy still affects approximately 200,000 new victims each year. A major challenge of leprosy control is the prevention of permanent disability due to nerve damage. Nerve damage occurs if leprosy remains undiagnosed for extended periods or when patients undergo pathological inflammatory responses termed Type-1 Reactions (T1R). T1R is a rare example where beneficial inflammatory responses are temporal separated from host pathological responses. There is strong experimental evidence that supports a role of host genetic factors in T1R susceptibility. Here, we employed a genome-wide association study (GWAS) to investigate susceptibility factors for T1R in Vietnamese families. We followed up the initial GWAS findings in independent population samples from Vietnam and Brazil and identified a set of cis-eQTL genetic variants for the ENSG00000235140 lncRNA as global risk factors for T1R. To test our proposal that T1R is a strong model for pathological inflammatory responses we evaluated if inflammatory bowel disease (IBD) genetic risk-factors were enriched among T1R risk factors. We observed that more than 10% of IBD-risk loci were nominally associated with risk for T1R suggesting a shared mechanism of excessive inflammatory response in the both disease etiologies.
Collapse
Affiliation(s)
- Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (ES); (VMF)
| | - Jeremy Manry
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U.1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Milton O. Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Mariane M. A. Stefani
- Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia, Brazil
| | | | | | - Vu Hong Thai
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U.1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U.1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (ES); (VMF)
| |
Collapse
|
39
|
Wen X, Chen S, Li P, Li J, Wu Z, Li Y, Li L, Yuan H, Tian X, Zhang F, Li Y. Single nucleotide polymorphisms of IL12B are associated with Takayasu arteritis in Chinese Han population. Rheumatol Int 2017; 37:547-555. [PMID: 28160070 DOI: 10.1007/s00296-016-3648-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/30/2016] [Indexed: 11/26/2022]
Abstract
Takayasu arteritis (TA) is a rare autoimmune disease of unknown etiology. Genome-wide association studies (GWAS) have demonstrated association between genetic variants of IL12B and IL6 and TA. Since TA has been reported with ethnic heterogeneity, we sought to investigate whether the single-nucleotide-polymorphisms (SNPs) reported in these studies are associated with TA in the Chinese Han population. A multi-center study involving 412 patients with TA and 597 healthy controls was conducted. Sequenom MassArray iPLEX platform was used to determine the frequencies of SNPs in the IL12B and IL6 region. We demonstrated a allele association between the four SNPs of IL12B and TA (rs6871626: OR 1.52, 95% CI 1.26-1.83; rs4921492: OR 1.46, 95% CI 1.21-1.75; rs60689680: OR 1.41, 95% CI 1.17-1.69; rs4921493: OR 1.45, 95% CI 1.21-1.75, all P c < 10- 3 ). A meta-analysis consist of four populations showed rs6871626 was a susceptible locus of TA. Its OR was 1.51, and 95% CI was 1.31-1.74. The four SNPs were in strong linkage disequilibrium and two haplotypes were significantly different between patients and controls. Conditional analysis shows that these SNPs were not independent factors contributing to TA. Nevertheless, neither genotype nor allele frequencies of rs2069837 in IL6 showed significant between-group differences. Thus SNP of IL12B may be considered a high-risk factor for TA in Chinese Han population and provide further clues for research into the pathogenesis of TA.
Collapse
Affiliation(s)
- Xiaoting Wen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Si Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Ping Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Ziyan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Yuan Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Liubing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Hui Yuan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Yongzhe Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| |
Collapse
|
40
|
Wang Z, Sun Y, Fu X, Yu G, Wang C, Bao F, Yue Z, Li J, Sun L, Irwanto A, Yu Y, Chen M, Mi Z, Wang H, Huai P, Li Y, Du T, Yu W, Xia Y, Xiao H, You J, Li J, Yang Q, Wang N, Shang P, Niu G, Chi X, Wang X, Cao J, Cheng X, Liu H, Liu J, Zhang F. A large-scale genome-wide association and meta-analysis identified four novel susceptibility loci for leprosy. Nat Commun 2016; 7:13760. [PMID: 27976721 PMCID: PMC5172377 DOI: 10.1038/ncomms13760] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/31/2016] [Indexed: 11/18/2022] Open
Abstract
Leprosy, a chronic infectious disease, results from the uncultivable pathogen Mycobacterium leprae (M. leprae), and usually progresses to peripheral neuropathy and permanent progressive deformity if not treated. Previously published genetic studies have identified 18 gene/loci significantly associated with leprosy at the genome-wide significant level. However as a complex disease, only a small proportion of leprosy risk could be explained by those gene/loci. To further identify more susceptibility gene/loci, we hereby performed a three-stage GWAS comprising 8,156 leprosy patients and 15,610 controls of Chinese ancestry. Four novel loci were identified including rs6807915 on 3p25.2 (P=1.94 × 10−8, OR=0.89), rs4720118 on 7p14.3 (P=3.85 × 10−10, OR=1.16), rs55894533 on 8p23.1 (P=5.07 × 10−11, OR=1.15) and rs10100465 on 8q24.11 (P=2.85 × 10−11, OR=0.85). Altogether, these findings have provided new insight and significantly expanded our understanding of the genetic basis of leprosy.
Previous studies have shown genetic associations between leprosy and 18 different genes/loci. Here, Wang and colleagues perform genome-wide association study in Han Chinese leprosy patients and describe four novel loci to be associated to the disease.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Yonghu Sun
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Xi'an Fu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,School of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Gongqi Yu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Chuan Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Fangfang Bao
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Zhenhua Yue
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,School of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Jianke Li
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong 250000, China
| | - Lele Sun
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Astrid Irwanto
- Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Yongxiang Yu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Mingfei Chen
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Zihao Mi
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Honglei Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,School of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Pengcheng Huai
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,School of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Yi Li
- Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Tiantian Du
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong 250000, China
| | - Wenjun Yu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong 250000, China
| | - Yang Xia
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong 250000, China
| | - Hailu Xiao
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Jiabao You
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Jinghui Li
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Qing Yang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong 250000, China
| | - Na Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,School of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Panpan Shang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Guiye Niu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China
| | - Xiaojun Chi
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong 250000, China
| | - Xiuhuan Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong 250000, China
| | - Jing Cao
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,School of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Xiujun Cheng
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,School of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Hong Liu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong 250000, China
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Furen Zhang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.,Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong 250000, China.,School of Medicine, Shandong University, Jinan, Shandong 250000, China.,School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China.,Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong 250000, China.,National Clinical Key Project of Dermatology and Venereology, Jinan, Shandong 250000, China
| |
Collapse
|
41
|
Li GD, Wang D, Zhang DF, Xiang Q, Feng JQ, Li XA, Li YY, Yao YG. Fine mapping of the GWAS loci identifies SLC35D1 and IL23R as potential risk genes for leprosy. J Dermatol Sci 2016; 84:322-329. [PMID: 27712858 DOI: 10.1016/j.jdermsci.2016.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND Previous genome-wide association study (GWAS) identified two new leprosy associated loci (1p31.3 [rs3762318] and 6q24.3 [rs2275606]). However, there were insufficient validations in independent populations. OBJECTIVE To validate the association and to map the potentially causal variants/genes underlying the association between the confirmed GWAS hit and leprosy. METHODS We genotyped 10 variants in the regions encompassing the two loci in 1110 Han Chinese subjects with and without leprosy, followed by expression quantitative trait loci (eQTL), mRNA expression profiling, and network analysis. We further sequenced the exon region of four genes that were located in the confirmed GWAS hit region in 80 leprosy patients and 99 individuals without leprosy. RESULTS We validated the positive association of rs3762318 with multibacillary leprosy (P=7.5×10-4), whereas the association of rs2275606 could not be validated. eQTL analysis showed that both the GWAS locus rs3762318 and one surrounding positively associated SNP rs2144658 (P=1.8×10-3) significantly affected the mRNA expression of a nearby gene SLC35D1, which might be involved in metabolism. Moreover, SLC35D1 was differentially expressed in skin tissues of leprosy patients, and the differential expression pattern was consistent among leprosy subtypes. Rare damaging missense variants in IL23R were significantly enriched in leprosy patients. CONCLUSION Our results supported the positive association between the GWAS reported rs3762318 and leprosy, and SLC35D1 and IL23R might be the causal genes.
Collapse
Affiliation(s)
- Guo-Dong Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Dong Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Qun Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jia-Qi Feng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xiao-An Li
- Yuxi City Center for Disease Control and Prevention, Yuxi, Yunnan 653100, China
| | - Yu-Ye Li
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
| |
Collapse
|
42
|
Mazini PS, Alves HV, Reis PG, Lopes AP, Sell AM, Santos-Rosa M, Visentainer JEL, Rodrigues-Santos P. Gene Association with Leprosy: A Review of Published Data. Front Immunol 2016; 6:658. [PMID: 26793196 PMCID: PMC4709443 DOI: 10.3389/fimmu.2015.00658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023] Open
Abstract
Leprosy is a chronic infectious disease caused by an obligate intracellular bacterium known as Mycobacterium leprae. Exposure to the bacillus is necessary, but this alone does not mean an individual will develop clinical symptoms of the disease. In recent years, several genes have been associated with leprosy and the innate immune response pathways converge on the main hypothesis that genes are involved in the susceptibility for the disease in two distinct steps: for leprosy per se and in the development of the different clinical forms. These genes participate in the sensing, main metabolic pathway of immune response activation and, subsequently, on the evolution of the disease into its clinical forms. The aim of this review is to highlight the role of innate immune response in the context of leprosy, stressing their participation in the signaling and targeting processes in response to bacillus infection and on the evolution to the clinical forms of the disease.
Collapse
Affiliation(s)
- Priscila Saamara Mazini
- Faculty of Medicine, Immunology Institute, University of Coimbra, Coimbra, Portugal; Immunogenetics Laboratory, Department of Basic Health Sciences, Maringá State University, Maringá, Paraná, Brazil
| | - Hugo Vicentin Alves
- Immunogenetics Laboratory, Department of Basic Health Sciences, Maringá State University , Maringá, Paraná , Brazil
| | - Pâmela Guimarães Reis
- Immunogenetics Laboratory, Department of Basic Health Sciences, Maringá State University , Maringá, Paraná , Brazil
| | - Ana Paula Lopes
- Immunogenetics Laboratory, Department of Basic Health Sciences, Maringá State University , Maringá, Paraná , Brazil
| | - Ana Maria Sell
- Immunogenetics Laboratory, Department of Basic Health Sciences, Maringá State University , Maringá, Paraná , Brazil
| | - Manuel Santos-Rosa
- Faculty of Medicine, Immunology Institute, University of Coimbra, Coimbra, Portugal; Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | - Paulo Rodrigues-Santos
- Faculty of Medicine, Immunology Institute, University of Coimbra, Coimbra, Portugal; Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
43
|
Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections. PLoS One 2016; 11:e0146585. [PMID: 26751573 PMCID: PMC4713433 DOI: 10.1371/journal.pone.0146585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.
Collapse
|
44
|
Sauer MED, Salomão H, Ramos GB, D'Espindula HRS, Rodrigues RSA, Macedo WC, Sindeaux RHM, Mira MT. Genetics of leprosy: Expected-and unexpected-developments and perspectives. Clin Dermatol 2015; 34:96-104. [PMID: 26773629 DOI: 10.1016/j.clindermatol.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A solid body of evidence produced over decades of intense research supports the hypothesis that leprosy phenotypes are largely dependent on the genetic characteristics of the host. The early evidence of a major gene effect controlling susceptibility to leprosy came from studies of familial aggregation, twins, and complex segregation analysis. Later, linkage and association analysis, first applied to the investigation of candidate genes and chromosomal regions and more recently, to genome-wide scans, have revealed several HLA and non-HLA gene variants as risk factors for leprosy phenotypes such as disease per se, its clinical forms, and leprosy reactions. In addition, powerful, hypothesis-free strategies such as genome-wide association studies have led to an exciting, unexpected development: Leprosy susceptibility genes seem to be shared with Crohn's and Parkinson's disease. Today, a major challenge is to find the exact variants causing the biological effect underlying the genetic associations. New technologies, such as Next Generation Sequencing-that allows, for the first time, the cost- and time-effective sequencing of a complete human genome-hold the promise to reveal such variants; thus, strategies can be developed to study the functional impact of these variants in the context of infection, hopefully leading to the development of new targets for leprosy treatment and prevention.
Collapse
Affiliation(s)
- Monica E D Sauer
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Heloisa Salomão
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Geovana B Ramos
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Helena R S D'Espindula
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Rafael S A Rodrigues
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Wilian C Macedo
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Renata H M Sindeaux
- School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Marcelo T Mira
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil; School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
45
|
Andiappan AK, Melchiotti R, Poh TY, Nah M, Puan KJ, Vigano E, Haase D, Yusof N, San Luis B, Lum J, Kumar D, Foo S, Zhuang L, Vasudev A, Irwanto A, Lee B, Nardin A, Liu H, Zhang F, Connolly J, Liu J, Mortellaro A, Wang DY, Poidinger M, Larbi A, Zolezzi F, Rotzschke O. Genome-wide analysis of the genetic regulation of gene expression in human neutrophils. Nat Commun 2015; 6:7971. [PMID: 26259071 PMCID: PMC4918343 DOI: 10.1038/ncomms8971] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/01/2015] [Indexed: 02/01/2023] Open
Abstract
Neutrophils are an abundant immune cell type involved in both antimicrobial defence and autoimmunity. The regulation of their gene expression, however, is still largely unknown. Here we report an eQTL study on isolated neutrophils from 114 healthy individuals of Chinese ethnicity, identifying 21,210 eQTLs on 832 unique genes. Unsupervised clustering analysis of these eQTLs confirms their role in inflammatory responses and immunological diseases but also indicates strong involvement in dermatological pathologies. One of the strongest eQTL identified (rs2058660) is also the tagSNP of a linkage block reported to affect leprosy and Crohn's disease in opposite directions. In a functional study, we can link the C allele with low expression of the β-chain of IL18-receptor (IL18RAP). In neutrophils, this results in a reduced responsiveness to IL-18, detected both on the RNA and protein level. Thus, the polymorphic regulation of human neutrophils can impact beneficial as well as pathological inflammatory responses. Neutrophils are abundant immune cells important for antimicrobial defence and in autoimmunity. Here, by mapping expression quantitative trait loci (eQTL) in neutrophils of Chinese ethnicity from Singapore, Andiappan et al. provide a resource for understanding immune-related trait associated genetic variants.
Collapse
Affiliation(s)
- Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Rossella Melchiotti
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Tuang Yeow Poh
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Michelle Nah
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Elena Vigano
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Doreen Haase
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Nurhashikin Yusof
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Boris San Luis
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Dilip Kumar
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Shihui Foo
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Li Zhuang
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Anusha Vasudev
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Astrid Irwanto
- Department of Human Genetics, Genome institute of Singapore (GIS), Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Alessandra Nardin
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine, Shandong University, Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Provincial Academy of Medical Science, Jinan, Shandong, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine, Shandong University, Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Provincial Academy of Medical Science, Jinan, Shandong, China
| | - John Connolly
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Jianjun Liu
- Department of Human Genetics, Genome institute of Singapore (GIS), Singapore, Singapore.,School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| |
Collapse
|
46
|
Sauer MED, Salomão H, Ramos GB, D'Espindula HRS, Rodrigues RSA, Macedo WC, Sindeaux RHM, Mira MT. Genetics of leprosy: expected and unexpected developments and perspectives. Clin Dermatol 2015; 33:99-107. [PMID: 25432815 DOI: 10.1016/j.clindermatol.2014.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A solid body of evidence produced over decades of intense research supports the hypothesis that leprosy phenotypes are largely dependent on the genetic characteristics of the host. The early evidence of a major gene effect controlling susceptibility to leprosy came from studies of familial aggregation, twins, and Complex Segregation Analysis. Later, linkage and association analysis, first applied to the investigation of candidate genes and chromosomal regions and more recently, to genome-wide scans, have revealed several leukocyte antigen complex and nonleukocyte antigen complex gene variants as risk factors for leprosy phenotypes such as disease per se, its clinical forms and leprosy reactions. In addition, powerful, hypothesis-free strategies such as Genome-Wide Association Studies have led to an exciting, unexpected development: Leprosy susceptibility genes seem to be shared with Crohn's and Parkinson's diseases. Today, a major challenge is to find the exact variants causing the biological effect underlying the genetic associations. New technologies, such as Next Generation Sequencing that allows, for the first time, the cost and time-effective sequencing of a complete human genome, hold the promise to reveal such variants. Strategies can be developed to study the functional effect of these variants in the context of infection, hopefully leading to the development of new targets for leprosy treatment and prevention.
Collapse
Affiliation(s)
- Monica E D Sauer
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Heloisa Salomão
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Geovana B Ramos
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Helena R S D'Espindula
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Rafael S A Rodrigues
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Wilian C Macedo
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Renata H M Sindeaux
- School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Marcelo T Mira
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil; School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
47
|
Association Study of IL-12B Polymorphisms Susceptibility with Ankylosing Spondylitis in Mainland Han Population. PLoS One 2015; 10:e0130982. [PMID: 26103568 PMCID: PMC4477880 DOI: 10.1371/journal.pone.0130982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/26/2015] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE This study aims to determine whether the genetic polymorphisms of IL-12B gene is a susceptibility factor to Ankylosing spondylitis (AS) in mainland Han Chinese population. METHOD Eight single-nucleotide polymorphisms (SNPs) (rs10045431, rs11167764, rs3212227, rs6556412, rs6556416, rs6871626, rs6887695 and rs7709212) in the IL-12B gene were genotyped by iMLDR Assay technology in 400 patients [96% (384/400) HLA-B27(+)] and 395 geographically and ethnically matched healthy controls in mainland Han Chinese population. The correlation between IL-12B genetic polymorphisms and AS activity index (BASDAI, BASFI) were tested. RESULTS The significant difference was found in genotype distribution between AS and healthy controls (χ2 = 6.942, P-value = 0.031) of the SNP rs6871626. Furthermore, significant evidence was also detected under the recessive model for minor allele A. The AA genotype carrier had 1.830 fold risk compared with C allele carrier (with CC and AC genotypes) [OR (95% CI) = 1.830 (1.131-2.961), P-value = 0.014]. Nevertheless, the difference was no longer significant after Bonferroni correction. Subset analysis on cases with HLA-B27(+) did find the same results. Three genotypic groups (AA, CC and CA) in rs6871626 site was highly associated with the BASDAI and BASFI (P-value = 0.012 and P-value = 0.023, respectively), after adjustment for effect of age, sex, and disease duration, the P-value was 0.031 and 0.041, respectively. The AA genotype of rs6871626 was also significantly correlated with an increased BASDAI and BASFI compared to the AC and CC genotypes in AS patients. CONCLUSION Our findings suggest that rs6871626 may be associated AS susceptibility and with disease activity (BASDAI, BASFI) in mainland Han Chinese population.
Collapse
|
48
|
Wakil SM, Monies DM, Abouelhoda M, Al-Tassan N, Al-Dusery H, Naim EA, Al-Younes B, Shinwari J, Al-Mohanna FA, Meyer BF, Al-Mayouf S. Association of a mutation in LACC1 with a monogenic form of systemic juvenile idiopathic arthritis. Arthritis Rheumatol 2015; 67:288-95. [PMID: 25220867 DOI: 10.1002/art.38877] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/09/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The pathologic basis of systemic juvenile idiopathic arthritis (JIA) is a subject of some controversy, with evidence for both autoimmune and autoinflammatory etiologies. Several monogenic autoinflammatory disorders have been described, but thus far, systemic JIA has only been attributed to a mutation of MEFV in rare cases and has been weakly associated with the HLA class II locus. This study was undertaken to identify the cause of an autosomal-recessive form of systemic JIA. METHODS We studied 13 patients with systemic JIA from 5 consanguineous families, all from the southern region of Saudi Arabia. We used linkage analysis, homozygosity mapping, and whole-exome sequencing to identify the disease-associated gene and mutation. RESULTS Linkage analysis localized systemic JIA to a region on chromosome 13 with a maximum logarithm of odds score of 11.33, representing the strongest linkage identified to date for this disorder. Homozygosity mapping reduced the critical interval to a 1.02-Mb region defined proximally by rs9533338 and distally by rs9595049. Whole-exome sequencing identified a homoallelic missense mutation in LACC1, which encodes the enzyme laccase (multicopper oxidoreductase) domain-containing 1. The mutation was confirmed by Sanger sequencing and segregated with disease in all 5 families based on an autosomal-recessive pattern of inheritance and complete penetrance. CONCLUSION Our findings provide strong genetic evidence of an association of a mutation in LACC1 with systemic JIA in the families studied. Association of LACC1 with Crohn's disease and leprosy has been reported and justifies investigation of its role in autoinflammatory disorders.
Collapse
Affiliation(s)
- Salma M Wakil
- King Faisal Specialist Hospital and Research Centre, and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nat Genet 2015; 47:267-71. [PMID: 25642632 DOI: 10.1038/ng.3212] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/09/2015] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies (GWAS) have led to the discovery of several susceptibility loci for leprosy with robust evidence, providing biological insight into the role of host genetic factors in mycobacterial infection. However, the identified loci only partially explain disease heritability, and additional genetic risk factors remain to be discovered. We performed a 3-stage GWAS of leprosy in the Chinese population using 8,313 cases and 16,017 controls. Besides confirming all previously published loci, we discovered six new susceptibility loci, and further gene prioritization analysis of these loci implicated BATF3, CCDC88B and CIITA-SOCS1 as new susceptibility genes for leprosy. A systematic evaluation of pleiotropic effects demonstrated a high tendency for leprosy susceptibility loci to show association with autoimmunity and inflammatory diseases. Further analysis suggests that molecular sensing of infection might have a similar pathogenic role across these diseases, whereas immune responses have discordant roles in infectious and inflammatory diseases.
Collapse
|
50
|
Jin P, Andiappan AK, Quek JM, Lee B, Au B, Sio YY, Irwanto A, Schurmann C, Grabe HJ, Suri BK, Matta SA, Westra HJ, Franke L, Esko T, Sun L, Zhang X, Liu H, Zhang F, Larbi A, Xu X, Poidinger M, Liu J, Chew FT, Rotzschke O, Shi L, Wang DY. A functional brain-derived neurotrophic factor (BDNF) gene variant increases the risk of moderate-to-severe allergic rhinitis. J Allergy Clin Immunol 2015; 135:1486-93.e8. [PMID: 25649076 DOI: 10.1016/j.jaci.2014.12.1870] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a secretory protein that has been implicated in the pathogenesis of allergic rhinitis (AR), atopic asthma, and eczema, but it is currently unknown whether BDNF polymorphisms influence susceptibility to moderate-to-severe AR. OBJECTIVE We sought to identify disease associations and the functional effect of BDNF genetic variants in patients with moderate-to-severe AR. METHODS Tagging single nucleotide polymorphisms (SNPs) spanning the BDNF gene were selected from the human HapMap Han Chinese from Beijing (CHB) data set, and associations with moderate-to-severe AR were assessed in 2 independent cohorts of Chinese patients (2216 from Shandong province and 1239 living in Singapore). The functional effects of the BDNF genetic variants were determined by using both in vitro and ex vivo assays. RESULTS The tagging SNP rs10767664 was significantly associated with the risk of moderate-to-severe AR in both Singapore Chinese (P = .0017; odds ratio, 1.324) and Shandong Chinese populations (P = .039; odds ratio, 1.180). The coding nonsynonymous SNP rs6265 was in perfect linkage with rs10767664 and conferred increased BDNF protein secretion by a human cell line in vitro. Subjects bearing the AA genotype of rs10767664 exhibited increased risk of moderate-to-severe AR and displayed increased BDNF protein and total IgE levels in plasma. Using a large-scale expression quantitative trait locus study, we demonstrated that BDNF SNPs are significantly associated with altered BDNF concentrations in peripheral blood. CONCLUSION A common genetic variant of the BDNF gene is associated with increased risk of moderate-to-severe AR, and the AA genotype is associated with increased BDNF mRNA levels in peripheral blood. Together, these data indicate that functional BDNF gene variants increase the risk of moderate-to-severe AR.
Collapse
Affiliation(s)
- Peng Jin
- Key Laboratory of Otolaryngology of the Ministry of Health, Department of Otolaryngology, Qilu Hospital, Shandong University, Jinan, China; Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | - Jia Min Quek
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Bijin Au
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Astrid Irwanto
- the Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Claudia Schurmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, HELIOS Hospital Stralsund, Greifswald, Germany
| | - Bani Kaur Suri
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Liangdan Sun
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Anhui Medical University, Hefei, China; Key Lab of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Collaborative Innovation Center for Complex and Severe Skin Diseases, Anhui Medical University, Hefei, China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Anhui Medical University, Hefei, China; Key Lab of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Collaborative Innovation Center for Complex and Severe Skin Diseases, Anhui Medical University, Hefei, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; Shandong Provincial Medical Center for Dermatovenereology, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; Shandong Provincial Medical Center for Dermatovenereology, Jinan, China
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xin Xu
- Qingdao Caretaker Otolaryngology, Head & Neck Surgery Hospital, Qingdao, China
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jianjun Liu
- the Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Li Shi
- Key Laboratory of Otolaryngology of the Ministry of Health, Department of Otolaryngology, Qilu Hospital, Shandong University, Jinan, China.
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore.
| |
Collapse
|