1
|
Malik P, Sayli U B, Mathew BB, Thomas M, Yoganathan S. MRI Insights in Hypomyelinating Disorders With Early Myelination Disturbances. Neurol Genet 2024; 10:e200165. [PMID: 39139263 PMCID: PMC11319066 DOI: 10.1212/nxg.0000000000200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Prateek Malik
- From the St. Michael's Hospital (P.M.), University of Toronto, Ontario, Canada; Department of Neurological Sciences (B.S.U.); Department of Radiology (B.B.M.); and Department of Neurological Sciences (M.T., S.Y.), Christian Medical College, Vellore, India
| | - Bidkar Sayli U
- From the St. Michael's Hospital (P.M.), University of Toronto, Ontario, Canada; Department of Neurological Sciences (B.S.U.); Department of Radiology (B.B.M.); and Department of Neurological Sciences (M.T., S.Y.), Christian Medical College, Vellore, India
| | - Benjamin B Mathew
- From the St. Michael's Hospital (P.M.), University of Toronto, Ontario, Canada; Department of Neurological Sciences (B.S.U.); Department of Radiology (B.B.M.); and Department of Neurological Sciences (M.T., S.Y.), Christian Medical College, Vellore, India
| | - Maya Thomas
- From the St. Michael's Hospital (P.M.), University of Toronto, Ontario, Canada; Department of Neurological Sciences (B.S.U.); Department of Radiology (B.B.M.); and Department of Neurological Sciences (M.T., S.Y.), Christian Medical College, Vellore, India
| | - Sangeetha Yoganathan
- From the St. Michael's Hospital (P.M.), University of Toronto, Ontario, Canada; Department of Neurological Sciences (B.S.U.); Department of Radiology (B.B.M.); and Department of Neurological Sciences (M.T., S.Y.), Christian Medical College, Vellore, India
| |
Collapse
|
2
|
Rafnsdottir S, Jang K, Halldorsdottir ST, Vinod M, Tomasdottir A, Möller K, Halldorsdottir K, Reynisdottir T, Atladottir LH, Allison KE, Ostacolo K, He J, Zhang L, Northington FJ, Magnusdottir E, Chavez-Valdez R, Anderson KJ, Bjornsson HT. SMYD5 is a regulator of the mild hypothermia response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.11.540170. [PMID: 37333301 PMCID: PMC10274674 DOI: 10.1101/2023.05.11.540170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The mild hypothermia response (MHR) maintains organismal homeostasis during cold exposure and is thought to be critical for the neuroprotection documented with therapeutic hypothermia. To date, little is known about the transcriptional regulation of the MHR. We utilize a forward CRISPR-Cas9 mutagenesis screen to identify the histone lysine methyltransferase SMYD5 as a regulator of the MHR. SMYD5 represses the key MHR gene SP1 at euthermia. This repression correlates with temperature-dependent levels of H3K36me3 at the SP1-locus and globally, indicating that the mammalian MHR is regulated at the level of histone modifications. We have identified 37 additional SMYD5 regulated temperature-dependent genes, suggesting a broader MHR-related role for SMYD5. Our study provides an example of how histone modifications integrate environmental cues into the genetic circuitry of mammalian cells and provides insights that may yield therapeutic avenues for neuroprotection after catastrophic events.
Collapse
Affiliation(s)
- Salvor Rafnsdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Kijin Jang
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Sara Tholl Halldorsdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Meghna Vinod
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Arnhildur Tomasdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Katrin Möller
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Katrin Halldorsdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Tinna Reynisdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Laufey Halla Atladottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | | | - Kevin Ostacolo
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
- Department of Genetics and Molecular Medicine, Landspitali University Hospital; Reykjavik, Iceland
| | - Jin He
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University; MI, USA
| | - Li Zhang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Frances J Northington
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University; Baltimore, MD, USA
| | - Erna Magnusdottir
- Department of Biomedical Science and Department of Anatomy, Faculty of Medicine, University of Iceland; Reykjavík, Iceland
| | - Raul Chavez-Valdez
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University; Baltimore, MD, USA
| | - Kimberley Jade Anderson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital; Reykjavik, Iceland
| | - Hans Tomas Bjornsson
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University; Baltimore, MD, USA
- Department of Genetics and Molecular Medicine, Landspitali University Hospital; Reykjavik, Iceland
- Lead contact
| |
Collapse
|
3
|
Zhang Y, Tian L, Chen J, Liu X, Li K, Liu H, Lai W, Shi Y, Lin B, Xi Z. Selective bioaccumulation of polystyrene nanoplastics in fetal rat brain and damage to myelin development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116393. [PMID: 38714083 DOI: 10.1016/j.ecoenv.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Micro(nano)plastic, as a new type of environmental pollutant, have become a potential threat to the life and health of various stages of biology. However, it is not yet clear whether they will affect brain development in the fetal stage. Therefore, this study aims to explore the potential effects of nanoplastics on the development of fetal rat brains. To assess the allocation of NPs (25 nm and 50 nm) in various regions of the fetal brain, pregnant rats were exposed to concentrations (50, 10, 2.5, and 0.5 mg/kg) of PS-NPs. Our results provided evidence of the transplacental transfer of PS-NPs to the fetal brain, with a prominent presence observed in several cerebral regions, notably the cerebellum, hippocampus, striatum, and prefrontal cortex. This distribution bias might be linked to the developmental sequence of each brain region. Additionally, we explored the influence of prenatal exposure on the myelin development of the cerebellum, given its the highest PS-NP accumulation in offspring. Compared with control rats, PS-NPs exposure caused a significant reduction in myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) expression, a decrease in myelin thickness, an increase in cell apoptosis, and a decline in the oligodendrocyte population. These effects gave rise to motor deficits. In conclusion, our results identified the specific distribution of NPs in the fetal brain following prenatal exposure and revealed that prenatal exposure to PS-NPs can suppress myelin formation in the cerebellum of the fetus.
Collapse
Affiliation(s)
- Yaping Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Public Health and Management, Binzhou Medical University, Yantai 264003, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jiang Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Public Health, North China University of Science and Technology, Tangshan 063200, China
| | - Xuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
4
|
Zhang M, Zhi N, Feng J, Liu Y, Zhang M, Liu D, Yuan J, Dong Y, Jiang S, Ge J, Wu S, Zhao X. ITPR2 Mediated Calcium Homeostasis in Oligodendrocytes is Essential for Myelination and Involved in Depressive-Like Behavior in Adolescent Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306498. [PMID: 38476116 PMCID: PMC11132048 DOI: 10.1002/advs.202306498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/15/2024] [Indexed: 03/14/2024]
Abstract
Ca2+ signaling is essential for oligodendrocyte (OL) development and myelin formation. Inositol 1,4,5-trisphosphate receptor type 2 (ITPR2) is an endoplasmic reticulum calcium channel and shows stage-dependent high levels in postmitotic oligodendrocyte precursor cells (OPCs). The role and potential mechanism of ITPR2 in OLs remain unclear. In this study, it is revealed that loss of Itpr2 in OLs disturbs Ca2+ homeostasis and inhibits myelination in adolescent mice. Animals with OL-specific deletion of Itpr2 exhibit anxiety/depressive-like behaviors and manifest with interrupted OPC proliferation, leading to fewer mature OLs in the brain. Detailed transcriptome profiling and signal pathway analysis suggest that MAPK/ERK-CDK6/cyclin D1 axis underlies the interfered cell cycle progression in Itpr2 ablated OPCs. Besides, blocking MAPK/ERK pathway significantly improves the delayed OPC differentiation and myelination in Itpr2 mutant. Notably, the resting [Ca2+]i is increased in Itpr2 ablated OPCs, with the elevation of several plasma calcium channels. Antagonists against these plasma calcium channels can normalize the resting [Ca2+]i level and enhance lineage progression in Itpr2-ablated OPCs. Together, the findings reveal novel insights for calcium homeostasis in manipulating developmental transition from OPCs to pre-OLs; additionally, the involvement of OLs-originated ITPR2 in depressive behaviors provides new therapeutic strategies to alleviate myelin-associated psychiatric disorders.
Collapse
Affiliation(s)
- Ming Zhang
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Na Zhi
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
- College of Life SciencesNorthwest UniversityXi'an710127P. R. China
| | - Jiaxiang Feng
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Yingqi Liu
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Meixia Zhang
- School of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Dingxi Liu
- First Affiliated Hospital of Medical CollegeXi'an Jiaotong UniversityXi'an710061P. R. China
| | - Jie Yuan
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
- College of Life SciencesNorthwest UniversityXi'an710127P. R. China
| | - Yuhao Dong
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Sufang Jiang
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Junye Ge
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Shengxi Wu
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Xianghui Zhao
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| |
Collapse
|
5
|
Gullulu O, Ozcelik E, Tuzlakoglu Ozturk M, Karagoz MS, Tazebay UH. A multi-faceted approach to unravel coding and non-coding gene fusions and target chimeric proteins in ataxia. J Biomol Struct Dyn 2024:1-21. [PMID: 38411012 DOI: 10.1080/07391102.2024.2321510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Ataxia represents a heterogeneous group of neurodegenerative disorders characterized by a loss of balance and coordination, often resulting from mutations in genes vital for cerebellar function and maintenance. Recent advances in genomics have identified gene fusion events as critical contributors to various cancers and neurodegenerative diseases. However, their role in ataxia pathogenesis remains largely unexplored. Our study Hdelved into this possibility by analyzing RNA sequencing data from 1443 diverse samples, including cell and mouse models, patient samples, and healthy controls. We identified 7067 novel gene fusions, potentially pivotal in disease onset. These fusions, notably in-frame, could produce chimeric proteins, disrupt gene regulation, or introduce new functions. We observed conservation of specific amino acids at fusion breakpoints and identified potential aggregate formations in fusion proteins, known to contribute to ataxia. Through AI-based protein structure prediction, we identified topological changes in three high-confidence fusion proteins-TEN1-ACOX1, PEX14-NMNAT1, and ITPR1-GRID2-which could potentially alter their functions. Subsequent virtual drug screening identified several molecules and peptides with high-affinity binding to fusion sites. Molecular dynamics simulations confirmed the stability of these protein-ligand complexes at fusion breakpoints. Additionally, we explored the role of non-coding RNA fusions as miRNA sponges. One such fusion, RP11-547P4-FLJ33910, showed strong interaction with hsa-miR-504-5p, potentially acting as its sponge. This interaction correlated with the upregulation of hsa-miR-504-5p target genes, some previously linked to ataxia. In conclusion, our study unveils new aspects of gene fusions in ataxia, suggesting their significant role in pathogenesis and opening avenues for targeted therapeutic interventions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Omer Gullulu
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emrah Ozcelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Merve Tuzlakoglu Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Mustafa Safa Karagoz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uygar Halis Tazebay
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
6
|
Mura E, Parazzini C, Tonduti D. Rare forms of hypomyelination and delayed myelination. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:225-252. [PMID: 39322381 DOI: 10.1016/b978-0-323-99209-1.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelination is defined by the evidence of an unchanged pattern of deficient myelination on two MRIs performed at least 6 months apart in a child older than 1 year. When the temporal criteria are not fulfilled, and the follow-up MRI shows a progression of the myelination even if still not adequate for age, hypomyelination is excluded and the pattern is instead consistent with delayed myelination. This can be mild and nonspecific in some cases, while in other cases there is a severe delay that in the first disease stages could be difficult to differentiate from hypomyelination. In hypomyelinating leukodystrophies, hypomyelination is due to a primary impairment of myelin deposition, such as in Pelizaeus Merzabcher disease. Conversely, myelin lack is secondary, often to primary neuronal disorders, in delayed myelination and some condition with hypomyelination. Overall, the group of inherited white matter disorders with abnormal myelination has expanded significantly during the past 20 years. Many of these disorders have only recently been described, for many of them only a few patients have been reported and this contributes to make challenging the diagnostic process and the interpretation of Next Generation Sequencing results. In this chapter, we review the clinical and radiologic features of rare and lesser known forms of hypomyelination and delayed myelination not mentioned in other chapters of this handbook.
Collapse
Affiliation(s)
- Eleonora Mura
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Parazzini
- C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; Pediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
7
|
Ferreira-Peralta P, França B, Murtinheira F, Rodrigues MS, Herrera F. Is spastic ataxia 8 a protein misfolding disorder? Biochim Biophys Acta Mol Basis Dis 2024; 1870:166882. [PMID: 37696463 DOI: 10.1016/j.bbadis.2023.166882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Affiliation(s)
- Pedro Ferreira-Peralta
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Brenda França
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Fernanda Murtinheira
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal; MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mario S Rodrigues
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Federico Herrera
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| |
Collapse
|
8
|
Simeon R, Berardi A, Valente D, Volpi T, Vagni S, Galeoto G. Occupational Therapy Intervention in the Child with Leukodystrophy: Case Report. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1257. [PMID: 37508754 PMCID: PMC10377904 DOI: 10.3390/children10071257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND There are many different types of Leukodystrophies. Specifically, children with hypomyelination and congenital cataract syndrome (HCC) in addition to motor retardation development, hypotonia and progressive spastic paraplegia, associated with cerebellar ataxia and peripheral neuropathy, have early bilateral cataracts and intellectual disability as pathognomonic symptoms. HCC rehabilitation treatment is not well defined, but a significant amount of evidence in the literature has demonstrated the effectiveness of occupational therapy (OT) treatment in children with similar symptomatology. For this reason, the aim of this study was to describe the improvement in the autonomies and social participation of a child with HCC following OT treatment. METHODS A.E. was a 9-year-old child with HCC with severe intellectual disability. OT intervention lasted 3 months biweekly and each session lasted 45 min. Each session was divided into two parts: The first part aimed to increase the child's active involvement through activities; the second part involved training in Activities of Daily living (ADL). The outcome measures were: ABILHAND-Kids; Pediatric Evaluation of Disability Inventory; Comprehensive OT Evaluation Scale; ADL and Instrumental Activities of Daily Living. RESULTS A.E.'s outcome measure reported an improvement from an autonomy standpoint and in the child's general activity participation; there was also an increase in A.E.'s interpersonal skills. CONCLUSION OT treatment improved A.E.'s autonomy.
Collapse
Affiliation(s)
- Rachele Simeon
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Berardi
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCSS Neuromed, Via Atinense, 18, 86077 Pozzilli, Italy
| | - Donatella Valente
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCSS Neuromed, Via Atinense, 18, 86077 Pozzilli, Italy
| | | | - Samuele Vagni
- School of Occupational Therapy, Sapienza University of Rome, 00185 Rome, Italy
| | - Giovanni Galeoto
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCSS Neuromed, Via Atinense, 18, 86077 Pozzilli, Italy
| |
Collapse
|
9
|
Brase L, You SF, D'Oliveira Albanus R, Del-Aguila JL, Dai Y, Novotny BC, Soriano-Tarraga C, Dykstra T, Fernandez MV, Budde JP, Bergmann K, Morris JC, Bateman RJ, Perrin RJ, McDade E, Xiong C, Goate AM, Farlow M, Sutherland GT, Kipnis J, Karch CM, Benitez BA, Harari O. Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers. Nat Commun 2023; 14:2314. [PMID: 37085492 PMCID: PMC10121712 DOI: 10.1038/s41467-023-37437-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Genetic studies of Alzheimer disease (AD) have prioritized variants in genes related to the amyloid cascade, lipid metabolism, and neuroimmune modulation. However, the cell-specific effect of variants in these genes is not fully understood. Here, we perform single-nucleus RNA-sequencing (snRNA-seq) on nearly 300,000 nuclei from the parietal cortex of AD autosomal dominant (APP and PSEN1) and risk-modifying variant (APOE, TREM2 and MS4A) carriers. Within individual cell types, we capture genes commonly dysregulated across variant groups. However, specific transcriptional states are more prevalent within variant carriers. TREM2 oligodendrocytes show a dysregulated autophagy-lysosomal pathway, MS4A microglia have dysregulated complement cascade genes, and APOEε4 inhibitory neurons display signs of ferroptosis. All cell types have enriched states in autosomal dominant carriers. We leverage differential expression and single-nucleus ATAC-seq to map GWAS signals to effector cell types including the NCK2 signal to neurons in addition to the initially proposed microglia. Overall, our results provide insights into the transcriptional diversity resulting from AD genetic architecture and cellular heterogeneity. The data can be explored on the online browser ( http://web.hararilab.org/SNARE/ ).
Collapse
Affiliation(s)
- Logan Brase
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shih-Feng You
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ricardo D'Oliveira Albanus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Yaoyi Dai
- Baylor College of Medicine, Houston, TX, USA
| | - Brenna C Novotny
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Carolina Soriano-Tarraga
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Taitea Dykstra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John C Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Greg T Sutherland
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
10
|
NKX6-2 Disease in Two Unrelated Patients with Early Onset Spastic Quadriplegia and Diffuse Hypomyelinating Leukodystrophy. BRAIN DISORDERS 2023. [DOI: 10.1016/j.dscb.2023.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
11
|
Alotaibi L, Alqasmi A. Identification of a de novo Mutation in TMEM106B in a Saudi Child Causes Hypomyelination Leukodystrophy. Glob Med Genet 2023; 10:38-41. [PMID: 36950148 PMCID: PMC10027483 DOI: 10.1055/s-0043-1764370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
Hypomyelinating leukodystrophies are one of the white matter disorders caused by a lack of myelin deposition in the central nervous system (CNS). Here, we report the first case of hypomyelinating leukodystrophy in the Middle East and Saudi Arabia. This condition is caused by a mutation in the TMEM106B gene (HLD16; MIM 617964). Hypotonia, congenital nystagmus, delayed motor development, and delayed speech are the main clinical manifestations. The affected patient has mild pyramidal syndrome, a mild intellectual disability, ataxic gait, hyperreflexia, intention tremor, dysmetria, and other motor difficulties. Findings from neuroimaging reveal severe, ongoing, and diffuse hypomyelination identified via the whole exome sequencing, a harmful missense mutation in the TMEM106B gene that is heterozygous. The patient is the offspring of two unrelated persons. The protein's cytoplasmic domain contains a variation that is located in highly conserved residues. In an oligodendroglial cell line, the mutant protein significantly lowered the mRNA production of important myelin genes, decreased branching, and increased cell mortality. TMEM106B is abundantly expressed in neurons and oligodendrocytes in the CNS and is localized in the late endosome and lysosome compartments. TMEM106B levels can be controlled at the transcriptional level through chromatin modification, at the mRNA level through miRNAs, and at the protein level through lysosomal functions. Our findings reveal a novel role of zinc homeostasis in oligodendrocyte development and myelin production and show that variations in TMEM163 induce hypomyelination leukodystrophy.
Collapse
Affiliation(s)
- Lena Alotaibi
- Collage of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Riyadh, Saudi Arabia
- Address for correspondence Leena fahad Alotaibi College of Medicine, King Saud bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Amal Alqasmi
- Department of Pediatric Neurology and Epilepsy, King Saud Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Functional investigation of SLC1A2 variants associated with epilepsy. Cell Death Dis 2022; 13:1063. [PMID: 36543780 PMCID: PMC9772344 DOI: 10.1038/s41419-022-05457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Epilepsy is a common neurological disorder and glutamate excitotoxicity plays a key role in epileptic pathogenesis. Astrocytic glutamate transporter GLT-1 is responsible for preventing excitotoxicity via clearing extracellular accumulated glutamate. Previously, three variants (G82R, L85P, and P289R) in SLC1A2 (encoding GLT-1) have been clinically reported to be associated with epilepsy. However, the functional validation and underlying mechanism of these GLT-1 variants in epilepsy remain undetermined. In this study, we reported that these disease-linked mutants significantly decrease glutamate uptake, cell membrane expression of the glutamate transporter, and glutamate-elicited current. Additionally, we found that these variants may disturbed stromal-interacting molecule 1 (STIM1)/Orai1-mediated store-operated Ca2+ entry (SOCE) machinery in the endoplasmic reticulum (ER), in which GLT-1 may be a new partner of SOCE. Furthermore, knock-in mice with disease-associated variants showed a hyperactive phenotype accompanied by reduced glutamate transporter expression. Therefore, GLT-1 is a promising and reliable therapeutic target for epilepsy interventions.
Collapse
|
13
|
Pedroso JL, Vale TC, França Junior MC, Kauffman MA, Teive H, Barsottini OGP, Munhoz RP. A Diagnostic Approach to Spastic ataxia Syndromes. CEREBELLUM (LONDON, ENGLAND) 2022; 21:1073-1084. [PMID: 34782953 DOI: 10.1007/s12311-021-01345-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Spastic ataxia is characterized by the combination of cerebellar ataxia with spasticity and other pyramidal features. It is the hallmark of some hereditary ataxias, but it can also occur in some spastic paraplegias and acquired conditions. It often presents with heterogenous clinical features with other neurologic and non-neurological symptoms, resulting in complex phenotypes. In this review, the differential diagnosis of spastic ataxias are discussed and classified in accordance with inheritance. Establishing an organized classification method based on mode inheritance is fundamental for the approach to patients with these syndromes. For each differential, the clinical features, neuroimaging and genetic aspects are reviewed. A diagnostic approach for spastic ataxias is then proposed.
Collapse
Affiliation(s)
- José Luiz Pedroso
- Department of Neurology, Ataxia Unit, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Thiago Cardoso Vale
- Department of Internal Medicine, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | - Marcelo A Kauffman
- Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Helio Teive
- Department of Neurology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | |
Collapse
|
14
|
Anne A, Saxena S, Mohan KN. Genome-wide methylation analysis of post-mortem cerebellum samples supports the role of peroxisomes in autism spectrum disorder. Epigenomics 2022; 14:1015-1027. [PMID: 36154275 DOI: 10.2217/epi-2022-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We tested the hypothesis that a subset of patients with autism spectrum disorder (ASD) contains candidate genes with high DNA methylation differences (effective values) that potentially affect one of the two alleles. Materials & methods: Genome-wide DNA methylation comparisons were made on cerebellum samples from 30 patients and 45 controls. Results: 12 genes with high effective values, including GSDMD, MMACHC, SLC6A5 and NKX6-2, implicated in ASD and other neuropsychiatric disorders were identified. Monoallelic promoter methylation and downregulation were observed for SERHL (serine hydrolase-like) and CAT (catalase) genes associated with peroxisome function. Conclusion: These data are consistent with the hypothesis implicating impaired peroxisome function/biogenesis for ASD. A similar approach holds promise for identifying rare epimutations in ASD and other complex disorders.
Collapse
Affiliation(s)
- Anuhya Anne
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India.,Centre for Human Disease Research, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| | - Sonal Saxena
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| | - Kommu Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India.,Centre for Human Disease Research, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| |
Collapse
|
15
|
Serth J, Peters I, Katzendorn O, Dang TN, Moog J, Balli Z, Reese C, Hennenlotter J, Grote A, Lafos M, Tezval H, Kuczyk MA. Identification of a Novel Renal Metastasis Associated CpG-Based DNA Methylation Signature (RMAMS). Int J Mol Sci 2022; 23:ijms231911190. [PMID: 36232491 PMCID: PMC9569431 DOI: 10.3390/ijms231911190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Approximately 21% of patients with renal cell cancer (RCC) present with synchronous metastatic disease at the time of diagnosis, and metachronous metastatic disease occurs in 20–50% of cases within 5 years. Recent advances in adjuvant treatment of aggressive RCC following surgery suggest that biomarker-based prediction of risk for distant metastasis could improve patient selection. Biometrical analysis of TCGA-KIRC data identified candidate loci in the NK6 homeobox 2 gene (NKX6-2) that are hypermethylated in primary metastatic RCC. Analyses of NKX6-2 DNA methylation in three gene regions including a total of 16 CpG sites in 154 tumor-adjacent normal tissue, 189 RCC, and 194 metastatic tissue samples from 95 metastasized RCC patients revealed highly significant tumor-specific, primary metastatic-specific, and metastatic tissue-specific hypermethylation of NKX6-2. Combined CpG site methylation data for NKX6-2 and metastasis-associated genes (INA, NHLH2, and THBS4) demonstrated similarity between metastatic tissues and metastatic primary RCC tissues. The random forest method and evaluation of an unknown test cohort of tissues using receiver operator characteristic curve analysis revealed that metastatic tissues can be differentiated by a median area under the curve of 0.86 (p = 1.7 × 10−8–7.5 × 10−3) in 1000 random runs. Analysis of variable importance demonstrated an above median contribution for decision-making of at least one CpG site in each of the genes, suggesting superior informativity for sites annotated to NHLH2 and NKX6-2. Thus, DNA methylation of NKX6-2 is associated with the metastatic state of RCC tissues and contributes to a four-gene-based statistical predictor of tumoral and metastatic renal tissues.
Collapse
Affiliation(s)
- Jürgen Serth
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence:
| | - Inga Peters
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Olga Katzendorn
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Tu N. Dang
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Joana Moog
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Zarife Balli
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Christel Reese
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Jörg Hennenlotter
- Department of Urology, University of Tübingen, 72076 Tübingen, Germany
| | - Alexander Grote
- Department of Neurosurgery, University Hospital Gießen und Marburg, 35043 Marburg, Germany
| | - Marcel Lafos
- Department of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Hossein Tezval
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Markus A. Kuczyk
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
16
|
Nowacki JC, Fields AM, Fu MM. Emerging cellular themes in leukodystrophies. Front Cell Dev Biol 2022; 10:902261. [PMID: 36003149 PMCID: PMC9393611 DOI: 10.3389/fcell.2022.902261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Leukodystrophies are a broad spectrum of neurological disorders that are characterized primarily by deficiencies in myelin formation. Clinical manifestations of leukodystrophies usually appear during childhood and common symptoms include lack of motor coordination, difficulty with or loss of ambulation, issues with vision and/or hearing, cognitive decline, regression in speech skills, and even seizures. Many cases of leukodystrophy can be attributed to genetic mutations, but they have diverse inheritance patterns (e.g., autosomal recessive, autosomal dominant, or X-linked) and some arise from de novo mutations. In this review, we provide an updated overview of 35 types of leukodystrophies and focus on cellular mechanisms that may underlie these disorders. We find common themes in specialized functions in oligodendrocytes, which are specialized producers of membranes and myelin lipids. These mechanisms include myelin protein defects, lipid processing and peroxisome dysfunction, transcriptional and translational dysregulation, disruptions in cytoskeletal organization, and cell junction defects. In addition, non-cell-autonomous factors in astrocytes and microglia, such as autoimmune reactivity, and intercellular communication, may also play a role in leukodystrophy onset. We hope that highlighting these themes in cellular dysfunction in leukodystrophies may yield conceptual insights on future therapeutic approaches.
Collapse
|
17
|
Xie S, Yang J, Huang S, Fan Y, Xu T, He J, Guo J, Ji X, Wang Z, Li P, Chen J, Zhang Y. Disrupted myelination network in the cingulate cortex of Parkinson's disease. IET Syst Biol 2022; 16:98-119. [PMID: 35394697 PMCID: PMC9290774 DOI: 10.1049/syb2.12043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
The cingulate cortex is part of the conserved limbic system, which is considered as a hub of emotional and cognitive control. Accumulating evidence suggested that involvement of the cingulate cortex is significant for cognitive impairment of Parkinson's disease (PD). However, mechanistic studies of the cingulate cortex in PD pathogenesis are limited. Here, transcriptomic and regulatory network analyses were conducted for the cingulate cortex in PD. Enrichment and clustering analyses showed that genes involved in regulation of membrane potential and glutamate receptor signalling pathway were upregulated. Importantly, myelin genes and the oligodendrocyte development pathways were markedly downregulated, indicating disrupted myelination in PD cingulate cortex. Cell‐type‐specific signatures revealed that myelinating oligodendrocytes were the major cell type damaged in the PD cingulate cortex. Furthermore, downregulation of myelination pathways in the cingulate cortex were shared and validated in another independent RNAseq cohort of dementia with Lewy bodies (DLB). In combination with ATACseq data, gene regulatory networks (GRNs) were further constructed for 32 transcription factors (TFs) and 466 target genes among differentially expressed genes (DEGs) using a tree‐based machine learning algorithm. Several transcription factors, including Olig2, Sox8, Sox10, E2F1, and NKX6‐2, were highlighted as key nodes in a sub‐network, which control many overlapping downstream targets associated with myelin formation and gliogenesis. In addition, the authors have validated a subset of DEGs by qPCRs in two PD mouse models. Notably, seven of these genes,TOX3, NECAB2 NOS1, CAPN3, NR4A2, E2F1 and FOXP2, have been implicated previously in PD or neurodegeneration and are worthy of further studies as novel candidate genes. Together, our findings provide new insights into the role of remyelination as a promising new approach to treat PD after demyelination.
Collapse
Affiliation(s)
- Song Xie
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiajun Yang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shenghui Huang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuanlan Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tao Xu
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang Province, China
| | - Jiangshuang He
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahao Guo
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Zhibo Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiangfan Chen
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang Province, China
| | - Yi Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang Province, China.,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
18
|
Sener H, Gulmez Sevim D, Gultekin M, Simsir G, Basak AN. Ophthalmic Features in SPA-8 with a Homozygous Missense Variant in the Homeobox Domain of the NKX6‐2. TURKISH JOURNAL OF NEUROLOGY 2022. [DOI: 10.4274/tnd.2022.00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
19
|
Derksen A, Shih HY, Forget D, Darbelli L, Tran LT, Poitras C, Guerrero K, Tharun S, Alkuraya FS, Kurdi WI, Nguyen CTE, Laberge AM, Si Y, Gauthier MS, Bonkowsky JL, Coulombe B, Bernard G. Variants in LSM7 impair LSM complexes assembly, neurodevelopment in zebrafish and may be associated with an ultra-rare neurological disease. HGG ADVANCES 2021; 2:100034. [PMID: 35047835 PMCID: PMC8756503 DOI: 10.1016/j.xhgg.2021.100034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 11/15/2022] Open
Abstract
Leukodystrophies, genetic neurodevelopmental and/or neurodegenerative disorders of cerebral white matter, result from impaired myelin homeostasis and metabolism. Numerous genes have been implicated in these heterogeneous disorders; however, many individuals remain without a molecular diagnosis. Using whole-exome sequencing, biallelic variants in LSM7 were uncovered in two unrelated individuals, one with a leukodystrophy and the other who died in utero. LSM7 is part of the two principle LSM protein complexes in eukaryotes, namely LSM1-7 and LSM2-8. Here, we investigate the molecular and functional outcomes of these LSM7 biallelic variants in vitro and in vivo. Affinity purification-mass spectrometry of the LSM7 variants showed defects in the assembly of both LSM complexes. Lsm7 knockdown in zebrafish led to central nervous system defects, including impaired oligodendrocyte development and motor behavior. Our findings demonstrate that variants in LSM7 cause misassembly of the LSM complexes, impair neurodevelopment of the zebrafish, and may be implicated in human disease. The identification of more affected individuals is needed before the molecular mechanisms of mRNA decay and splicing regulation are added to the categories of biological dysfunctions implicated in leukodystrophies, neurodevelopmental and/or neurodegenerative diseases.
Collapse
|
20
|
Hypomyelinating leukodystrophy – NKX6–2 gene variant as a cause. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Chelban V, Breza M, Szaruga M, Vandrovcova J, Murphy D, Lee C, Alikhwan S, Bourinaris T, Vavougios G, Ilyas M, Halim SA, Al‐Harrasi A, Kartanou C, Ronald C, Blumcke I, Alexoudi A, Gatzonis S, Stefanis L, Karadima G, Wood NW, Chávez‐Gutiérrez L, Hardy J, Houlden H, Koutsis G. Spastic paraplegia preceding PSEN1-related familial Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12186. [PMID: 33969176 PMCID: PMC8088589 DOI: 10.1002/dad2.12186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION We investigated the frequency, neuropathology, and phenotypic characteristics of spastic paraplegia (SP) that precedes dementia in presenilin 1 (PSEN1) related familial Alzheimer's disease (AD). METHODS We performed whole exome sequencing (WES) in 60 probands with hereditary spastic paraplegia (HSP) phenotype that was negative for variants in known HSP-related genes. Where PSEN1 mutation was identified, brain biopsy was performed. We investigated the link between HSP and AD with PSEN1 in silico pathway analysis and measured in vivo the stability of PSEN1 mutant γ-secretase. RESULTS We identified a PSEN1 variant (p.Thr291Pro) in an individual presenting with pure SP at 30 years of age. Three years later, SP was associated with severe, fast cognitive decline and amyloid deposition with diffuse cortical plaques on brain biopsy. Biochemical analysis of p.Thr291Pro PSEN1 revealed that although the mutation does not alter active γ-secretase reconstitution, it destabilizes γ-secretase-amyloid precursor protein (APP)/amyloid beta (Aβn) interactions during proteolysis, enhancing the production of longer Aβ peptides. We then extended our analysis to all 226 PSEN1 pathogenic variants reported and show that 7.5% were associated with pure SP onset followed by cognitive decline later in the disease. We found that PSEN1 cases manifesting initially as SP have a later age of onset, are associated with mutations located beyond codon 200, and showed larger diffuse, cored plaques, amyloid-ring arteries, and severe CAA. DISCUSSION We show that pure SP can precede dementia onset in PSEN1-related familial AD. We recommend PSEN1 genetic testing in patients presenting with SP with no variants in known HSP-related genes, particularly when associated with a family history of cognitive decline.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Neurology and NeurosurgeryInstitute of Emergency MedicineToma Ciorbă 1ChisinauRepublic of Moldova
| | - Marianthi Breza
- Neurogenetics Unit1st Department of NeurologyEginition HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Maria Szaruga
- KU Leuven‐VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurosciencesLeuven Institute for Neuroscience and Disease (LIND)KU LeuvenLeuvenBelgium
- Neurobiology DivisionMRC Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeCB2 0QHUK
| | - Jana Vandrovcova
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - David Murphy
- Department of Clinical and Movement NeurosciencesQueen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Chia‐Ju Lee
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Sondos Alikhwan
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Thomas Bourinaris
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | | | - Muhammad Ilyas
- Centre for Omic ScienceIslamia College PeshawarPeshawarPakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research CenterUniversity of NizwaPakistan
| | - Ahmed Al‐Harrasi
- Natural and Medical Sciences Research CenterUniversity of NizwaPakistan
| | - Chrisoula Kartanou
- Neurogenetics Unit1st Department of NeurologyEginition HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Coras Ronald
- Institute of NeuropathologyUniversitätsklinikum ErlangenErlangenGermany
| | - Ingmar Blumcke
- Institute of NeuropathologyUniversitätsklinikum ErlangenErlangenGermany
| | - Athanasia Alexoudi
- Department of NeurosurgeryEvangelismos HospitalUniversity of AthensGreece
| | - Stylianos Gatzonis
- Department of NeurosurgeryEvangelismos HospitalUniversity of AthensGreece
| | - Leonidas Stefanis
- 1st Department of NeurologySchool of MedicineEginition HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Georgia Karadima
- Neurogenetics Unit1st Department of NeurologyEginition HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Nicholas W. Wood
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Neurogenetics LaboratoryNational Hospital for Neurology and NeurosurgeryQueen SquareLondonUK
| | - Lucía Chávez‐Gutiérrez
- KU Leuven‐VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurosciencesLeuven Institute for Neuroscience and Disease (LIND)KU LeuvenLeuvenBelgium
| | - John Hardy
- Department of Neurodegenerative DiseaseReta Lila Weston LaboratoriesQueen Square GenomicsUCL Dementia Research InstituteLondonUK
| | - Henry Houlden
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Neurogenetics LaboratoryNational Hospital for Neurology and NeurosurgeryQueen SquareLondonUK
| | - Georgios Koutsis
- Neurogenetics Unit1st Department of NeurologyEginition HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
22
|
García-Ruiz S, Gil-Martínez AL, Cisterna A, Jurado-Ruiz F, Reynolds RH, Cookson MR, Hardy J, Ryten M, Botía JA. CoExp: A Web Tool for the Exploitation of Co-expression Networks. Front Genet 2021; 12:630187. [PMID: 33719340 PMCID: PMC7943635 DOI: 10.3389/fgene.2021.630187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Gene co-expression networks are a powerful type of analysis to construct gene groupings based on transcriptomic profiling. Co-expression networks make it possible to discover modules of genes whose mRNA levels are highly correlated across samples. Subsequent annotation of modules often reveals biological functions and/or evidence of cellular specificity for cell types implicated in the tissue being studied. There are multiple ways to perform such analyses with weighted gene co-expression network analysis (WGCNA) amongst one of the most widely used R packages. While managing a few network models can be done manually, it is often more advantageous to study a wider set of models derived from multiple independently generated transcriptomic data sets (e.g., multiple networks built from many transcriptomic sources). However, there is no software tool available that allows this to be easily achieved. Furthermore, the visual nature of co-expression networks in combination with the coding skills required to explore networks, makes the construction of a web-based platform for their management highly desirable. Here, we present the CoExp Web application, a user-friendly online tool that allows the exploitation of the full collection of 109 co-expression networks provided by the CoExpNets suite of R packages. We describe the usage of CoExp, including its contents and the functionality available through the family of CoExpNets packages. All the tools presented, including the web front- and back-ends are available for the research community so any research group can build its own suite of networks and make them accessible through their own CoExp Web application. Therefore, this paper is of interest to both researchers wishing to annotate their genes of interest across different brain network models and specialists interested in the creation of GCNs looking for a tool to appropriately manage, use, publish, and share their networks in a consistent and productive manner.
Collapse
Affiliation(s)
- Sonia García-Ruiz
- Institute of Neurology, University College London, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom.,Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ana L Gil-Martínez
- Institute of Neurology, University College London, London, United Kingdom
| | - Alejandro Cisterna
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Federico Jurado-Ruiz
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Regina H Reynolds
- Institute of Neurology, University College London, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom.,Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | | | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - John Hardy
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Neurodegenerative Disease, United Kingdom Dementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, United Kingdom.,Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, United Kingdom.,UCL Movement Disorders Centre, University College London, London, United Kingdom.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mina Ryten
- Institute of Neurology, University College London, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom.,Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Juan A Botía
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
23
|
Abstract
Hypomyelinating leukodystrophies constitute a subset of genetic white matter disorders characterized by a primary lack of myelin deposition. Most patients with severe hypomyelination present in infancy or early childhood and develop severe neurological deficits, but the clinical presentation can also be mild with onset of symptoms in adolescence or adulthood. MRI can be used to visualize the process of myelination in detail, and MRI pattern recognition can provide a clinical diagnosis in many patients. Next-generation sequencing provides a definitive diagnosis in 80-90% of patients. Genes associated with hypomyelination include those that encode structural myelin proteins but also many that encode proteins involved in RNA translation and some lysosomal proteins. The precise pathomechanisms remain to be elucidated. Improved understanding of the process of myelination, the metabolic axonal support functions of myelin and the proposed contribution of myelin to CNS plasticity provide possible explanations as to why almost all patients with hypomyelination experience slow clinical decline after a long phase of stability. In this Review, we provide an overview of the hypomyelinating leukodystrophies, the advances in our understanding of myelin biology and of the genes involved in these disorders, and the insights these advances have provided into their clinical presentations and evolution.
Collapse
|
24
|
Analyzing Gene Expression Profiles from Ataxia and Spasticity Phenotypes to Reveal Spastic Ataxia Related Pathways. Int J Mol Sci 2020; 21:ijms21186722. [PMID: 32937819 PMCID: PMC7555177 DOI: 10.3390/ijms21186722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Spastic ataxia (SA) is a group of rare neurodegenerative diseases, characterized by mixed features of generalized ataxia and spasticity. The pathogenetic mechanisms that drive the development of the majority of these diseases remain unclear, although a number of studies have highlighted the involvement of mitochondrial and lipid metabolism, as well as calcium signaling. Our group has previously published the GBA2 c.1780G > C (p.Asp594His) missense variant as the cause of spastic ataxia in a Cypriot consanguineous family, and more recently the biochemical characterization of this variant in patients’ lymphoblastoid cell lines. GBA2 is a crucial enzyme of sphingolipid metabolism. However, it is unknown if GBA2 has additional functions and therefore additional pathways may be involved in the disease development. The current study introduces bioinformatics approaches to better understand the pathogenetic mechanisms of the disease. We analyzed publicly available human gene expression datasets of diseases presented with ‘ataxia’ or ‘spasticity’ in their clinical phenotype and we performed pathway analysis in order to: (a) search for candidate perturbed pathways of SA; and (b) evaluate the role of sphingolipid signaling pathway and sphingolipid metabolism in the disease development, through the identification of differentially expressed genes in patients compared to controls. Our results demonstrate consistent differential expression of genes that participate in the sphingolipid pathways and highlight alterations in the pathway level that might be associated with the disease phenotype. Through enrichment analysis, we discuss additional pathways that are connected to sphingolipid pathways, such as PI3K-Akt signaling, MAPK signaling, calcium signaling, and lipid and carbohydrate metabolism as the most enriched for ataxia and spasticity phenotypes.
Collapse
|
25
|
Bu-Shen-Yi-Sui Capsule, an Herbal Medicine Formula, Promotes Remyelination by Modulating the Molecular Signals via Exosomes in Mice with Experimental Autoimmune Encephalomyelitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7895293. [PMID: 32774683 PMCID: PMC7396036 DOI: 10.1155/2020/7895293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a common inflammatory demyelinating disorder of the central nervous system. Bu-shen-yi-sui capsule (BSYSC) could significantly reduce the relapse rate, prevent the progression of MS, and enhance remyelination following neurological injury in experimental autoimmune encephalomyelitis (EAE), an established model of MS; however, the mechanism underlying the effect of BSYSC on remyelination has not been well elucidated. This study showed that exosomes carrying biological information are involved in the pathological process of MS and that modified exosomes can promote remyelination by modulating related proteins and microRNAs (miRs). Here, the mechanism by which BSYSC promoted remyelination via exosome-mediated molecular signals was investigated in EAE mice and oligodendrocyte progenitor cells (OPCs) in vitro. The results showed that BSYSC treatment significantly improved the body weight and clinical scores of EAE mice, alleviated inflammatory infiltration and nerve fiber injury, protected the ultrastructural integrity of the myelin sheath, and significantly increased the expression of myelin basic protein (MBP) in EAE mice. In an in vitro OPC study, BSYSC-containing serum, especially 20% BSYSC, promoted the proliferation and migration of OPCs and induced OPCs to differentiate into mature oligodendrocytes that expressed MBP. Furthermore, BSYSC treatment regulated the expression of neuropilin- (NRP-) 1 and GTX, downregulated the expression of miR-16, let-7, miR-15, miR-98, miR-486, and miR-182, and upregulated the level of miR-146 in serum exosomes of EAE mice. In conclusion, these results suggested that BSYSC has a neuroprotective effect and facilitates remyelination and that the mechanism underlying the effect of BSYSC on remyelination probably involves regulation of the NRP-1 and GTX proteins and miRs in serum exosomes, which drive promyelination.
Collapse
|
26
|
Almatrafi A, Umair M, Eldardear A, Al-Luqmani M, Hashmi JA, Albalawi AM, Alfadhel M, Ramzan K, Basit S. A homozygous missense variant in the homeobox domain of the NKX6-2 results in progressive spastic ataxia type 8 associated with lower limb weakness and neurological manifestations. J Gene Med 2020; 22:e3196. [PMID: 32246862 DOI: 10.1002/jgm.3196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Progressive spastic ataxia is a heterogeneous disorder characterized by cerebellar ataxia and limb spasticity associated with other severe neurological complications. Spastic ataxia is classified into pure and complex types, inherited in both an autosomal recessive and autosomal dominant manner. It is caused by pathogenic variants in at least eight different genes, including NKX6-2 (MIM 607063) located on chromosome 10q26.3. The present study aimed to identify the genetic variant(s) underlying progressive spastic ataxia and to establish the genotype-phenotype correlation. METHODS We collected a large consanguineous family having four affected individuals segregating progressive spastic ataxia in an autosomal recessive manner. To investigate the molecular cause of the disease, genomic DNA of three affected individuals underwent whole exome sequencing. RESULTS All of the affected individuals showed progressive clinical features such as spastic ataxia, lower limb weakness and other mild neurological abnormalities. Whole exome sequencing data were analyzed using different filters. Filtering of rare and shared homozygous variants revealed a novel homozygous missense variant (c.545C>T; p.Ala182Val) in a highly conserved homeobox domain of the NKX6-2 protein. CONCLUSIONS The findings of the present study add a novel variant to the NKX6-2 mutation spectrum and provide evidence that homozygous variants in the NKX6-2 cause progressive spastic ataxia associated with other abnormalities.
Collapse
Affiliation(s)
- Ahmad Almatrafi
- Department of Biology, College of Science, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Amr Eldardear
- College of Medicine, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Majid Al-Luqmani
- College of Medicine, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Jamil A Hashmi
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| | - Alia M Albalawi
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia.,Department of Biology, College of Science, King Abdulaziz University Jeddah, Jeddah, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
27
|
CNP deficiency causes severe hypomyelinating leukodystrophy in humans. Hum Genet 2020; 139:615-622. [PMID: 32128616 DOI: 10.1007/s00439-020-02144-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
Myelin pathologies are an important cause of multifactorial, e.g., multiple sclerosis, and Mendelian, e.g., leukodystrophy, neurological disorders. CNP encodes a major component of myelin and its CNS expression is exclusive to myelin-forming oligodendrocytes. Deficiency of CNP in mouse causes a lethal white matter neurodegenerative phenotype. However, a corresponding human phenotype has not been described to date. Here, we describe a multiplex consanguineous family from Oman in which multiple affected members display a remarkably consistent phenotype of neuroregression with profound brain white matter loss. A novel homozygous missense variant in CNP was identified by combined autozygome/exome analysis. Immunoblot analysis suggests that this is a null allele in patient fibroblasts, which display abnormal F-actin organization. Our results suggest the establishment of a novel CNP-related hypomyelinating leukodystrophy in humans.
Collapse
|
28
|
Expanding the clinical and neuroimaging features of NKX6-2-related hereditary spastic ataxia type 8. Eur J Med Genet 2020; 63:103868. [PMID: 32004679 DOI: 10.1016/j.ejmg.2020.103868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 12/30/2022]
Abstract
Pathogenic variants in NKX6-2 gene causing autosomal recessive spastic ataxia type 8 with hypomyelinating leukodystrophy have been reported in few families around the world. In this study, we performed Whole Exome Sequencing and identified a novel missense variant, c.501C > G; p.(Phe167Leu), in two affected siblings with main manifestations of global developmental delay, motor regression, hypotonia, clonus in lower limbs and muscle bulk atrophy especially in the upper limbs, spasticity and contracture, scoliosis, hip dislocation, oculomotor apraxia, horizontal and vertical nystagmus. In addition, wrist and foot drop due to peripheral axonal neuropathy were observed in these patients as a new clinical finding and cerebellar white matter involvement in brain Magnetic Resonance Imaging (MRI) as new imaging finding. Therefore, we expanded the manifestations of NKX6-2-related disorders in this manuscript.
Collapse
|
29
|
Toch M, Harris A, Schakman O, Kondratskaya E, Boulland JL, Dauguet N, Debrulle S, Baudouin C, Hidalgo-Figueroa M, Mu X, Gow A, Glover JC, Tissir F, Clotman F. Onecut-dependent Nkx6.2 transcription factor expression is required for proper formation and activity of spinal locomotor circuits. Sci Rep 2020; 10:996. [PMID: 31969659 PMCID: PMC6976625 DOI: 10.1038/s41598-020-57945-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/09/2020] [Indexed: 11/26/2022] Open
Abstract
In the developing spinal cord, Onecut transcription factors control the diversification of motor neurons into distinct neuronal subsets by ensuring the maintenance of Isl1 expression during differentiation. However, other genes downstream of the Onecut proteins and involved in motor neuron diversification have remained unidentified. In the present study, we generated conditional mutant embryos carrying specific inactivation of Onecut genes in the developing motor neurons, performed RNA-sequencing to identify factors downstream of Onecut proteins in this neuron population, and employed additional transgenic mouse models to assess the role of one specific Onecut-downstream target, the transcription factor Nkx6.2. Nkx6.2 expression was up-regulated in Onecut-deficient motor neurons, but strongly downregulated in Onecut-deficient V2a interneurons, indicating an opposite regulation of Nkx6.2 by Onecut factors in distinct spinal neuron populations. Nkx6.2-null embryos, neonates and adult mice exhibited alterations of locomotor pattern and spinal locomotor network activity, likely resulting from defective survival of a subset of limb-innervating motor neurons and abnormal migration of V2a interneurons. Taken together, our results indicate that Nkx6.2 regulates the development of spinal neuronal populations and the formation of the spinal locomotor circuits downstream of the Onecut transcription factors.
Collapse
Affiliation(s)
- Mathilde Toch
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Audrey Harris
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Olivier Schakman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, Brussels, Belgium
| | - Elena Kondratskaya
- Laboratory for Neural Development and Optical Recording (NDEVOR), Section for Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jean-Luc Boulland
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Nicolas Dauguet
- Université catholique de Louvain, de Duve Institute, Flow cytometry and cell sorting facility (CYTF), Brussels, Belgium
| | - Stéphanie Debrulle
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Charlotte Baudouin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Maria Hidalgo-Figueroa
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium.,CIBER de Salud Mental (CIBERSAM), Madrid, Spain.,University of Cadiz, Cadiz, Spain
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Alexander Gow
- Wayne state University, Center for Molecular Medicine and Genetics, Carman and Ann Adams Department of Pediatrics, Department of Neurology, Detroit, Michigan, USA
| | - Joel C Glover
- Laboratory for Neural Development and Optical Recording (NDEVOR), Section for Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Developmental Neurobiology, Brussels, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium.
| |
Collapse
|
30
|
Sarret C. Leukodystrophies and genetic leukoencephalopathies in children. Rev Neurol (Paris) 2020; 176:10-19. [DOI: 10.1016/j.neurol.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
|
31
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
32
|
Chelban V, Alsagob M, Kloth K, Chirita-Emandi A, Vandrovcova J, Maroofian R, Davagnanam I, Bakhtiari S, AlSayed MD, Rahbeeni Z, AlZaidan H, Malintan NT, Johannsen J, Efthymiou S, Ghayoor Karimiani E, Mankad K, Al-Shahrani SA, Beiraghi Toosi M, AlShammari M, Groppa S, Haridy NA, AlQuait L, Qari A, Huma R, Salih MA, Almass R, Almutairi FB, Hamad MH, Alorainy IA, Ramzan K, Imtiaz F, Puiu M, Kruer MC, Bierhals T, Wood NW, Colak D, Houlden H, Kaya N. Genetic and phenotypic characterization of NKX6-2-related spastic ataxia and hypomyelination. Eur J Neurol 2019; 27:334-342. [PMID: 31509304 PMCID: PMC6946857 DOI: 10.1111/ene.14082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022]
Abstract
Background and purpose Hypomyelinating leukodystrophies are a heterogeneous group of genetic disorders with a wide spectrum of phenotypes and a high rate of genetically unsolved cases. Bi‐allelic mutations in NKX6‐2 were recently linked to spastic ataxia 8 with hypomyelinating leukodystrophy. Methods Using a combination of homozygosity mapping, exome sequencing, and detailed clinical and neuroimaging assessment a series of new NKX6‐2 mutations in a multicentre setting is described. Then, all reported NKX6‐2 mutations and those identified in this study were combined and an in‐depth analysis of NKX6‐2‐related disease spectrum was provided. Results Eleven new cases from eight families of different ethnic backgrounds carrying compound heterozygous and homozygous pathogenic variants in NKX6‐2 were identified, evidencing a high NKX6‐2 mutation burden in the hypomyelinating leukodystrophy disease spectrum. Our data reveal a phenotype spectrum with neonatal onset, global psychomotor delay and worse prognosis at the severe end and a childhood onset with mainly motor phenotype at the milder end. The phenotypic and neuroimaging expression in NKX6‐2 is described and it is shown that phenotypes with epilepsy in the absence of overt hypomyelination and diffuse hypomyelination without seizures can occur. Conclusions NKX6‐2 mutations should be considered in patients with autosomal recessive, very early onset of nystagmus, cerebellar ataxia with hypotonia that rapidly progresses to spasticity, particularly when associated with neuroimaging signs of hypomyelination. Therefore, it is recommended that NXK6‐2 should be included in hypomyelinating leukodystrophy and spastic ataxia diagnostic panels.
Collapse
Affiliation(s)
- V Chelban
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK.,Department of Neurology and Neurosurgery, Institute of Emergency Medicine, Chisinau, Moldova
| | - M Alsagob
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - K Kloth
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - A Chirita-Emandi
- Genetics Department, University 'Victor Babes', Timisoara, Romania
| | - J Vandrovcova
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - R Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - I Davagnanam
- Brain Repair and Rehabilitation, University College London Institute of Neurology, London, UK
| | - S Bakhtiari
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, Cellular and Molecular Medicine, Department of Neurology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - M D AlSayed
- Medical Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - Z Rahbeeni
- Medical Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - H AlZaidan
- Medical Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - N T Malintan
- Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - J Johannsen
- Department of Paediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - S Efthymiou
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - E Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - K Mankad
- Great Ormond Street Hospitals, London, UK
| | | | - M Beiraghi Toosi
- Department of Paediatric Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M AlShammari
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - S Groppa
- Department of Neurology and Neurosurgery, Institute of Emergency Medicine, Chisinau, Moldova
| | - N A Haridy
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK.,Department of Neurology and Psychiatry, Assiut University Hospital, Assiut, Egypt
| | - L AlQuait
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - A Qari
- Medical Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - R Huma
- Medical Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - M A Salih
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University KFSHRC, Riyadh, Saudi Arabia
| | - R Almass
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - F B Almutairi
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - M H Hamad
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University KFSHRC, Riyadh, Saudi Arabia
| | - I A Alorainy
- Department of Radiology & Medical Imaging, College of Medicine, King Saud University KFSHRC, Riyadh, Saudi Arabia
| | - K Ramzan
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - F Imtiaz
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - M Puiu
- Genetics Department, University 'Victor Babes', Timisoara, Romania
| | - M C Kruer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, Cellular and Molecular Medicine, Department of Neurology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - T Bierhals
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - N W Wood
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - D Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, KFSHRC, Riyadh, Saudi Arabia
| | - H Houlden
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - N Kaya
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Chen N, Schill RL, O'Donnell M, Xu K, Bagchi DP, MacDougald OA, Koenig RJ, Xu B. The transcription factor NKX1-2 promotes adipogenesis and may contribute to a balance between adipocyte and osteoblast differentiation. J Biol Chem 2019; 294:18408-18420. [PMID: 31615896 DOI: 10.1074/jbc.ra119.007967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 10/04/2019] [Indexed: 11/06/2022] Open
Abstract
Although adipogenesis is mainly controlled by a small number of master transcription factors, including CCAAT/enhancer-binding protein family members and peroxisome proliferator-activated receptor γ (PPARγ), other transcription factors also are involved in this process. Thyroid cancer cells expressing a paired box 8 (PAX8)-PPARγ fusion oncogene trans-differentiate into adipocyte-like cells in the presence of the PPARγ ligand pioglitazone, but this trans-differentiation is inhibited by the transcription factor NK2 homeobox 1 (NKX2-1). Here, we tested whether NKX family members may play a role also in normal adipogenesis. Using quantitative RT-PCR (RT-qPCR), we examined the expression of all 14 NKX family members during 3T3-L1 adipocyte differentiation. We found that most NKX members, including NKX2-1, are expressed at very low levels throughout differentiation. However, mRNA and protein expression of a related family member, NKX1-2, was induced during adipocyte differentiation. NKX1-2 also was up-regulated in cultured murine ear mesenchymal stem cells (EMSCs) during adipogenesis. Importantly, shRNA-mediated NKX1-2 knockdown in 3T3-L1 preadipocytes or EMSCs almost completely blocked adipocyte differentiation. Furthermore, NKX1-2 overexpression promoted differentiation of the ST2 bone marrow-derived mesenchymal precursor cell line into adipocytes. Additional findings suggested that NKX1-2 promotes adipogenesis by inhibiting expression of the antiadipogenic protein COUP transcription factor II. Bone marrow mesenchymal precursor cells can differentiate into adipocytes or osteoblasts, and we found that NKX1-2 both promotes ST2 cell adipogenesis and inhibits their osteoblastogenic differentiation. These results support a role for NKX1-2 in promoting adipogenesis and possibly in regulating the balance between adipocyte and osteoblast differentiation of bone marrow mesenchymal precursor cells.
Collapse
Affiliation(s)
- Noah Chen
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Michael O'Donnell
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Kevin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ormond A MacDougald
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ronald J Koenig
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Bin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109.
| |
Collapse
|
34
|
Tasaki S, Gaiteri C, Petyuk VA, Blizinsky KD, De Jager PL, Buchman AS, Bennett DA. Genetic risk for Alzheimer's dementia predicts motor deficits through multi-omic systems in older adults. Transl Psychiatry 2019; 9:241. [PMID: 31582723 PMCID: PMC6776503 DOI: 10.1038/s41398-019-0577-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease manifests with both cognitive and motor deficits. However, the degree to which genetic risk of Alzheimer's dementia contributes to late-life motor impairment, and the specific molecular systems underlying these associations, are uncertain. Here, we adopted an integrative multi-omic approach to assess genetic influence on motor impairment in older adults and identified key molecular pathways that may mediate this risk. We built a polygenic risk score for clinical diagnosis of Alzheimer's dementia (AD-PRS) and examined its relationship to several motor phenotypes in 1885 older individuals from two longitudinal aging cohorts. We found that AD-PRS was associated with a previously validated composite motor scores and their components. The major genetic risk factor for sporadic Alzheimer's dementia, the APOE/TOMM40 locus, was not a major driver of these associations. To identify specific molecular features that potentially medicate the genetic risk into motor dysfunction, we examined brain multi-omics, including transcriptome, DNA methylation, histone acetylation (H3K9AC), and targeted proteomics, as well as diverse neuropathologies. We found that a small number of factors account for the majority of the influence of AD-PRS on motor function, which comprises paired helical filament tau-tangle density, H3K9AC in specific chromosomal regions encoding genes involved in neuromuscular process. These multi-omic factors have the potential to elucidate key molecular mechanisms developing motor impairment in the context of Alzheimer's dementia.
Collapse
Affiliation(s)
- Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Katherine D Blizinsky
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
35
|
Baldi C, Bertoli-Avella AM, Al-Sannaa N, Alfadhel M, Al-Thihli K, Alameer S, Elmonairy AA, Al Shamsi AM, Abdelrahman HA, Al-Gazali L, Shawli A, Al-Hakami F, Yavuz H, Kandaswamy KK, Rolfs A, Brandau O, Bauer P. Expanding the clinical and genetic spectra of NKX6-2-related disorder. Clin Genet 2019; 93:1087-1092. [PMID: 29388673 DOI: 10.1111/cge.13221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 11/29/2022]
Abstract
Hypomyelinating leukodystrophies (HLDs) affect the white matter of the central nervous system and manifest as neurological disorders. They are genetically heterogeneous. Very recently, biallelic variants in NKX6-2 have been suggested to cause a novel form of autosomal recessive HLD. Using whole-exome or whole-genome sequencing, we identified the previously reported c.196delC and c.487C>G variants in NKX6-2 in 3 and 2 unrelated index cases, respectively; the novel c.608G>A variant was identified in a sixth patient. All variants were homozygous in affected family members only. Our patients share a primary diagnosis of psychomotor delay, and they show spastic quadriparesis, nystagmus and hypotonia. Seizures and dysmorphic features (observed in 2 families each) represent an addition to the phenotype, while developmental regression (observed in 3 families) appears to be a notable and previously underestimated clinical feature. Our findings extend the clinical and mutational spectra associated with this novel form of HLD. Comparative analysis of our 10 patients and the 15 reported previously did, however, not reveal clear evidence for a genotype-phenotype correlation.
Collapse
Affiliation(s)
- C Baldi
- Centogene AG, Rostock, Germany
| | | | - N Al-Sannaa
- John Hopkins Aramco Health Care, Pediatric Services, Dhahran, Saudi Arabia
| | - M Alfadhel
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - K Al-Thihli
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - S Alameer
- King Saud Bin Abdulaziz University for Health Sciences, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (NGHA), Jeddah, Saudi Arabia
| | | | - A M Al Shamsi
- Department of Paediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - H A Abdelrahman
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, Al-Ain, United Arab Emirates
| | - L Al-Gazali
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, United Arab Emirates
| | - A Shawli
- King Saud Bin Abdulaziz University for Health Sciences, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (NGHA), Jeddah, Saudi Arabia.,Molecular Medicine Section, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - F Al-Hakami
- Molecular Medicine Section, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,Molecular Medicine Section, King Abdulaziz Medical City-WR, Jeddah, Saudi Arabia
| | - H Yavuz
- Centogene AG, Rostock, Germany
| | | | - A Rolfs
- Centogene AG, Rostock, Germany.,Albrecht-Kossel-Institute for Neuroregeneration, Medical University Rostock, Rostock, Germany
| | | | - P Bauer
- Centogene AG, Rostock, Germany
| |
Collapse
|
36
|
Simons C, Dyment D, Bent SJ, Crawford J, D'Hooghe M, Kohlschütter A, Venkateswaran S, Helman G, Poll-The BT, Makowski CC, Ito Y, Kernohan K, Hartley T, Waisfisz Q, Taft RJ, van der Knaap MS, Wolf NI. A recurrent de novo mutation in TMEM106B causes hypomyelinating leukodystrophy. Brain 2019; 140:3105-3111. [PMID: 29186371 DOI: 10.1093/brain/awx314] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
Hypomyelinating leukodystrophies are a heterogeneous group of disorders with a clinical presentation that often includes early-onset nystagmus, ataxia and spasticity and a wide range of severity. Using next-generation sequencing techniques and GeneMatcher, we identified four unrelated patients with brain hypomyelination, all with the same recurrent dominant mutation, c.754G>A p.(Asp252Asn), in TMEM106B. The mutation was confirmed as de novo in three of the cases, and the mildly affected father of the fourth affected individual was confirmed as mosaic for this variant. The protein encoded by TMEM106B is poorly characterized but is reported to have a role in regulation of lysosomal trafficking. Polymorphisms in TMEM106B are thought to modify disease onset in frontotemporal dementia, but its relation to myelination is not understood. Clinical presentation in three of the four patients is remarkably benign compared to other hypomyelinating disorders, with congenital nystagmus and mild motor delay. These findings add TMEM106B to the growing list of genes causing hypomyelinating disorders and emphasize the essential role lysosomes play in myelination.
Collapse
Affiliation(s)
- Cas Simons
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - David Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Stephen J Bent
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Marc D'Hooghe
- Department of Neurology, General Hospital Sint-Jan, Brugge, Belgium
| | - Alfried Kohlschütter
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sunita Venkateswaran
- Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Guy Helman
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Bwee-Tien Poll-The
- Department of Child Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Yoko Ito
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Kristin Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Ryan J Taft
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia.,Illumina Inc, San Diego, California, USA
| | | | - Marjo S van der Knaap
- Department of Child Neurology, VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Lynch DS, Wade C, Paiva ARBD, John N, Kinsella JA, Merwick Á, Ahmed RM, Warren JD, Mummery CJ, Schott JM, Fox NC, Houlden H, Adams ME, Davagnanam I, Murphy E, Chataway J. Practical approach to the diagnosis of adult-onset leukodystrophies: an updated guide in the genomic era. J Neurol Neurosurg Psychiatry 2019; 90:543-554. [PMID: 30467211 PMCID: PMC6581077 DOI: 10.1136/jnnp-2018-319481] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/24/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Abstract
Adult-onset leukodystrophies and genetic leukoencephalopathies comprise a diverse group of neurodegenerative disorders of white matter with a wide age of onset and phenotypic spectrum. Patients with white matter abnormalities detected on MRI often present a diagnostic challenge to both general and specialist neurologists. Patients typically present with a progressive syndrome including various combinations of cognitive impairment, movement disorders, ataxia and upper motor neuron signs. There are a number of important and treatable acquired causes for this imaging and clinical presentation. There are also a very large number of genetic causes which due to their relative rarity and sometimes variable and overlapping presentations can be difficult to diagnose. In this review, we provide a structured approach to the diagnosis of inherited disorders of white matter in adults. We describe clinical and radiological clues to aid diagnosis, and we present an overview of both common and rare genetic white matter disorders. We provide advice on testing for acquired causes, on excluding small vessel disease mimics, and detailed advice on metabolic and genetic testing available to the practising neurologist. Common genetic leukoencephalopathies discussed in detail include CSF1R, AARS2, cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and mitochondrial and metabolic disorders.
Collapse
Affiliation(s)
- David S Lynch
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK .,Department of Neurology, Royal Free Hospital, London, UK
| | - Charles Wade
- Department of Neurology, Royal Free Hospital, London, UK
| | | | - Nevin John
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Justin A Kinsella
- Department of Neurology, St Vincent's University Hospital University College Dublin, Dublin, Ireland
| | - Áine Merwick
- Department of Neurology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital and the Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | | | | | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Matthew E Adams
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Indran Davagnanam
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK.,Brain Repair & Rehabilitation, UCL Institute of Neurology, London, UK
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery Queen Square, London, UK
| | - Jeremy Chataway
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| |
Collapse
|
38
|
Zhao PY, Wang YQ, Liu XH, Zhu YJ, Zhao H, Zhang QX, Qi F, Li JL, Zhang N, Fan YP, Li KN, Zhao YY, Lei JF, Wang L. Bu Shen Yi Sui capsule promotes remyelination correlating with Sema3A/NRP-1, LIF/LIFR and Nkx6.2 in mice with experimental autoimmune encephalomyelitis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:36-48. [PMID: 29428242 DOI: 10.1016/j.jep.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu Shen Yi Sui capsule (BSYSC), based on traditional Chinese formula Liu Wei Di Huang pill, is effective for the treatment of multiple sclerosis (MS) in clinical experience and trials. Our previous studies confirmed that BSYSC had the neuroprotective effect in MS and its animal model, experimental autoimmune encephalomyelitis (EAE); however, its mechanism of action was not clear. Thus, the effect of BSYSC on remyelination and the underlying mechanisms were investigated in the EAE mice. MATERIALS AND METHODS The EAE model was established by injecting subcutaneously myelin oligodendrocyte protein (MOG) 35-55 in mice. Mice were treated with BSYSC (3.02 g/kg) or vehicle daily by oral gavage for 40 days. The body weight and clinical score of mice were evaluated. Brain was observed by magnetic resonance imaging. The inflammation infiltrate of brain and spinal cord was determined by hematoxylin-eosin staining, while the structure of myelin sheath was visualized by transmission electron microscopy on days 23 and 40 post immunization (dpi), respectively. The protein and mRNA levels of platelets-derived growth factor receptor (PDGFR) α and 2', 3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) were measured by immunohistochemistry, western blot and quantitative real-time polymerase chain reaction. The protein expressions of semaphorins (Sema) 3A, Neuropilin (NRP) - 1, leukemia inhibitory factor (LIF), LIF receptor (LIFR) and Nkx6.2 were further investigated by western blot. RESULTS BSYSC treatment improved the body weight and clinical score of EAE mice, alleviated inflammatory infiltration and nerve fiber injuries. It also protected the ultrastructural integrity of myelin sheath. BSYSC significantly increased expressions of PDGFRα and CNPase in mice with EAE on 40 dpi. Furthermore, BSYSC treatment increased the expressions of LIF, LIFR and Nkx6.2 and reduced Sema3A and NRP-1 in EAE mice on 40 dpi. CONCLUSIONS The data demonstrated that BSYSC exhibited the neuroprotective effect against EAE by promoting oligodendrocyte progenitor cells (OPCs) proliferation and differentiation, thus facilitating remyelination. Sema3A/NRP-1, LIF/LIFR and Nkx6.2 are likely contributed to the effects of BSYSC on OPCs.
Collapse
MESH Headings
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism
- Administration, Oral
- Animals
- Brain/drug effects
- Brain/metabolism
- Brain/ultrastructure
- Capsules
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/pharmacology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Homeodomain Proteins/metabolism
- Leukemia Inhibitory Factor/metabolism
- Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism
- Mice, Inbred C57BL
- Myelin Sheath/drug effects
- Myelin Sheath/metabolism
- Myelin Sheath/ultrastructure
- Myelin-Oligodendrocyte Glycoprotein
- Neuropilin-1/metabolism
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/pharmacology
- Oligodendrocyte Precursor Cells/drug effects
- Oligodendrocyte Precursor Cells/metabolism
- Oligodendrocyte Precursor Cells/pathology
- Peptide Fragments
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Semaphorin-3A/metabolism
- Signal Transduction/drug effects
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord/ultrastructure
- Time Factors
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Pei-Yuan Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Yong-Qiang Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Xi-Hong Liu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Ying-Jun Zhu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Qiu-Xia Zhang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Fang Qi
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Jun-Ling Li
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Nan Zhang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Yong-Ping Fan
- Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Kang-Ning Li
- Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Yuan-Yuan Zhao
- Core Facility Center, Capital Medical University, Beijing 100069, China
| | - Jian-Feng Lei
- Core Facility Center, Capital Medical University, Beijing 100069, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China.
| |
Collapse
|
39
|
Anazi S, Maddirevula S, Salpietro V, Asi YT, Alsahli S, Alhashem A, Shamseldin HE, AlZahrani F, Patel N, Ibrahim N, Abdulwahab FM, Hashem M, Alhashmi N, Al Murshedi F, Al Kindy A, Alshaer A, Rumayyan A, Al Tala S, Kurdi W, Alsaman A, Alasmari A, Banu S, Sultan T, Saleh MM, Alkuraya H, Salih MA, Aldhalaan H, Ben-Omran T, Al Musafri F, Ali R, Suleiman J, Tabarki B, El-Hattab AW, Bupp C, Alfadhel M, Al Tassan N, Monies D, Arold ST, Abouelhoda M, Lashley T, Houlden H, Faqeih E, Alkuraya FS. Expanding the genetic heterogeneity of intellectual disability. Hum Genet 2017; 136:1419-1429. [PMID: 28940097 DOI: 10.1007/s00439-017-1843-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/15/2017] [Indexed: 11/30/2022]
Abstract
Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.
Collapse
Affiliation(s)
- Shams Anazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Yasmine T Asi
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Saud Alsahli
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatema AlZahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nadia Alhashmi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Fathiya Al Murshedi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Adila Al Kindy
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Ahmad Alshaer
- Pediatric Neurology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ahmed Rumayyan
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Neurology Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatrics and Genetic Unit, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Wesam Kurdi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | - Abdulaziz Alsaman
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Alasmari
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Selina Banu
- Department of Pediatric Neurology, ICH and SSF Hospital Mirpur, Dhaka, 1216, Bangladesh
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health and The Children's Hospital Lahore, 381-D/2, Lahore, Pakistan
| | - Mohammed M Saleh
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hisham Alkuraya
- Department of Ophthalmology, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Pediatric Neurology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Al Musafri
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Rehab Ali
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Jehan Suleiman
- Division of Neurology, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Caleb Bupp
- Spectrum Health Genetics, Grand Rapids, MI, USA
| | - Majid Alfadhel
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Stefan T Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia. .,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. .,Spectrum Health Genetics, Grand Rapids, MI, USA. .,Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|