1
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:1074-1121.e18. [DOI: 10.1016/b978-0-443-10513-5.00037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Hartman JM, Ikegami K, Provenzano M, Bates K, Butler A, Jones AS, Berggren KN, Dekdebrun J, McKay MJ, Baldwin JN, Cornett KMD, Burns J, Kiefer M, Johnson NE, Hale MA. RNA mis-splicing in children with congenital myotonic dystrophy is associated with physical function. Ann Clin Transl Neurol 2024; 11:3175-3191. [PMID: 39450929 DOI: 10.1002/acn3.52224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVES Dysregulated RNA alternative splicing is the hallmark of myotonic dystrophy type 1 (DM1). However, the association between RNA mis-splicing and physical function in children with the most severe form of disease, congenital myotonic dystrophy (CDM), is unknown. METHODS Eighty-two participants (42 adults with DM1 and 40 children with CDM) with muscle biopsies and measures of myotonia, motor function, and strength were combined from five observational studies. Data were normalized and correlated with an aggregate measure of alternative splicing dysregulation, [MBNL]inferred, in skeletal muscle biopsies. Multiple linear regression analysis was performed to predict [MBNL]inferred using clinical outcome measures alone. Similar analyses were performed to predict 12-month physical function using baseline metrics. RESULTS Myotonia (measured via vHOT) was significantly correlated with RNA mis-splicing in our cross-sectional population of all DM1 individuals; CDM participants alone displayed no myotonia despite a similar range of RNA mis-splicing. Measures of motor performance and muscle strength were significantly associated with [MBNL]inferred in our cohort of all DM1 individuals and when assessing children with CDM independently. Multiple linear regression analyses yielded two models capable of predicting [MBNL]inferred from select clinical outcome assessments alone in all subjects (adjusted R2 = 0.6723) or exclusively in children with CDM (adjusted R2 = 0.5875). INTERPRETATION Our findings establish significant correlations between skeletal muscle performance and a composite measure of alternative splicing dysregulation, [MBNL]inferred, in DM1. The strength of these correlations and the development of predictive models will assist in designing efficacious clinical trials for individuals with DM1, particularly CDM.
Collapse
Affiliation(s)
- Julia M Hartman
- Medical Scientist Training Program, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department for Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Kobe Ikegami
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Marina Provenzano
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Kameron Bates
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Amanda Butler
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Children's Hospital of Richmond at Virginia Commonwealth University, Pediatric Therapy Services, Richmond, Virginia, 23220, USA
| | - Aileen S Jones
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Children's Hospital of Richmond at Virginia Commonwealth University, Pediatric Therapy Services, Richmond, Virginia, 23220, USA
| | - Kiera N Berggren
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Jeanne Dekdebrun
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Marnee J McKay
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jennifer N Baldwin
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Kayla M D Cornett
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Children's Hospitals Network (Randwick and Westmead), Sydney, New South Wales, Australia
| | - Joshua Burns
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Children's Hospitals Network (Randwick and Westmead), Sydney, New South Wales, Australia
| | - Michael Kiefer
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Nicholas E Johnson
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department for Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Melissa A Hale
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department for Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| |
Collapse
|
3
|
Ionova SA, Murtazina AF, Marakhonov AA, Shchagina OA, Ryadninskaya NV, Tebieva IS, Kadyshev VV, Borovikov AO, Ginter EK, Kutsev SI, Zinchenko RA. The Study of the Inheritance Mechanisms of Myotonic Dystrophy Type 1 (DM1) in Families from the Republic of North Ossetia-Alania. Int J Mol Sci 2024; 25:9734. [PMID: 39273681 PMCID: PMC11395446 DOI: 10.3390/ijms25179734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder with progressive myopathy and myotonia. The clinical study was conducted in the Republic of North Ossetia-Alania (RNOA), and in it 39 individuals from 17 unrelated families were identified with DM1. Clinical presentations varied, including muscle weakness, fatigue, intellectual disability, hypersomnia, ophthalmological abnormalities, and alopecia. Using clinical and genotyping data, we confirmed the diagnosis and enabled the study of CTG-repeat anticipation and DM1 prevalence in the Ossetian and Ingush populations. CTG expansion correlated with age of onset, with clinical severity, and with offspring showing more severe symptoms than parents. In many families, the youngest child had a more severe DM1 phenotype than older siblings. The prevalence was 14.17 per 100,000 in Ossetians and 18.74 per 100,000 in Ingush people, aligning with global data. Segregation analysis showed a higher frequency of maternal transmission. The study highlights the clinical and genetic heterogeneity of DM1 and its dependence on repeat expansion and paternal and maternal age.
Collapse
Affiliation(s)
- Sofya A Ionova
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Aysylu F Murtazina
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Andrey A Marakhonov
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Olga A Shchagina
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Nina V Ryadninskaya
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Inna S Tebieva
- North Ossetian State Medical Academy of the Ministry of Health of the Russian Federation, Pushkinskaya St., 40, Republic of North Ossetia-Alania, 362019 Vladikavkaz, Russia
- Medical and Genetic Consultation of the Republican Children's Clinical Hospital of the Republic of North Ossetia-Alania, Barbashova 33A, 362020 Vladikavkaz, Russia
| | - Vitaly V Kadyshev
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Artem O Borovikov
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Evgeny K Ginter
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Sergey I Kutsev
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Rena A Zinchenko
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| |
Collapse
|
4
|
Hartman JM, Ikegami K, Provenzano M, Bates K, Butler A, Jones AS, Berggren KN, Dekdebrun J, McKay MJ, Baldwin JN, Cornett KMD, Burns J, Kiefer M, Johnson NE, Hale MA. RNA mis-splicing in children with myotonic dystrophy is associated with physical function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.600889. [PMID: 39109179 PMCID: PMC11302619 DOI: 10.1101/2024.07.03.600889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Objectives Dysregulated RNA alternative splicing is the hallmark of myotonic dystrophy type 1 (DM1). However, the association between RNA mis-splicing and physical function in children with the most severe form of disease, congenital myotonic dystrophy (CDM), is unknown. Methods 82 participants (42 DM1 adults & 40 CDM children) with muscle biopsies and measures of myotonia, motor function, and strength were combined from five observational studies. Data were normalized and correlated with an aggregate measure of alternative splicing dysregulation, [MBNL] inferred in skeletal muscle biopsies. Multiple linear regression analysis was performed to predict [MBNL] inferred using clinical outcome measures alone. Similar analyses were performed to predict 12-month physical function using baseline metrics. Results Myotonia (measured via vHOT) was significantly correlated with RNA mis-splicing in our cross-sectional population of all DM1 individuals; CDM participants alone displayed no myotonia despite a similar range of RNA mis-splicing. Measures of motor performance and muscle strength were significantly associated with [MBNL] inferred in our cohort of all DM1 individuals and when assessing CDM children independently. Multiple linear regression analyses yielded two models capable of predicting [MBNL] inferred from select clinical outcome assessments alone in all subjects (adjusted R 2 = 0.6723) or exclusively in CDM children (adjusted R 2 = 0.5875). Interpretation Our findings establish significant correlations between skeletal muscle performance and a composite measure of alternative splicing dysregulation, [MBNL] inferred, in DM1. The strength of these correlations and the development of the predictive models will assist in designing efficacious clinical trials for individuals with DM1, particularly CDM.
Collapse
|
5
|
Núñez-Manchón J, Capó J, Martínez-Piñeiro A, Juanola E, Pesovic J, Mosqueira-Martín L, González-Imaz K, Maestre-Mora P, Odria R, Cerro-Herreros E, Naldaiz-Gastesi N, López de Munain A, Artero R, Savic-Pavicevic D, Vallejo-Illarramendi A, Mamchaoui K, Bigot A, Mouly V, Suelves M, Nogales-Gadea G. Immortalized human myotonic dystrophy type 1 muscle cell lines to address patient heterogeneity. iScience 2024; 27:109930. [PMID: 38832025 PMCID: PMC11144749 DOI: 10.1016/j.isci.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/21/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Historically, cellular models have been used as a tool to study myotonic dystrophy type 1 (DM1) and the validation of therapies in said pathology. However, there is a need for in vitro models that represent the clinical heterogeneity observed in patients with DM1 that is lacking in classical models. In this study, we immortalized three DM1 muscle lines derived from patients with different DM1 subtypes and clinical backgrounds and characterized them at the genetic, epigenetic, and molecular levels. All three cell lines display DM1 hallmarks, such as the accumulation of RNA foci, MBNL1 sequestration, splicing alterations, and reduced fusion. In addition, alterations in early myogenic markers, myotube diameter and CTCF1 DNA methylation were also found in DM1 cells. Notably, the new lines show a high level of heterogeneity in both the size of the CTG expansion and the aforementioned molecular alterations. Importantly, these immortalized cells also responded to previously tested therapeutics. Altogether, our results show that these three human DM1 cellular models are suitable to study the pathophysiological heterogeneity of DM1 and to test future therapeutic options.
Collapse
Affiliation(s)
- Judit Núñez-Manchón
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Júlia Capó
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alicia Martínez-Piñeiro
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Eduard Juanola
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Jovan Pesovic
- University of Belgrade - Faculty of Biology, Center for Human Molecular Genetics, Belgrade, Serbia
| | - Laura Mosqueira-Martín
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Universitario Donostia - IIS Biodonostia, 20014 San Sebastian, Spain
| | - Klaudia González-Imaz
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Universitario Donostia - IIS Biodonostia, 20014 San Sebastian, Spain
| | - Pau Maestre-Mora
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Renato Odria
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Estefania Cerro-Herreros
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Neia Naldaiz-Gastesi
- Neurosciences Area, Institute Biodonostia-Department of Neurology, Hospital Universitario Donostia, OSAKIDETZA, an Sebastián, Spain
- CIBERNED, CIBER, Instituto Carlos III, Madrid, Spain
| | - Adolfo López de Munain
- Neurosciences Area, Institute Biodonostia-Department of Neurology, Hospital Universitario Donostia, OSAKIDETZA, an Sebastián, Spain
- CIBERNED, CIBER, Instituto Carlos III, Madrid, Spain
- Department of Neurosciences. University of the Basque Country, San Sebastian, Spain
- Faculty of Health Sciences. University of Deusto, Bilbao-San Sebastian, Spain
| | - Rubén Artero
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB23/07/00005, Carlos III Health Institute, 28029 Madrid, Spain
| | - Dusanka Savic-Pavicevic
- University of Belgrade - Faculty of Biology, Center for Human Molecular Genetics, Belgrade, Serbia
| | - Ainara Vallejo-Illarramendi
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Universitario Donostia - IIS Biodonostia, 20014 San Sebastian, Spain
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Mònica Suelves
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Gisela Nogales-Gadea
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
6
|
Zhang J, Ling L, Xiang L, Li W, Bao P, Yue W. Clinical features of neuronal intranuclear inclusion disease with seizures: a systematic literature review. Front Neurol 2024; 15:1387399. [PMID: 38707999 PMCID: PMC11069311 DOI: 10.3389/fneur.2024.1387399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background Infant, junior, and adult patients with neuronal intranuclear inclusion disease (NIID) present with various types of seizures. We aimed to conduct a systematic literature review on the clinical characteristics of NIID with seizures to provide novel insight for early diagnosis and treatment and to improve prognosis of these patients. Methods We used keywords to screen articles related to NIID and seizures, and data concerning the clinical characteristics of patients, including demographic features, disease characteristics of the seizures, treatment responses, imaging examinations, and other auxiliary examination results were extracted. Results The included studies comprised 21 patients with NIID with seizures. The most common clinical phenotypes were cognitive impairment (76.20%) and impaired consciousness (57.14%), and generalized onset motor seizures (46.15%) represented the most common type. Compared with infantile and juvenile cases, the use of antiepileptic drugs in adults led to significant seizure control and symptom improvement, in addition to providing a better prognosis. The number of GGC sequence repeats in the NOTCH2NLC gene in six NIID patients with seizures who underwent genetic testing ranged 72-134. Conclusion The most common clinical phenotypes in patients with NIID with seizures were cognitive impairment and consciousness disorders. Patients with NIID presented with various types of seizures, with the most common being generalized onset motor seizures. Adult patients had a better prognosis and were relatively stable. The early diagnosis of NIID with seizures is of great significance for treatment and to improve prognosis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengnan Bao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
7
|
Handal T, Juster S, Abu Diab M, Yanovsky-Dagan S, Zahdeh F, Aviel U, Sarel-Gallily R, Michael S, Bnaya E, Sebban S, Buganim Y, Drier Y, Mouly V, Kubicek S, van den Broek WJAA, Wansink DG, Epsztejn-Litman S, Eiges R. Differentiation shifts from a reversible to an irreversible heterochromatin state at the DM1 locus. Nat Commun 2024; 15:3270. [PMID: 38627364 PMCID: PMC11021500 DOI: 10.1038/s41467-024-47217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Epigenetic defects caused by hereditary or de novo mutations are implicated in various human diseases. It remains uncertain whether correcting the underlying mutation can reverse these defects in patient cells. Here we show by the analysis of myotonic dystrophy type 1 (DM1)-related locus that in mutant human embryonic stem cells (hESCs), DNA methylation and H3K9me3 enrichments are completely abolished by repeat excision (CTG2000 expansion), whereas in patient myoblasts (CTG2600 expansion), repeat deletion fails to do so. This distinction between undifferentiated and differentiated cells arises during cell differentiation, and can be reversed by reprogramming of gene-edited myoblasts. We demonstrate that abnormal methylation in DM1 is distinctively maintained in the undifferentiated state by the activity of the de novo DNMTs (DNMT3b in tandem with DNMT3a). Overall, the findings highlight a crucial difference in heterochromatin maintenance between undifferentiated (sequence-dependent) and differentiated (sequence-independent) cells, thus underscoring the role of differentiation as a locking mechanism for repressive epigenetic modifications at the DM1 locus.
Collapse
Affiliation(s)
- Tayma Handal
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Sarah Juster
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Manar Abu Diab
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Shira Yanovsky-Dagan
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Fouad Zahdeh
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
| | - Uria Aviel
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Roni Sarel-Gallily
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, 91904, Israel
| | - Shir Michael
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Ester Bnaya
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Shulamit Sebban
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013, Paris, France
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Walther J A A van den Broek
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Derick G Wansink
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Silvina Epsztejn-Litman
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel.
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel.
| |
Collapse
|
8
|
Shi Y, Cao C, Zeng Y, Ding Y, Chen L, Zheng F, Chen X, Zhou F, Yang X, Li J, Xu L, Xu G, Lin M, Ishiura H, Tsuji S, Wang N, Wang Z, Chen WJ, Yang K. CGG repeat expansion in LOC642361/NUTM2B-AS1 typically presents as oculopharyngodistal myopathy. J Genet Genomics 2024; 51:184-196. [PMID: 38159879 DOI: 10.1016/j.jgg.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
CGG repeat expansions in LOC642361/NUTM2B-AS1 have recently been identified as a cause of oculopharyngeal myopathy with leukoencephalopathy. However, since only three patients from a single family were reported, it remains unknown whether their clinicopathological features are typical for CGG repeat expansions in LOC642361/NUTM2B-AS1. Here, using repeat-primed-polymerase chain reaction and long-read sequencing, we identify 12 individuals from 3 unrelated families with CGG repeat expansions in LOC642361/NUTM2B-AS1, typically presenting with oculopharyngodistal myopathy. The CGG repeat expansions range from 161 to 669 repeat units. Most of the patients present with ptosis, restricted eye movements, dysphagia, dysarthria, and diffuse limb muscle weakness. Only one patient shows T2-weighted hyperintensity in the cerebellar white matter surrounding the deep cerebellar nuclei on brain magnetic resonance imaging. Muscle biopsies from three patients show a myopathic pattern and rimmed vacuoles. Analyses of muscle biopsies suggest that CGG repeat expansions in LOC642361/NUTM2B-AS1 may deleteriously affect aggrephagic capacity, suggesting that RNA toxicity and mitochondrial dysfunction may contribute to pathogenesis. Our study thus expands the phenotypic spectrum for the CGG repeat expansion of LOC642361/NUTM2B-AS1 and indicates that this genetic variant typically manifests as oculopharyngodistal myopathy with chronic myopathic changes with rimmed vacuoles and filamentous intranuclear inclusions in muscle fibers.
Collapse
Affiliation(s)
- Yan Shi
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Chunyan Cao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Yiheng Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Yuanliang Ding
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Long Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Fuze Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xuejiao Chen
- Department of Neurology, Zhangzhou Municipal Hospital of Fujian Province and Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| | - Fanggui Zhou
- Department of Neurology, Jian'ou Municipal Hospital of Fujian Province, Jian'ou, Fujian 353100, China
| | - Xiefeng Yang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Jinjing Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Liuqing Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Guorong Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Minting Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Institute of Medical Genomics, International University of Health and Welfare, Chiba 286-0048, Japan
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zhiqiang Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| | - Kang Yang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| |
Collapse
|
9
|
Chawla T, Reddy N, Jankar R, Vengalil S, Polavarapu K, Arunachal G, Preethish-Kumar V, Nashi S, Bardhan M, Rajeshwaran J, Afsar M, Warrier M, Thomas PT, Thennarasu K, Nalini A. Myotonic Dystrophy Type 1 (DM1): Clinical Characteristics and Disease Progression in a Large Cohort. Neurol India 2024; 72:83-89. [PMID: 38443007 DOI: 10.4103/neuroindia.ni_1432_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/25/2021] [Indexed: 03/07/2024]
Abstract
BACKGROUND DM1 is a multisystem disorder caused by expansion of a CTG triplet repeat in the 3' non-coding region of DMPK. Neuropsychological consequences and sleep abnormalities are important associations in DM1. OBJECTIVE To describe the clinical phenotype, disease progression and characterize the sleep alterations and cognitive abnormalities in a sub-set of patients. MATERIALS AND METHODS A retrospective study on 120 genetically confirmed DM1 cases. Findings in neuropsychological assessment and multiple sleep questionnaires were compared with 14 age and sex matched healthy individuals. All 120 patients were contacted through letters/telephonic consultation/hospital visits to record their latest physical and functional disabilities. RESULTS The mean age at symptom onset was 23.1 ± 11.4 years, M: F = 3.8:1, mean duration of illness = 14.3 ± 9.5 years. Clinically 54.2% had adult onset form, juvenile = 27.5%, infantile = 10.8%, late adult onset = 7.5%. Paternal transmission occurred more frequently. The predominant initial symptoms were myotonia (37.5%), hand weakness (21.7%), lower limb weakness (23.3%) and bulbar (10%). Twenty patients completed sleep questionnaires (SQ). Abnormal scores were noted in Epworth sleepiness scale (55%); Pittsburgh sleep quality index (45%); Berlin SQ (30%); Rapid eye movement sleep Behaviour Disorder SQ (15%); Restless leg syndrome rating scale (10%). Neuropsychological assessment of 20 patients revealed frontal executive dysfunction, attention impairment and visuospatial dysfunction. Frontal lobe was most affected (72%) followed by parietal (16%) and temporal lobe (12%). CONCLUSIONS The current study provides a comprehensive account of the clinical characteristics in Indian patients with DM1. Hypersomnolence was most commonly seen. Excessive daytime sleepiness and Sleep disordered breathing were the most common sleep related abnormality. Cognitive impairment comprised predominantly of frontal lobe dysfunction.
Collapse
Affiliation(s)
- Tanushree Chawla
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Nishanth Reddy
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Rahul Jankar
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Seena Vengalil
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Kiran Polavarapu
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Division of Neurology, Department of Medicine, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Veeramani Preethish-Kumar
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Saraswati Nashi
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Mainak Bardhan
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Jamuna Rajeshwaran
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Mohammad Afsar
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Manjusha Warrier
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Priya T Thomas
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Kandavel Thennarasu
- Department of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Atchayaram Nalini
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Sánchez Marín JP, Sienes Bailo P, Lahoz Alonso R, Capablo Liesa JL, Gazulla Abio J, Giménez Muñoz JA, Modrego Pardo PJ, Pardiñas Barón B, Izquierdo Álvarez S. Myotonic dystrophy type 1: 13 years of experience at a tertiary hospital. Clinical and epidemiological study and genotype-phenotype correlation. Neurologia 2023; 38:530-540. [PMID: 37437658 DOI: 10.1016/j.nrleng.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/08/2021] [Indexed: 07/14/2023] Open
Abstract
INTRODUCTION The incidence of myotonic dystrophy type 1 (DM1), a disease with great phenotypic variety, in our region is unknown. This study aims to estimate the incidence of DM1 at our hospital (a reference centre in Aragon, Spain) and to identify the characteristics of our population (genotype-phenotype correlation). METHODS Retrospective, descriptive study of 459 patients classified according to the number of CTG repeats, as follows: normal (5-35), premutation (36-50), protomutation (51-80), small expansions (81-150), intermediate expansions (151-1000), and large expansions (> 1000). Furthermore, according to clinical phenotype, patients were categorised as unaffected (5-50 CTG repeats), mild form or asymptomatic (51-150), classical form (151-1000), and severe form (> 1000). RESULTS The incidence of DM1 was 20.61 cases per million person-years (95% CI, 19.59-21.63). An inverse correlation was observed between the number of CTG repeats and the age at genetic diagnosis (ρ = -0.547; 95% CI, -0.610 to -0.375; P < .001). CTG5 was the most frequent polymorphic allele in healthy individuals. Of all patients with DM1, 28.3% presented the mild or asymptomatic form, 59.1% the classical form, and 12.6% the severe form. Inheritance was maternal in 35.1% of cases, paternal in 59.4%, and uncertain in 5.5%. In mild forms, frontal balding in men was the most prevalent phenotypic trait, as well as myotonia and cataracts, while in the classical form, ptosis, facial weakness, voice and pronunciation alterations, myotonia, and fatigue/sleepiness were most frequent. CONCLUSIONS The incidence of DM1 in Aragon is significant. Multidisciplinary study of the phenotype of patients with DM1 is key to early diagnosis and personalised management.
Collapse
Affiliation(s)
- J P Sánchez Marín
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - P Sienes Bailo
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, Spain.
| | - R Lahoz Alonso
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - J L Capablo Liesa
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - J Gazulla Abio
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, Spain; Neurología, Centro Médico de Especialidades Ramón y Cajal, Zaragoza, Spain
| | | | - P J Modrego Pardo
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - B Pardiñas Barón
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - S Izquierdo Álvarez
- Sección de Genética Clínica, Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, Spain
| |
Collapse
|
11
|
Visconti VV, Macrì E, D'Apice MR, Centofanti F, Massa R, Novelli G, Botta A. In Cis Effect of DMPK Expanded Alleles in Myotonic Dystrophy Type 1 Patients Carrying Variant Repeats at 5' and 3' Ends of the CTG Array. Int J Mol Sci 2023; 24:10129. [PMID: 37373276 DOI: 10.3390/ijms241210129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disease caused by a CTG repeat expansion in the 3'-untranslated region (UTR) of DMPK gene. DM1 alleles containing non-CTG variant repeats (VRs) have been described, with uncertain molecular and clinical consequences. The expanded trinucleotide array is flanked by two CpG islands, and the presence of VRs could confer an additional level of epigenetic variability. This study aims to investigate the association between VR-containing DMPK alleles, parental inheritance and methylation pattern of the DM1 locus. The DM1 mutation has been characterized in 20 patients using a combination of SR-PCR, TP-PCR, modified TP-PCR and LR-PCR. Non-CTG motifs have been confirmed by Sanger sequencing. The methylation pattern of the DM1 locus was determined by bisulfite pyrosequencing. We characterized 7 patients with VRs within the CTG tract at 5' end and 13 patients carrying non-CTG sequences at 3' end of the DM1 expansion. DMPK alleles with VRs at 5' end or 3' end were invariably unmethylated upstream of the CTG expansion. Interestingly, DM1 patients with VRs at the 3' end showed higher methylation levels in the downstream island of the CTG repeat tract, preferentially when the disease allele was maternally inherited. Our results suggest a potential correlation between VRs, parental origin of the mutation and methylation pattern of the DMPK expanded alleles. A differential CpG methylation status could play a role in the phenotypic variability of DM1 patients, representing a potentially useful diagnostic tool.
Collapse
Affiliation(s)
- Virginia Veronica Visconti
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Elisa Macrì
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Maria Rosaria D'Apice
- Laboratory of Medical Genetics, Tor Vergata Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Federica Centofanti
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Massa
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
12
|
Cheung WA, Johnson AF, Rowell WJ, Farrow E, Hall R, Cohen ASA, Means JC, Zion TN, Portik DM, Saunders CT, Koseva B, Bi C, Truong TK, Schwendinger-Schreck C, Yoo B, Johnston JJ, Gibson M, Evrony G, Rizzo WB, Thiffault I, Younger ST, Curran T, Wenger AM, Grundberg E, Pastinen T. Direct haplotype-resolved 5-base HiFi sequencing for genome-wide profiling of hypermethylation outliers in a rare disease cohort. Nat Commun 2023; 14:3090. [PMID: 37248219 DOI: 10.1038/s41467-023-38782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Long-read HiFi genome sequencing allows for accurate detection and direct phasing of single nucleotide variants, indels, and structural variants. Recent algorithmic development enables simultaneous detection of CpG methylation for analysis of regulatory element activity directly in HiFi reads. We present a comprehensive haplotype resolved 5-base HiFi genome sequencing dataset from a rare disease cohort of 276 samples in 152 families to identify rare (~0.5%) hypermethylation events. We find that 80% of these events are allele-specific and predicted to cause loss of regulatory element activity. We demonstrate heritability of extreme hypermethylation including rare cis variants associated with short (~200 bp) and large hypermethylation events (>1 kb), respectively. We identify repeat expansions in proximal promoters predicting allelic gene silencing via hypermethylation and demonstrate allelic transcriptional events downstream. On average 30-40 rare hypermethylation tiles overlap rare disease genes per patient, providing indications for variation prioritization including a previously undiagnosed pathogenic allele in DIP2B causing global developmental delay. We propose that use of HiFi genome sequencing in unsolved rare disease cases will allow detection of unconventional diseases alleles due to loss of regulatory element activity.
Collapse
Affiliation(s)
- Warren A Cheung
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Adam F Johnson
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Emily Farrow
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | | | - Ana S A Cohen
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - John C Means
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tricia N Zion
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | | | - Boryana Koseva
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Chengpeng Bi
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tina K Truong
- Center for Human Genetics and Genomics, Department of Pediatrics, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Carl Schwendinger-Schreck
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Byunggil Yoo
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jeffrey J Johnston
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Margaret Gibson
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Gilad Evrony
- Center for Human Genetics and Genomics, Department of Pediatrics, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - William B Rizzo
- Child Health Research Institute, Department of Pediatrics, Nebraska Medical Center, Omaha, NE, USA
| | - Isabelle Thiffault
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Scott T Younger
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | - Tom Curran
- Children's Mercy Research Institute, Kansas City, MO, USA
| | | | - Elin Grundberg
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA.
| | - Tomi Pastinen
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA.
| |
Collapse
|
13
|
Pluripotent Stem Cells in Disease Modeling and Drug Discovery for Myotonic Dystrophy Type 1. Cells 2023; 12:cells12040571. [PMID: 36831237 PMCID: PMC9954118 DOI: 10.3390/cells12040571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a progressive multisystemic disease caused by the expansion of a CTG repeat tract within the 3' untranslated region (3' UTR) of the dystrophia myotonica protein kinase gene (DMPK). Although DM1 is considered to be the most frequent myopathy of genetic origin in adults, DM1 patients exhibit a vast diversity of symptoms, affecting many different organs. Up until now, different in vitro models from patients' derived cells have largely contributed to the current understanding of DM1. Most of those studies have focused on muscle physiopathology. However, regarding the multisystemic aspect of DM1, there is still a crucial need for relevant cellular models to cover the whole complexity of the disease and open up options for new therapeutic approaches. This review discusses how human pluripotent stem cell-based models significantly contributed to DM1 mechanism decoding, and how they provided new therapeutic strategies that led to actual phase III clinical trials.
Collapse
|
14
|
Morales F, Corrales E, Vásquez M, Zhang B, Fernández H, Alvarado F, Cortés S, Santamaría-Ulloa C, Initiative-Mmdbdi MMDBD, Krahe R, Monckton DG. Individual-specific levels of CTG•CAG somatic instability are shared across multiple tissues in myotonic dystrophy type 1. Hum Mol Genet 2023; 32:621-631. [PMID: 36099027 DOI: 10.1093/hmg/ddac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 is a complex disease caused by a genetically unstable CTG repeat expansion in the 3'-untranslated region of the DMPK gene. Age-dependent, tissue-specific somatic instability has confounded genotype-phenotype associations, but growing evidence suggests that it also contributes directly toward disease progression. Using a well-characterized clinical cohort of DM1 patients from Costa Rica, we quantified somatic instability in blood, buccal cells, skin and skeletal muscle. Whilst skeletal muscle showed the largest expansions, modal allele lengths in skin were also very large and frequently exceeded 2000 CTG repeats. Similarly, the degree of somatic expansion in blood, muscle and skin were associated with each other. Notably, we found that the degree of somatic expansion in skin was highly predictive of that in skeletal muscle. More importantly, we established that individuals whose repeat expanded more rapidly than expected in one tissue (after correction for progenitor allele length and age) also expanded more rapidly than expected in other tissues. We also provide evidence suggesting that individuals in whom the repeat expanded more rapidly than expected in skeletal muscle have an earlier age at onset than expected (after correction for the progenitor allele length). Pyrosequencing analyses of the genomic DNA flanking the CTG repeat revealed that the degree of methylation in muscle was well predicted by the muscle modal allele length and age, but that neither methylation of the flanking DNA nor levels of DMPK sense and anti-sense transcripts could obviously explain individual- or tissue-specific patterns of somatic instability.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Huberth Fernández
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Fernando Alvarado
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Sergio Cortés
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | | | | | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
15
|
Bypassing Mendel's First Law: Transmission Ratio Distortion in Mammals. Int J Mol Sci 2023; 24:ijms24021600. [PMID: 36675116 PMCID: PMC9863905 DOI: 10.3390/ijms24021600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Mendel's law of segregation states that the two alleles at a diploid locus should be transmitted equally to the progeny. A genetic segregation distortion, also referred to as transmission ratio distortion (TRD), is a statistically significant deviation from this rule. TRD has been observed in several mammal species and may be due to different biological mechanisms occurring at diverse time points ranging from gamete formation to lethality at post-natal stages. In this review, we describe examples of TRD and their possible mechanisms in mammals based on current knowledge. We first focus on the differences between TRD in male and female gametogenesis in the house mouse, in which some of the most well studied TRD systems have been characterized. We then describe known TRD in other mammals, with a special focus on the farmed species and in the peculiar common shrew species. Finally, we discuss TRD in human diseases. Thus far, to our knowledge, this is the first time that such description is proposed. This review will help better comprehend the processes involved in TRD. A better understanding of these molecular mechanisms will imply a better comprehension of their impact on fertility and on genome evolution. In turn, this should allow for better genetic counseling and lead to better care for human families.
Collapse
|
16
|
Todorow V, Hintze S, Schoser B, Meinke P. Nuclear envelope transmembrane proteins involved in genome organization are misregulated in myotonic dystrophy type 1 muscle. Front Cell Dev Biol 2023; 10:1007331. [PMID: 36699009 PMCID: PMC9868253 DOI: 10.3389/fcell.2022.1007331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Myotonic dystrophy type 1 is a multisystemic disorder with predominant muscle and neurological involvement. Despite a well described pathomechanism, which is primarily a global missplicing due to sequestration of RNA-binding proteins, there are still many unsolved questions. One such question is the disease etiology in the different affected tissues. We observed alterations at the nuclear envelope in primary muscle cell cultures before. This led us to reanalyze a published RNA-sequencing dataset of DM1 and control muscle biopsies regarding the misregulation of NE proteins. We could identify several muscle NE protein encoding genes to be misregulated depending on the severity of the muscle phenotype. Among these misregulated genes were NE transmembrane proteins (NETs) involved in nuclear-cytoskeletal coupling as well as genome organization. For selected genes, we could confirm that observed gene-misregulation led to protein expression changes. Furthermore, we investigated if genes known to be under expression-regulation by genome organization NETs were also misregulated in DM1 biopsies, which revealed that misregulation of two NETs alone is likely responsible for differential expression of about 10% of all genes being differentially expressed in DM1. Notably, the majority of NETs identified here to be misregulated in DM1 muscle are mutated in Emery-Dreifuss muscular dystrophy or clinical similar muscular dystrophies, suggesting a broader similarity on the molecular level for muscular dystrophies than anticipated. This shows not only the importance of muscle NETs in muscle health and disease, but also highlights the importance of the NE in DM1 disease progression.
Collapse
|
17
|
Younger DS. Childhood muscular dystrophies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:461-496. [PMID: 37562882 DOI: 10.1016/b978-0-323-98818-6.00024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Infancy- and childhood-onset muscular dystrophies are associated with a characteristic distribution and progression of motor dysfunction. The underlying causes of progressive childhood muscular dystrophies are heterogeneous involving diverse genetic pathways and genes that encode proteins of the plasma membrane, extracellular matrix, sarcomere, and nuclear membrane components. The prototypical clinicopathological features in an affected child may be adequate to fully distinguish it from other likely diagnoses based on four common features: (1) weakness and wasting of pelvic-femoral and scapular muscles with involvement of heart muscle; (2) elevation of serum muscle enzymes in particular serum creatine kinase; (3) necrosis and regeneration of myofibers; and (4) molecular neurogenetic assessment particularly utilizing next-generation sequencing of the genome of the likeliest candidates genes in an index case or family proband. A number of different animal models of therapeutic strategies have been developed for gene transfer therapy, but so far these techniques have not yet entered clinical practice. Treatment remains for the most part symptomatic with the goal of ameliorating locomotor and cardiorespiratory manifestations of the disease.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2) are genetic disorders affecting skeletal and smooth muscle, heart, brain, eyes, and other organs. The multisystem involvement and disease variability of myotonic dystrophy have presented challenges for clinical care and research. This article focuses on the diagnosis and management of the disease. In addition, recent advances in characterizing the diverse clinical manifestations and variability of the disease are discussed. RECENT FINDINGS Studies of the multisystem involvement of myotonic dystrophy, including the most lethal cardiac and respiratory manifestations and their molecular underpinnings, expand our understanding of the myotonic dystrophy phenotype. Advances have been made in understanding the molecular mechanisms of both types of myotonic dystrophy, providing opportunities for developing targeted therapeutics, some of which have entered clinical trials in DM1. SUMMARY Continued efforts focus on advancing our molecular and clinical understanding of DM1 and DM2. Accurately measuring and monitoring the diverse and variable clinical manifestations of myotonic dystrophy in clinic and in research is important to provide adequate care, prevent complications, and find treatments that improve symptoms and life quality.
Collapse
|
19
|
Intergenerational Influence of Gender and the DM1 Phenotype of the Transmitting Parent in Korean Myotonic Dystrophy Type 1. Genes (Basel) 2022; 13:genes13081465. [PMID: 36011377 PMCID: PMC9408469 DOI: 10.3390/genes13081465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common autosomal-dominant disorder caused by the CTG repeat expansion of the DMPK, and it has been categorized into three phenotypes: mild, classic, and congenital DM1. Here, we reviewed the intergenerational influence of gender and phenotype of the transmitting parent on the occurrence of Korean DM1. A total of 44 parent–child pairs matched for the gender of the transmitting parent and the affected child and 29 parent–child pairs matched for the gender and DM1 phenotype of the transmitting parent were reviewed. The CTG repeat size of the DMPK in the affected child was found to be significantly greater when transmitted by a female parent to a female child (DM1-FF) (median, 1309 repeats; range, 400–2083) than when transmitted by a male parent to a male child (650; 160–1030; p = 0.038 and 0.048 using the Tukey HSD and the Bonferroni test) or by a male parent to a female child (480; 94–1140; p = 0.003). The difference in the CTG repeat size of the DMPK between the transmitting parent and the affected child was also lower when transmitted from a male parent with classic DM1 (−235; −280 to 0) compared to when it was transmitted from a female parent with mild DM1 (866; 612–905; p = 0.015 and 0.019) or from a female parent with classic DM1 (DM1-FC) (605; 10–1393; p = 0.005). This study highlights that gender and the DM1 phenotype of the transmitting parent had an impact on the CTG repeat size of the DMPK in the affected child, with greater increases being inherited from the DM1-FF or DM1-FC situations in Korean DM1.
Collapse
|
20
|
Koehorst E, Odria R, Capó J, Núñez-Manchón J, Arbex A, Almendrote M, Linares-Pardo I, Natera-de Benito D, Saez V, Nascimento A, Ortez C, Rubio MÁ, Díaz-Manera J, Alonso-Pérez J, Lucente G, Rodriguez-Palmero A, Ramos-Fransi A, Martínez-Piñeiro A, Nogales-Gadea G, Suelves M. An Integrative Analysis of DNA Methylation Pattern in Myotonic Dystrophy Type 1 Samples Reveals a Distinct DNA Methylation Profile between Tissues and a Novel Muscle-Associated Epigenetic Dysregulation. Biomedicines 2022; 10:biomedicines10061372. [PMID: 35740394 PMCID: PMC9220235 DOI: 10.3390/biomedicines10061372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a progressive, non-treatable, multi-systemic disorder. To investigate the contribution of epigenetics to the complexity of DM1, we compared DNA methylation profiles of four annotated CpG islands (CpGis) in the DMPK locus and neighbouring genes, in distinct DM1 tissues and derived cells, representing six DM1 subtypes, by bisulphite sequencing. In blood, we found no differences in CpGi 74, 43 and 36 in DNA methylation profile. In contrast, a CTCF1 DNA methylation gradient was found with 100% methylation in congenital cases, 50% in childhood cases and 13% in juvenile cases. CTCF1 methylation correlated to disease severity and CTG expansion size. Notably, 50% of CTCF1 methylated cases showed methylation in the CTCF2 regions. Additionally, methylation was associated with maternal transmission. Interestingly, the evaluation of seven families showed that unmethylated mothers passed on an expansion of the CTG repeat, whereas the methylated mothers transmitted a contraction. The analysis of patient-derived cells showed that DNA methylation profiles were highly preserved, validating their use as faithful DM1 cellular models. Importantly, the comparison of DNA methylation levels of distinct DM1 tissues revealed a novel muscle-specific epigenetic signature with methylation of the CTCF1 region accompanied by demethylation of CpGi 43, a region containing an alternative DMPK promoter, which may decrease the canonical promoter activity. Altogether, our results showed a distinct DNA methylation profile across DM1 tissues and uncovered a novel and dual epigenetic signature in DM1 muscle samples, providing novel insights into the epigenetic changes associated with DM1.
Collapse
Affiliation(s)
- Emma Koehorst
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Renato Odria
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Júlia Capó
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Judit Núñez-Manchón
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Andrea Arbex
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Miriam Almendrote
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Ian Linares-Pardo
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Neuropediatric Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, L'Hospitalet de Llobregat, 08950 Barcelona, Spain
| | - Verónica Saez
- Neuromuscular Unit, Neuropediatric Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, L'Hospitalet de Llobregat, 08950 Barcelona, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Neuropediatric Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, L'Hospitalet de Llobregat, 08950 Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Neuropediatric Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, L'Hospitalet de Llobregat, 08950 Barcelona, Spain
| | - Miguel Ángel Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, 08003 Barcelona, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Giuseppe Lucente
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Agustín Rodriguez-Palmero
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alba Ramos-Fransi
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alicia Martínez-Piñeiro
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Mònica Suelves
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
21
|
Rasmussen A, Hildonen M, Vissing J, Duno M, Tümer Z, Birkedal U. High Resolution Analysis of DMPK Hypermethylation and Repeat Interruptions in Myotonic Dystrophy Type 1. Genes (Basel) 2022; 13:genes13060970. [PMID: 35741732 PMCID: PMC9222588 DOI: 10.3390/genes13060970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic neuromuscular disorder caused by the expansion of a CTG repeat in the 3′-UTR of DMPK, which is transcribed to a toxic gain-of-function RNA that affects splicing of a range of genes. The expanded repeat is unstable in both germline and somatic cells. The variable age at disease onset and severity of symptoms have been linked to the inherited CTG repeat length, non-CTG interruptions, and methylation levels flanking the repeat. In general, the genetic biomarkers are investigated separately with specific methods, making it tedious to obtain an overall characterisation of the repeat for a given individual. In the present study, we employed Oxford nanopore sequencing in a pilot study to simultaneously determine the repeat lengths, investigate the presence and nature of repeat interruptions, and quantify methylation levels in the regions flanking the CTG-repeats in four patients with DM1. We determined the repeat lengths, and in three patients, we observed interruptions which were not detected using repeat-primed PCR. Interruptions may thus be more common than previously anticipated and should be investigated in larger cohorts. Allele-specific analyses enabled characterisation of aberrant methylation levels specific to the expanded allele, which greatly increased the sensitivity and resolved cases where the methylation levels were ambiguous.
Collapse
Affiliation(s)
- Astrid Rasmussen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
| | - Mathis Hildonen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Duno
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Ulf Birkedal
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
| |
Collapse
|
22
|
Braun M, Shoshani S, Teixeira J, Mellul Shtern A, Miller M, Granot Z, Fischer SE, Garcia SMA, Tabach Y. Asymmetric inheritance of RNA toxicity in C. elegans expressing CTG repeats. iScience 2022; 25:104246. [PMID: 35494247 PMCID: PMC9051633 DOI: 10.1016/j.isci.2022.104246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Nucleotide repeat expansions are a hallmark of over 40 neurodegenerative diseases and cause RNA toxicity and multisystemic symptoms that worsen with age. Through an unclear mechanism, RNA toxicity can trigger severe disease manifestation in infants if the repeats are inherited from their mother. Here we use Caenorhabditis elegans bearing expanded CUG repeats to show that this asymmetric intergenerational inheritance of toxicity contributes to disease pathogenesis. In addition, we show that this mechanism is dependent on small RNA pathways with maternal repeat-derived small RNAs causing transcriptomic changes in the offspring, reduced motility, and shortened lifespan. We rescued the toxicity phenotypes in the offspring by perturbing the RNAi machinery in the affected hermaphrodites. This points to a novel mechanism linking maternal bias and the RNAi machinery and suggests that toxic RNA is transmitted to offspring, causing disease phenotypes through intergenerational epigenetic inheritance. Maternal origin of expanded CUG repeats induces RNA toxicity in Caenorhabditis elegans offspring Offspring of affected hermaphrodites show molecular and phenotypic disease phenotypes The RNAi machinery is directly related to the maternal inheritance of RNA toxicity Altering the RNAi machinery in affected hermaphrodites rescues toxicity in offspring
Collapse
Affiliation(s)
- Maya Braun
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shachar Shoshani
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790 Finland
| | - Anna Mellul Shtern
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Maya Miller
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sylvia E.J. Fischer
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susana M.D. A. Garcia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790 Finland
- Corresponding author
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Corresponding author
| |
Collapse
|
23
|
Barbé L, Finkbeiner S. Genetic and Epigenetic Interplay Define Disease Onset and Severity in Repeat Diseases. Front Aging Neurosci 2022; 14:750629. [PMID: 35592702 PMCID: PMC9110800 DOI: 10.3389/fnagi.2022.750629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Repeat diseases, such as fragile X syndrome, myotonic dystrophy, Friedreich ataxia, Huntington disease, spinocerebellar ataxias, and some forms of amyotrophic lateral sclerosis, are caused by repetitive DNA sequences that are expanded in affected individuals. The age at which an individual begins to experience symptoms, and the severity of disease, are partially determined by the size of the repeat. However, the epigenetic state of the area in and around the repeat also plays an important role in determining the age of disease onset and the rate of disease progression. Many repeat diseases share a common epigenetic pattern of increased methylation at CpG islands near the repeat region. CpG islands are CG-rich sequences that are tightly regulated by methylation and are often found at gene enhancer or insulator elements in the genome. Methylation of CpG islands can inhibit binding of the transcriptional regulator CTCF, resulting in a closed chromatin state and gene down regulation. The downregulation of these genes leads to some disease-specific symptoms. Additionally, a genetic and epigenetic interplay is suggested by an effect of methylation on repeat instability, a hallmark of large repeat expansions that leads to increasing disease severity in successive generations. In this review, we will discuss the common epigenetic patterns shared across repeat diseases, how the genetics and epigenetics interact, and how this could be involved in disease manifestation. We also discuss the currently available stem cell and mouse models, which frequently do not recapitulate epigenetic patterns observed in human disease, and propose alternative strategies to study the role of epigenetics in repeat diseases.
Collapse
Affiliation(s)
- Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Steve Finkbeiner,
| |
Collapse
|
24
|
de Pontual L, Tomé S. Overview of the Complex Relationship between Epigenetics Markers, CTG Repeat Instability and Symptoms in Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:ijms23073477. [PMID: 35408837 PMCID: PMC8998570 DOI: 10.3390/ijms23073477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Among the trinucleotide repeat disorders, myotonic dystrophy type 1 (DM1) is one of the most complex neuromuscular diseases caused by an unstable CTG repeat expansion in the DMPK gene. DM1 patients exhibit high variability in the dynamics of CTG repeat instability and in the manifestations and progression of the disease. The largest expanded alleles are generally associated with the earliest and most severe clinical form. However, CTG repeat length alone is not sufficient to predict disease severity and progression, suggesting the involvement of other factors. Several data support the role of epigenetic alterations in clinical and genetic variability. By highlighting epigenetic alterations in DM1, this review provides a new avenue on how these changes can serve as biomarkers to predict clinical features and the mutation behavior.
Collapse
Affiliation(s)
| | - Stéphanie Tomé
- Correspondence: ; Tel.: +33-1-42-16-57-16; Fax: +33-1-42-16-57-00
| |
Collapse
|
25
|
García-Puga M, Saenz-Antoñanzas A, Matheu A, López de Munain A. Targeting Myotonic Dystrophy Type 1 with Metformin. Int J Mol Sci 2022; 23:ijms23052901. [PMID: 35270043 PMCID: PMC8910924 DOI: 10.3390/ijms23052901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder of genetic origin. Progressive muscular weakness, atrophy and myotonia are its most prominent neuromuscular features, while additional clinical manifestations in multiple organs are also common. Overall, DM1 features resemble accelerated aging. There is currently no cure or specific treatment for myotonic dystrophy patients. However, in recent years a great effort has been made to identify potential new therapeutic strategies for DM1 patients. Metformin is a biguanide antidiabetic drug, with potential to delay aging at cellular and organismal levels. In DM1, different studies revealed that metformin rescues multiple phenotypes of the disease. This review provides an overview of recent findings describing metformin as a novel therapy to combat DM1 and their link with aging.
Collapse
Affiliation(s)
- Mikel García-Puga
- Neuromuscular Diseases Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED-CIBER), Carlos III Institute, 28031 Madrid, Spain
| | - Ander Saenz-Antoñanzas
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Carlos III Institute, 28029 Madrid, Spain
- Correspondence: (A.M.); (A.L.d.M.); Tel.: +34-943-006-073 (A.M.); +34-943-006-294 (A.L.d.M.)
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED-CIBER), Carlos III Institute, 28031 Madrid, Spain
- Neurology Department, Donostia University Hospital, OSAKIDETZA, 20014 San Sebastian, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country, 20014 San Sebastian, Spain
- Correspondence: (A.M.); (A.L.d.M.); Tel.: +34-943-006-073 (A.M.); +34-943-006-294 (A.L.d.M.)
| |
Collapse
|
26
|
Soltanzadeh P. Myotonic Dystrophies: A Genetic Overview. Genes (Basel) 2022; 13:367. [PMID: 35205411 PMCID: PMC8872148 DOI: 10.3390/genes13020367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophies (DM) are the most common muscular dystrophies in adults, which can affect other non-skeletal muscle organs such as the heart, brain and gastrointestinal system. There are two genetically distinct types of myotonic dystrophy: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2), both dominantly inherited with significant overlap in clinical manifestations. DM1 results from CTG repeat expansions in the 3'-untranslated region (3'UTR) of the DMPK (dystrophia myotonica protein kinase) gene on chromosome 19, while DM2 is caused by CCTG repeat expansions in intron 1 of the CNBP (cellular nucleic acid-binding protein) gene on chromosome 3. Recent advances in genetics and molecular biology, especially in the field of RNA biology, have allowed better understanding of the potential pathomechanisms involved in DM. In this review article, core clinical features and genetics of DM are presented followed by a discussion on the current postulated pathomechanisms and therapeutic approaches used in DM, including the ones currently in human clinical trial phase.
Collapse
Affiliation(s)
- Payam Soltanzadeh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Franck S, Couvreu De Deckersberg E, Bubenik JL, Markouli C, Barbé L, Allemeersch J, Hilven P, Duqué G, Swanson MS, Gheldof A, Spits C, Sermon KD. Myotonic dystrophy type 1 embryonic stem cells show decreased myogenic potential, increased CpG methylation at the DMPK locus and RNA mis-splicing. Biol Open 2022; 11:273965. [PMID: 35019138 PMCID: PMC8764412 DOI: 10.1242/bio.058978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach. We found myogenesis in DM1 cells to be abnormal with altered myotube generation compared to healthy cells. We did not find differentially expressed genes between DM1 and non-DM1 cell lines within the same developmental stage. However, during differentiation we observed an aberrant inflammatory response and increased CpG methylation upstream of the CTG repeat at the myoblast level and RNA mis-splicing at the myotube stage. We show that early myogenesis modelled in hESC reiterates the early developmental manifestation of DM1. Summary: Early developmental abnormalities in myotonic dystrophy type 1 are reiterated in vitro in myotubes differentiated from human embryonic stem cells that carry the mutation.
Collapse
Affiliation(s)
- Silvie Franck
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | | | - Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Christina Markouli
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, 94107 CA, United States
| | | | - Pierre Hilven
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Geoffrey Duqué
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Alexander Gheldof
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels 1090, Belgium
| | - Claudia Spits
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Karen D Sermon
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| |
Collapse
|
28
|
Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 23:ijms23010354. [PMID: 35008780 PMCID: PMC8745394 DOI: 10.3390/ijms23010354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is one of the most variable monogenic diseases at phenotypic, genetic, and epigenetic level. The disease is multi-systemic with the age at onset ranging from birth to late age. The underlying mutation is an unstable expansion of CTG repeats in the DMPK gene, varying in size from 50 to >1000 repeats. Generally, large expansions are associated with an earlier age at onset. Additionally, the most severe, congenital DM1 form is typically associated with local DNA methylation. Genetic variability of DM1 mutation is further increased by its structural variations due to presence of other repeats (e.g., CCG, CTC, CAG). These variant repeats or repeat interruptions seem to confer an additional level of epigenetic variability since local DNA methylation is frequently associated with variant CCG repeats independently of the expansion size. The effect of repeat interruptions on DM1 molecular pathogenesis is not investigated enough. Studies on patients indicate their stabilizing effect on DMPK expansions because no congenital cases were described in patients with repeat interruptions, and the age at onset is frequently later than expected. Here, we review the clinical relevance of repeat interruptions in DM1 and genetic and epigenetic characteristics of interrupted DMPK expansions based on patient studies.
Collapse
|
29
|
Visconti VV, Centofanti F, Fittipaldi S, Macrì E, Novelli G, Botta A. Epigenetics of Myotonic Dystrophies: A Minireview. Int J Mol Sci 2021; 22:ijms222212594. [PMID: 34830473 PMCID: PMC8623789 DOI: 10.3390/ijms222212594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022] Open
Abstract
Myotonic dystrophy type 1 and 2 (DM1 and DM2) are two multisystemic autosomal dominant disorders with clinical and genetic similarities. The prevailing paradigm for DMs is that they are mediated by an in trans toxic RNA mechanism, triggered by untranslated CTG and CCTG repeat expansions in the DMPK and CNBP genes for DM1 and DM2, respectively. Nevertheless, increasing evidences suggest that epigenetics can also play a role in the pathogenesis of both diseases. In this review, we discuss the available information on epigenetic mechanisms that could contribute to the DMs outcome and progression. Changes in DNA cytosine methylation, chromatin remodeling and expression of regulatory noncoding RNAs are described, with the intent of depicting an epigenetic signature of DMs. Epigenetic biomarkers have a strong potential for clinical application since they could be used as targets for therapeutic interventions avoiding changes in DNA sequences. Moreover, understanding their clinical significance may serve as a diagnostic indicator in genetic counselling in order to improve genotype–phenotype correlations in DM patients.
Collapse
Affiliation(s)
- Virginia Veronica Visconti
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
| | - Federica Centofanti
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
| | - Elisa Macrì
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
- IRCCS (Institute for Treatment and Research) Neuromed, 86077 Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
- Correspondence: ; Tel.: +39-6-7259-6078
| |
Collapse
|
30
|
Abstract
At fifteen different genomic locations, the expansion of a CAG/CTG repeat causes a neurodegenerative or neuromuscular disease, the most common being Huntington's disease and myotonic dystrophy type 1. These disorders are characterized by germline and somatic instability of the causative CAG/CTG repeat mutations. Repeat lengthening, or expansion, in the germline leads to an earlier age of onset or more severe symptoms in the next generation. In somatic cells, repeat expansion is thought to precipitate the rate of disease. The mechanisms underlying repeat instability are not well understood. Here we review the mammalian model systems that have been used to study CAG/CTG repeat instability, and the modifiers identified in these systems. Mouse models have demonstrated prominent roles for proteins in the mismatch repair pathway as critical drivers of CAG/CTG instability, which is also suggested by recent genome-wide association studies in humans. We draw attention to a network of connections between modifiers identified across several systems that might indicate pathway crosstalk in the context of repeat instability, and which could provide hypotheses for further validation or discovery. Overall, the data indicate that repeat dynamics might be modulated by altering the levels of DNA metabolic proteins, their regulation, their interaction with chromatin, or by direct perturbation of the repeat tract. Applying novel methodologies and technologies to this exciting area of research will be needed to gain deeper mechanistic insight that can be harnessed for therapies aimed at preventing repeat expansion or promoting repeat contraction.
Collapse
Affiliation(s)
- Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| |
Collapse
|
31
|
DMPK hypermethylation in sperm cells of myotonic dystrophy type 1 patients. Eur J Hum Genet 2021; 30:980-983. [PMID: 34776509 PMCID: PMC9349176 DOI: 10.1038/s41431-021-00999-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant muscular dystrophy that results from a CTG expansion (50–4000 copies) in the 3′ UTR of the DMPK gene. The disease is classified into four or five somewhat overlapping forms, which incompletely correlate with expansion size in somatic cells of patients. With rare exception, it is affected mothers who transmit the congenital (CDM1) and most severe form of the disease. Why CDM1 is hardly ever transmitted by fathers remains unknown. One model to explain the almost exclusive transmission of CDM1 by affected mothers suggests a selection against hypermethylated large expansions in the germline of male patients. By assessing DNA methylation upstream to the CTG expansion in motile sperm cells of four DM1 patients, together with availability of human embryonic stem cell (hESCs) lines with paternally inherited hypermethylated expansions, we exclude the possibility that DMPK hypermethylation leads to selection against viable sperm cells (as indicated by motility) in DM1 patients.
Collapse
|
32
|
De Serres-Bérard T, Pierre M, Chahine M, Puymirat J. Deciphering the mechanisms underlying brain alterations and cognitive impairment in congenital myotonic dystrophy. Neurobiol Dis 2021; 160:105532. [PMID: 34655747 DOI: 10.1016/j.nbd.2021.105532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic and heterogeneous disorder caused by the expansion of CTG repeats in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene. There is a congenital form (CDM1) of the disease characterized by severe hypotonia, respiratory insufficiency as well as developmental delays and intellectual disabilities. CDM1 infants manifest important brain structure abnormalities present from birth while, in contrast, older patients with adult-onset DM1 often present neurodegenerative features and milder progressive cognitive deficits. Promising therapies targeting central molecular mechanisms contributing to the symptoms of adult-onset DM1 are currently in development, but their relevance for treating cognitive impairment in CDM1, which seems to be a partially distinct neurodevelopmental disorder, remain to be elucidated. Here, we provide an update on the clinical presentation of CDM1 and review recent in vitro and in vivo models that have provided meaningful insights on its consequences in development, with a particular focus on the brain. We discuss how enhanced toxic gain-of-function of the mutated DMPK transcripts with larger CUG repeats and the resulting dysregulation of RNA-binding proteins may affect the developing cortex in utero. Because the methylation of CpG islets flanking the trinucleotide repeats has emerged as a strong biomarker of CDM1, we highlight the need to investigate the tissue-specific impacts of these chromatin modifications in the brain. Finally, we outline promising potential therapeutic treatments for CDM1 and propose future in vitro and in vivo models with great potential to shed light on this disease.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Marion Pierre
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
33
|
Morales F, Vásquez M, Corrales E, Vindas-Smith R, Santamaría-Ulloa C, Zhang B, Sirito M, Estecio MR, Krahe R, Monckton DG. Longitudinal increases in somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 are associated with variation in age-at-onset. Hum Mol Genet 2021; 29:2496-2507. [PMID: 32601694 DOI: 10.1093/hmg/ddaa123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
In myotonic dystrophy type 1 (DM1), somatic mosaicism of the (CTG)n repeat expansion is age-dependent, tissue-specific and expansion-biased. These features contribute toward variation in disease severity and confound genotype-to-phenotype analyses. To investigate how the (CTG)n repeat expansion changes over time, we collected three longitudinal blood DNA samples separated by 8-15 years and used small pool and single-molecule PCR in 43 DM1 patients. We used the lower boundary of the allele length distribution as the best estimate for the inherited progenitor allele length (ePAL), which is itself the best predictor of disease severity. Although in most patients the lower boundary of the allele length distribution was conserved over time, in many this estimate also increased with age, suggesting samples for research studies and clinical trials should be obtained as early as possible. As expected, the modal allele length increased over time, driven primarily by ePAL, age-at-sampling and the time interval. As expected, small expansions <100 repeats did not expand as rapidly as larger alleles. However, the rate of expansion of very large alleles was not obviously proportionally higher. This may, at least in part, be a result of the allele length-dependent increase in large contractions that we also observed. We also determined that individual-specific variation in the increase of modal allele length over time not accounted for by ePAL, age-at-sampling and time was inversely associated with individual-specific variation in age-at-onset not accounted for by ePAL, further highlighting somatic expansion as a therapeutic target in DM1.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Rebeca Vindas-Smith
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | | | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mario Sirito
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcos R Estecio
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
34
|
Morales F, Corrales E, Zhang B, Vásquez M, Santamaría-Ulloa C, Quesada H, Sirito M, Estecio MR, Monckton DG, Krahe R. Myotonic dystrophy type 1 (DM1) clinical sub-types and CTCF site methylation status flanking the CTG expansion are mutant allele length-dependent. Hum Mol Genet 2021; 31:262-274. [PMID: 34432028 DOI: 10.1093/hmg/ddab243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex disease with a wide spectrum of symptoms. The exact relationship between mutant CTG repeat expansion size and clinical outcome remains unclear. DM1 congenital patients (CDM) inherit the largest expanded alleles, which are associated with abnormal and increased DNA methylation flanking the CTG repeat. However, DNA methylation at the DMPK locus remains understudied. Its relationship to DM1 clinical subtypes, expansion size and age-at-onset is not yet completely understood. Using pyrosequencing-based methylation analysis on 225 blood DNA samples from Costa Rican DM1 patients, we determined that the size of the estimated progenitor allele length (ePAL) is not only a good discriminator between CDM and non-CDM cases (with an estimated threshold at 653 CTG repeats), but also for all DM1 clinical subtypes. Secondly, increased methylation at both CTCF sites upstream and downstream of the expansion was almost exclusively present in CDM cases. Thirdly, levels of abnormal methylation were associated with clinical subtype, age and ePAL, with strong correlations between these variables. Fourthly, both ePAL and the intergenerational expansion size were significantly associated with methylation status. Finally, methylation status was associated with ePAL and maternal inheritance, with almost exclusively maternal transmission of CDM. In conclusion, increased DNA methylation at the CTCF sites flanking the DM1 expansion could be linked to ePAL, and both increased methylation and the ePAL could be considered biomarkers for the CDM phenotype.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carolina Santamaría-Ulloa
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Hazel Quesada
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Sirito
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Marcos R Estecio
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| |
Collapse
|
35
|
Sánchez Marín JP, Sienes Bailo P, Lahoz Alonso R, Capablo Liesa JL, Gazulla Abio J, Giménez Muñoz JA, Modrego Pardo PJ, Pardiñas Barón B, Izquierdo Álvarez S. Myotonic dystrophy type1: 13years of experience at a tertiary hospital. Clinical and epidemiological study and genotype-phenotype correlation. Neurologia 2021; 38:S0213-4853(21)00050-5. [PMID: 33972121 DOI: 10.1016/j.nrl.2021.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The incidence of myotonic dystrophy type1 (DM1), a disease with great phenotypic variety, in our region is unknown. This study aims to estimate the incidence of DM1 at our hospital (a reference centre in Aragon, Spain) and to identify the characteristics of our population (genotype-phenotype correlation). METHODS Retrospective, descriptive study of 459 patients classified according to the number of CTG repeats, as follows: normal (5-35), premutation (36-50), protomutation (51-80), small expansions (81-150), intermediate expansions (151-1000), and large expansions (>1000). Furthermore, according to clinical phenotype, patients were categorised as unaffected (5-50 CTG repeats), mild form or asymptomatic (51-150), classical form (151-1000), and severe form (>1000). RESULTS The incidence of DM1 was 20.61 cases per million person-years (95%CI: 19.59-21.63). An inverse correlation was observed between the number of CTG repeats and the age at genetic diagnosis (ρ=-0.547; 95%CI: -0.610 to -0.375; P<.001). CTG5 was the most frequent polymorphic allele in healthy individuals. Of all patients with DM1, 28.3% presented the mild or asymptomatic form, 59.1% the classical form, and 12.6% the severe form. Inheritance was maternal in 35.1% of cases, paternal in 59.4%, and uncertain in 5.5%. In mild forms, frontal balding in men was the most prevalent phenotypic trait, as well as myotonia and cataracts, while in the classical form, ptosis, facial weakness, voice and pronunciation alterations, myotonia, and fatigue/sleepiness were most frequent. CONCLUSIONS The incidence of DM1 in Aragon is significant. Multidisciplinary study of the phenotype of patients with DM1 is key to early diagnosis and personalised management.
Collapse
Affiliation(s)
- J P Sánchez Marín
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, España
| | - P Sienes Bailo
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, España.
| | - R Lahoz Alonso
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, España
| | - J L Capablo Liesa
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, España
| | - J Gazulla Abio
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, España; Neurología, Centro Médico de Especialidades Ramón y Cajal, Zaragoza, España
| | | | - P J Modrego Pardo
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, España
| | - B Pardiñas Barón
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, España
| | - S Izquierdo Álvarez
- Sección de Genética Clínica, Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, España
| |
Collapse
|
36
|
Angeloni B, Bigi R, Bellucci G, Mechelli R, Ballerini C, Romano C, Morena E, Pellicciari G, Reniè R, Rinaldi V, Buscarinu MC, Romano S, Ristori G, Salvetti M. A Case of Double Standard: Sex Differences in Multiple Sclerosis Risk Factors. Int J Mol Sci 2021; 22:ijms22073696. [PMID: 33918133 PMCID: PMC8037645 DOI: 10.3390/ijms22073696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis is a complex, multifactorial, dysimmune disease prevalent in women. Its etiopathogenesis is extremely intricate, since each risk factor behaves as a variable that is interconnected with others. In order to understand these interactions, sex must be considered as a determining element, either in a protective or pathological sense, and not as one of many variables. In particular, sex seems to highly influence immune response at chromosomal, epigenetic, and hormonal levels. Environmental and genetic risk factors cannot be considered without sex, since sex-based immunological differences deeply affect disease onset, course, and prognosis. Understanding the mechanisms underlying sex-based differences is necessary in order to develop a more effective and personalized therapeutic approach.
Collapse
Affiliation(s)
- Benedetta Angeloni
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Rachele Bigi
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
- Correspondence: (R.B.); (G.R.)
| | - Gianmarco Bellucci
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Rosella Mechelli
- San Raffaele Roma Open University, 00166 Rome, Italy;
- Scientific Institute for Research, Hospitalization and Healthcare San Raffaele Pisana (IRCCS), 00166 Rome, Italy
| | - Chiara Ballerini
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Carmela Romano
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Emanuele Morena
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Giulia Pellicciari
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Roberta Reniè
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Virginia Rinaldi
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Maria Chiara Buscarinu
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Silvia Romano
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Giovanni Ristori
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
- Neuroimmunology Unit, Scientific Institute for Research, Hospitalization and Healthcare Fondazione Santa Lucia (IRCCS), 00179 Rome, Italy
- Correspondence: (R.B.); (G.R.)
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
- Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
37
|
Deng J, Zhou B, Yu J, Han X, Fu J, Li X, Xie X, Zhu M, Zheng Y, Guo X, Li P, Wang Q, Liu J, Zhang W, Yuan Y, Yao S, Wang Z, Hong D. Genetic origin of sporadic cases and RNA toxicity in neuronal intranuclear inclusion disease. J Med Genet 2021; 59:462-469. [PMID: 33766934 DOI: 10.1136/jmedgenet-2020-107649] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND GGC repeat expansion in NOTCH2NLC has been recently linked to neuronal intranuclear inclusion disease (NIID) via unknown disease mechanisms. Herein, we explore the genetic origin of the sporadic cases and toxic RNA gain-of-function mechanism in NIID. METHODS Multiple genetic screenings were performed on NIID individuals and their available family members. Methylation status of blood DNA, NOTCH2NLC mRNA level from muscle biopsies and RNA foci from skin biopsies of NIID individuals or asymptomatic carriers were evaluated and compared. RESULTS In two sporadic NIID families, we identified two clinically and pathologically asymptomatic fathers carrying large GGC repeat expansion, above 300 repeats, with offspring repeat numbers of 172 and 148, respectively. Further evaluation revealed that the GGC repeat numbers in the sperm from two asymptomatic fathers were only 63 and 98, respectively. The CpG island in NOTCH2NLC of the asymptomatic carriers was hypermethylated, and accordingly, the NOTCH2NLC mRNA levels were decreased in the asymptomatic fathers. GGC repeat expansion RNA formed RNA foci and sequestered RNA binding proteins into p62 positive intranuclear inclusions in NIID individuals but not in the control or asymptomatic carrier. CONCLUSION Our study suggested the GGC repeat expansion in NOTCH2NLC might have a disease-causing number ranging from ~41 to ~300 repeats. The contraction of GGC repeat expansion in sperm could be a possible mechanism for the paternal-biased origin in some sporadic or recessive inherited NIID individuals. The toxic RNA gain-of-function mechanism was identified to be involved in the pathogenicity of this disease.
Collapse
Affiliation(s)
- Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Binbin Zhou
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Xiaochen Han
- Department of Neurology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jianhui Fu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Xiaobin Li
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xufang Xie
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Zhu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yilei Zheng
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xueyu Guo
- Grandomics Biosciences, Beijing, China
| | - Pidong Li
- Grandomics Biosciences, Beijing, China
| | - Qingqing Wang
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Sheng Yao
- Department of Neurology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China .,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Daojun Hong
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China .,Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
38
|
Breton É, Légaré C, Overend G, Guay SP, Monckton D, Mathieu J, Gagnon C, Richer L, Gallais B, Bouchard L. DNA methylation at the DMPK gene locus is associated with cognitive functions in myotonic dystrophy type 1. Epigenomics 2020; 12:2051-2064. [PMID: 33301350 DOI: 10.2217/epi-2020-0328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Myotonic dystrophy type 1 (DM1) is caused by an unstable trinucleotide (CTG) expansion at the DMPK gene locus. Cognitive dysfunctions are often observed in the condition. We investigated the association between DMPK blood DNA methylation (DNAm) and cognitive functions in DM1, considering expansion length and variant repeats (VRs). Method: Data were obtained from 115 adult-onset DM1 patients. Molecular analyses consisted of pyrosequencing, small pool PCR and Southern blot hybridization. Cognitive functions were assessed by validated neuropsychological tests. Results: For patients without VRs (n = 103), blood DNAm at baseline independently contributed to predict cognitive functions 9 years later. Patients with VRs (n = 12) had different DNAm and cognitive profiles. Conclusion: DNAm allows to better understand DM1-related cognitive dysfunction etiology.
Collapse
Affiliation(s)
- Édith Breton
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada
| | - Cécilia Légaré
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada
| | - Gayle Overend
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Simon-Pierre Guay
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Darren Monckton
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jean Mathieu
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada
| | - Louis Richer
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Department of Health Sciences, Université du Québec à Chicoutimi (UQAC), Saguenay, Québec G7H 2B1, Canada
| | - Benjamin Gallais
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada.,ÉCOBES - Recherche et transfert, Cégep de Jonquière, Saguenay, Québec G7X 7W2, Canada
| | - Luigi Bouchard
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Department of Medical Biology, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec G7H 5H6, Canada
| |
Collapse
|
39
|
Franck S, Barbé L, Ardui S, De Vlaeminck Y, Allemeersch J, Dziedzicka D, Spits C, Vanroye F, Hilven P, Duqué G, Vermeesch JR, Gheldof A, Sermon K. MSH2 knock-down shows CTG repeat stability and concomitant upstream demethylation at the DMPK locus in myotonic dystrophy type 1 human embryonic stem cells. Hum Mol Genet 2020; 29:3566-3577. [PMID: 33242073 DOI: 10.1093/hmg/ddaa250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the DMPK gene, where expansion size and somatic mosaicism correlates with disease severity and age of onset. While it is known that the mismatch repair protein MSH2 contributes to the unstable nature of the repeat, its role on other disease-related features, such as CpG methylation upstream of the repeat, is unknown. In this study, we investigated the effect of an MSH2 knock-down (MSH2KD) on both CTG repeat dynamics and CpG methylation pattern in human embryonic stem cells (hESC) carrying the DM1 mutation. Repeat size in MSH2 wild-type (MSH2WT) and MSH2KD DM1 hESC was determined by PacBio sequencing and CpG methylation by bisulfite massive parallel sequencing. We found stabilization of the CTG repeat concurrent with a gradual loss of methylation upstream of the repeat in MSH2KD cells, while the repeat continued to expand and upstream methylation remained unchanged in MSH2WT control lines. Repeat instability was re-established and biased towards expansions upon MSH2 transgenic re-expression in MSH2KD lines while upstream methylation was not consistently re-established. We hypothesize that the hypermethylation at the mutant DM1 locus is promoted by the MMR machinery and sustained by a constant DNA repair response, establishing a potential mechanistic link between CTG repeat instability and upstream CpG methylation. Our work represents a first step towards understanding how epigenetic alterations and repair pathways connect and contribute to the DM1 pathology.
Collapse
Affiliation(s)
- Silvie Franck
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Lise Barbé
- Center for systems and Therapeutics, Gladstone Institutes, Finkbeiner lab, San Francisco, CA 94158, USA
| | - Simon Ardui
- Center of Human Genetics, University Hospital Leuven, KU Leuven, Laboratory for Cytogenetics and Genome Research, Leuven 3000, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | | | - Dominika Dziedzicka
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Claudia Spits
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Fien Vanroye
- Laboratory HIV/STD, Institute of Tropical Medicine Antwerp, Antwerp 2000, Belgium
| | - Pierre Hilven
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Geoffrey Duqué
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Joris R Vermeesch
- Center of Human Genetics, University Hospital Leuven, KU Leuven, Laboratory for Cytogenetics and Genome Research, Leuven 3000, Belgium
| | - Alexander Gheldof
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium.,Center of Medical Genetics, UZ Brussel, Brussels 1090, Belgium
| | - Karen Sermon
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| |
Collapse
|
40
|
Abstract
Neuromuscular disorders are a heterogeneous group of conditions affecting the neuromuscular system. The aim of this article is to review the major epigenetic findings in motor neuron diseases and major hereditary muscular dystrophies. DNA methylation changes are observed in both hereditary and sporadic forms, and combining DNA methylation analysis with mutational screening holds the potential for better diagnostic and prognostic accuracy. Novel, less toxic and more selective epigenetic drugs are designed and tested in animal and cell culture models of neuromuscular disorders, and non-coding RNAs are being investigated as either disease biomarkers or targets of therapeutic approaches to restore gene expression levels. Overall, neuromuscular disorder epigenetic biomarkers have a strong potential for clinical applications in the near future.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
41
|
Hildonen M, Knak KL, Dunø M, Vissing J, Tümer Z. Stable Longitudinal Methylation Levels at the CpG Sites Flanking the CTG Repeat of DMPK in Patients with Myotonic Dystrophy Type 1. Genes (Basel) 2020; 11:genes11080936. [PMID: 32823742 PMCID: PMC7465187 DOI: 10.3390/genes11080936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystem disorder mainly characterized by gradual muscle loss, weakness, and delayed relaxation after muscle contraction. It is caused by an expanded CTG repeat in the 3′ UTR of DMPK, which is transcribed into a toxic gain-of-function mRNA that affects the splicing of a range of other genes. The repeat is unstable, with a bias towards expansions both in somatic cells and in the germline, which results in a tendency for earlier onset with each generation, as longer repeat lengths generally correlate with earlier onset. Previous studies have found hypermethylation in the regions flanking the repeat in congenital onset DM1 and in some patients with non-congenital DM1. We used pyrosequencing to investigate blood methylation levels in 68 patients with non-congenital DM1, compare the methylation levels between the blood and muscle, and assess whether methylation levels change over time in the blood. We found higher methylation levels in the blood of DM1 patients than in healthy controls and especially in the patients who had inherited the disease allele maternally. The methylation levels remained relatively stable over time and are a strong biomarker of the disease, as well as of the maternal inheritance of the disease.
Collapse
Affiliation(s)
- Mathis Hildonen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Kirsten Lykke Knak
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (K.L.K.); (J.V.)
| | - Morten Dunø
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - John Vissing
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (K.L.K.); (J.V.)
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-2920-4855
| |
Collapse
|
42
|
Ruiz Buendía GA, Leleu M, Marzetta F, Vanzan L, Tan JY, Ythier V, Randall EL, Marques AC, Baubec T, Murr R, Xenarios I, Dion V. Three-dimensional chromatin interactions remain stable upon CAG/CTG repeat expansion. SCIENCE ADVANCES 2020; 6:eaaz4012. [PMID: 32656337 PMCID: PMC7334000 DOI: 10.1126/sciadv.aaz4012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Expanded CAG/CTG repeats underlie 13 neurological disorders, including myotonic dystrophy type 1 (DM1) and Huntington's disease (HD). Upon expansion, disease loci acquire heterochromatic characteristics, which may provoke changes to chromatin conformation and thereby affect both gene expression and repeat instability. Here, we tested this hypothesis by performing 4C sequencing at the DMPK and HTT loci from DM1 and HD-derived cells. We find that allele sizes ranging from 15 to 1700 repeats displayed similar chromatin interaction profiles. This was true for both loci and for alleles with different DNA methylation levels and CTCF binding. Moreover, the ectopic insertion of an expanded CAG repeat tract did not change the conformation of the surrounding chromatin. We conclude that CAG/CTG repeat expansions are not enough to alter chromatin conformation in cis. Therefore, it is unlikely that changes in chromatin interactions drive repeat instability or changes in gene expression in these disorders.
Collapse
Affiliation(s)
- Gustavo A. Ruiz Buendía
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Marion Leleu
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Flavia Marzetta
- Vital-IT Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ludovica Vanzan
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Jennifer Y. Tan
- Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Victor Ythier
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Emma L. Randall
- UK Dementia Research Institute at Cardiff University at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK
| | - Ana C. Marques
- Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Rabih Murr
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Ioannis Xenarios
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK
| |
Collapse
|
43
|
Poeta L, Drongitis D, Verrillo L, Miano MG. DNA Hypermethylation and Unstable Repeat Diseases: A Paradigm of Transcriptional Silencing to Decipher the Basis of Pathogenic Mechanisms. Genes (Basel) 2020; 11:E684. [PMID: 32580525 PMCID: PMC7348995 DOI: 10.3390/genes11060684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Unstable repeat disorders comprise a variable group of incurable human neurological and neuromuscular diseases caused by an increase in the copy number of tandem repeats located in various regions of their resident genes. It has become clear that dense DNA methylation in hyperexpanded non-coding repeats induces transcriptional silencing and, subsequently, insufficient protein synthesis. However, the ramifications of this paradigm reveal a far more profound role in disease pathogenesis. This review will summarize the significant progress made in a subset of non-coding repeat diseases demonstrating the role of dense landscapes of 5-methylcytosine (5mC) as a common disease modifier. However, the emerging findings suggest context-dependent models of 5mC-mediated silencing with distinct effects of excessive DNA methylation. An in-depth understanding of the molecular mechanisms underlying this peculiar group of human diseases constitutes a prerequisite that could help to discover novel pathogenic repeat loci, as well as to determine potential therapeutic targets. In this regard, we report on a brief description of advanced strategies in DNA methylation profiling for the identification of unstable Guanine-Cytosine (GC)-rich regions and on promising examples of molecular targeted therapies for Fragile X disease (FXS) and Friedrich ataxia (FRDA) that could pave the way for the application of this technique in other hypermethylated expansion disorders.
Collapse
Affiliation(s)
- Loredana Poeta
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
| | - Denise Drongitis
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
| | - Lucia Verrillo
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
| |
Collapse
|
44
|
Wansink DG, Gourdon G, van Engelen BGM, Schoser B. 248th ENMC International Workshop: Myotonic dystrophies: Molecular approaches for clinical purposes, framing a European molecular research network, Hoofddorp, the Netherlands, 11-13 October 2019. Neuromuscul Disord 2020; 30:521-531. [PMID: 32417002 DOI: 10.1016/j.nmd.2020.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Derick G Wansink
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Geneviève Gourdon
- Inserm UMR 974, Sorbonne Université, Centre de Recherche en Myologie, Association Institut de Myologie, 75013 Paris, France
| | - Baziel G M van Engelen
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, 6525 GC Nijmegen, the Netherlands
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
45
|
DNA Methylation in the Diagnosis of Monogenic Diseases. Genes (Basel) 2020; 11:genes11040355. [PMID: 32224912 PMCID: PMC7231024 DOI: 10.3390/genes11040355] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.
Collapse
|
46
|
Joosten IBT, Hellebrekers DMEI, de Greef BTA, Smeets HJM, de Die-Smulders CEM, Faber CG, Gerrits MM. Parental repeat length instability in myotonic dystrophy type 1 pre- and protomutations. Eur J Hum Genet 2020; 28:956-962. [PMID: 32203199 DOI: 10.1038/s41431-020-0601-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 01/03/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG trinucleotide repeat expansion on chromosome 19q13.3. While DM1 premutation (36-50 repeats) and protomutation (51-80 repeats) allele carriers are mostly asymptomatic, offspring is at risk of inheriting expanded, symptom-associated, (CTG)n repeats of n > 80. In this study we aimed to evaluate the intergenerational instability of DM1 pre- and protomutation alleles, focussing on the influence of parental gender. One hundred and forty-six parent-child pairs (34 parental premutations, 112 protomutations) were retrospectively selected from the DM1 patient cohort of the Maastricht University Medical Center+. CTG repeat size of parents and children was determined by (triplet-primed) PCR followed by fragment length analysis and Southern blot analysis. Fifty-eight out of eighty-one (71.6%) paternal transmissions led to a (CTG)n repeat of n > 80 in offspring, compared with 15 out of 65 (23.1%) maternal transmissions (p < 0.001). Repeat length instability occurred for paternal (CTG)n repeats of n ≥ 45, while maternal instability did not occur until (CTG)n repeats reached a length of n ≥ 71. Transmission of premutations caused (CTG)n repeats of n > 80 in offspring only when paternally transmitted (two cases), while protomutations caused (CTG)n repeats of n > 80 in offspring in 71 cases, of which 56 (78.9%) were paternally transmitted. In conclusion, our data show that paternally transmitted pre- and protomutations were more unstable than maternally transmitted pre- and protomutations. For genetic counseling, this implies that males with a small DMPK mutation have a higher risk of symptomatic offspring compared with females. Consequently, we suggest addressing sex-dependent factors in genetic counseling of small-sized CTG repeat carriers.
Collapse
Affiliation(s)
- Isis B T Joosten
- Department of Neurology, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Bianca T A de Greef
- Department of Neurology, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Hubert J M Smeets
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, The Netherlands.,School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | | | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Monique M Gerrits
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
47
|
Puy V, Mayeur A, Levy A, Hesters L, Raad J, Monnot S, Steffann J, Frydman N. CTG Expansion in the DMPK Gene: Semen Quality Assessment and Outcome of Preimplantation Genetic Diagnosis. J Clin Endocrinol Metab 2020; 105:5717685. [PMID: 31996899 DOI: 10.1210/clinem/dgaa041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 01/23/2023]
Abstract
CONTEXT Myotonic dystrophy (DM) is an autosomal dominant disorder characterized mainly by myotonia but also by primary hypogonadism. No study has reported on fertility management of patients affected by DM type 1 (DM1). OBJECTIVE This study investigates the impact of CTG repeats in the DMPK gene on semen quality and preimplantation genetic diagnosis (PGD) outcome. DESIGN This is a monocentric retrospective observational study conducted from January 2003 to January 2019. SETTING Antoine Béclère University Hospital, Clamart, France. PATIENTS Three groups were compared in this study: male DM1 patients (Group A, n = 18), unaffected partners of DM1 female patients (Group B, n = 30), and proven fertile men (Group C, n = 33). Reproductive outcomes after PGD were compared between groups A and B. RESULTS Sperm volume was reduced in group A (2.0 mL) when compared with groups B (3.0 mL; P < 0.01) and C (3.5 mL; P < 0.01). Progressive motility in raw sperm was also decreased in group A (30%) as compared to group C (40%; P < 0.01). The median number of progressive spermatozoa retrieved after sperm preparation was 2.7 million (M) in group A, which was significantly less than those of groups B (10.0 M; P < 0.01) and C (62.2 M; P < 0.01). Sperm motility was inversely correlated to the number of CTG repeats (Spearman r2 = 0.48, Pearson r2 = 0.35). Cumulative live birth rate per transfer was similar between groups, with 32.2% in group A versus 26.8% in group B. CONCLUSIONS As a precautionary measure, we advise physicians to perform regular monitoring of semen quality in affected males, which would allow sperm cryopreservation should semen parameters fall. PGD allows good reproductive outcomes without disease transmission.
Collapse
Affiliation(s)
- Vincent Puy
- Reproductive Biology Unit CECOS, Paris-Saclay University, Antoine Béclère Hospital, APHP Clamart, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA, Fontenay-aux-Roses, France
| | - Anne Mayeur
- Reproductive Biology Unit CECOS, Paris-Saclay University, Antoine Béclère Hospital, APHP Clamart, France
| | - Alexandre Levy
- Reproductive Biology Unit CECOS, Paris-Saclay University, Antoine Béclère Hospital, APHP Clamart, France
| | - Laetitia Hesters
- Reproductive Biology Unit CECOS, Paris-Saclay University, Antoine Béclère Hospital, APHP Clamart, France
| | - Jade Raad
- Department of Reproductive Medicine and Fertility Preservation, Paris-Saclay University, Antoine Béclère Hospital, APHP Clamart, France
| | - Sophie Monnot
- Institut Imagine et Service de Génétique Moléculaire, Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Julie Steffann
- Institut Imagine et Service de Génétique Moléculaire, Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Nelly Frydman
- Reproductive Biology Unit CECOS, Paris-Saclay University, Antoine Béclère Hospital, APHP Clamart, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
48
|
Tomé S, Gourdon G. DM1 Phenotype Variability and Triplet Repeat Instability: Challenges in the Development of New Therapies. Int J Mol Sci 2020; 21:ijms21020457. [PMID: 31936870 PMCID: PMC7014087 DOI: 10.3390/ijms21020457] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex neuromuscular disease caused by an unstable cytosine thymine guanine (CTG) repeat expansion in the DMPK gene. This disease is characterized by high clinical and genetic variability, leading to some difficulties in the diagnosis and prognosis of DM1. Better understanding the origin of this variability is important for developing new challenging therapies and, in particular, for progressing on the path of personalized treatments. Here, we reviewed CTG triplet repeat instability and its modifiers as an important source of phenotypic variability in patients with DM1.
Collapse
|
49
|
Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG) n Repeat. Int J Mol Sci 2019; 20:ijms20225685. [PMID: 31766224 PMCID: PMC6888582 DOI: 10.3390/ijms20225685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
The congenital form of myotonic dystrophy type 1 (cDM) is caused by the large-scale expansion of a (CTG•CAG)n repeat in DMPK and DM1-AS. The production of toxic transcripts with long trinucleotide tracts from these genes results in impairment of the myogenic differentiation capacity as cDM’s most prominent morpho-phenotypic hallmark. In the current in vitro study, we compared the early differentiation programs of isogenic cDM myoblasts with and without a (CTG)2600 repeat obtained by gene editing. We found that excision of the repeat restored the ability of cDM myoblasts to engage in myogenic fusion, preventing the ensuing myotubes from remaining immature. Although the cDM-typical epigenetic status of the DM1 locus and the expression of genes therein were not altered upon removal of the repeat, analyses at the transcriptome and proteome level revealed that early abnormalities in the temporal expression of differentiation regulators, myogenic progression markers, and alternative splicing patterns before and immediately after the onset of differentiation became normalized. Our observation that molecular and cellular features of cDM are reversible in vitro and can be corrected by repeat-directed genome editing in muscle progenitors, when already committed and poised for myogenic differentiation, is important information for the future development of gene therapy for different forms of myotonic dystrophy type 1 (DM1).
Collapse
|
50
|
Correction of Glycogen Synthase Kinase 3β in Myotonic Dystrophy 1 Reduces the Mutant RNA and Improves Postnatal Survival of DMSXL Mice. Mol Cell Biol 2019; 39:MCB.00155-19. [PMID: 31383751 DOI: 10.1128/mcb.00155-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem neuromuscular disease without cure. One of the possible therapeutic approaches for DM1 is correction of the RNA-binding proteins CUGBP1 and MBNL1, misregulated in DM1. CUGBP1 activity is controlled by glycogen synthase kinase 3β (GSK3β), which is elevated in skeletal muscle of patients with DM1, and inhibitors of GSK3 were suggested as therapeutic molecules to correct CUGBP1 activity in DM1. Here, we describe that correction of GSK3β with a small-molecule inhibitor of GSK3, tideglusib (TG), not only normalizes the GSK3β-CUGBP1 pathway but also reduces the mutant DMPK mRNA in myoblasts from patients with adult DM1 and congenital DM1 (CDM1). Correction of GSK3β in a mouse model of DM1 (HSALR mice) with TG also reduces the levels of CUG-containing RNA, normalizing a number of CUGBP1- and MBNL1-regulated mRNA targets. We also found that the GSK3β-CUGBP1 pathway is abnormal in skeletal muscle and brain of DMSXL mice, expressing more than 1,000 CUG repeats, and that the correction of this pathway with TG increases postnatal survival and improves growth and neuromotor activity of DMSXL mice. These findings show that the inhibitors of GSK3, such as TG, may correct pathology in DM1 and CDM1 via several pathways.
Collapse
|