1
|
Huang Y, Li W, Foo T, Ji JH, Wu B, Tomimatsu N, Fang Q, Gao B, Long M, Xu J, Maqbool R, Mukherjee B, Ni T, Alejo S, He Y, Burma S, Lan L, Xia B, Zhao W. DSS1 restrains BRCA2's engagement with dsDNA for homologous recombination, replication fork protection, and R-loop homeostasis. Nat Commun 2024; 15:7081. [PMID: 39152168 PMCID: PMC11329725 DOI: 10.1038/s41467-024-51557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
DSS1, essential for BRCA2-RAD51 dependent homologous recombination (HR), associates with the helical domain (HD) and OB fold 1 (OB1) of the BRCA2 DSS1/DNA-binding domain (DBD) which is frequently targeted by cancer-associated pathogenic variants. Herein, we reveal robust ss/dsDNA binding abilities in HD-OB1 subdomains and find that DSS1 shuts down HD-OB1's DNA binding to enable ssDNA targeting of the BRCA2-RAD51 complex. We show that C-terminal helix mutations of DSS1, including the cancer-associated R57Q mutation, disrupt this DSS1 regulation and permit dsDNA binding of HD-OB1/BRCA2-DBD. Importantly, these DSS1 mutations impair BRCA2/RAD51 ssDNA loading and focus formation and cause decreased HR efficiency, destabilization of stalled forks and R-loop accumulation, and hypersensitize cells to DNA-damaging agents. We propose that DSS1 restrains the intrinsic dsDNA binding of BRCA2-DBD to ensure BRCA2/RAD51 targeting to ssDNA, thereby promoting optimal execution of HR, and potentially replication fork protection and R-loop suppression.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Tzeh Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Bo Wu
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Qingming Fang
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Boya Gao
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Melissa Long
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Jingfei Xu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Rouf Maqbool
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Bipasha Mukherjee
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Tengyang Ni
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Salvador Alejo
- Department of Obstetrics & Gynecology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Li Lan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA.
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Stella S, Vitale SR, Massimino M, Martorana F, Tornabene I, Tomarchio C, Drago M, Pavone G, Gorgone C, Barone C, Bianca S, Manzella L. In Silico Prediction of BRCA1 and BRCA2 Variants with Conflicting Clinical Interpretation in a Cohort of Breast Cancer Patients. Genes (Basel) 2024; 15:943. [PMID: 39062721 PMCID: PMC11276437 DOI: 10.3390/genes15070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Germline BRCA1/2 alteration has been linked to an increased risk of hereditary breast and ovarian cancer syndromes. As a result, genetic testing, based on NGS, allows us to identify a high number of variants of uncertain significance (VUS) or conflicting interpretation of pathogenicity (CIP) variants. The identification of CIP/VUS is often considered inconclusive and clinically not actionable for the patients' and unaffected carriers' management. In this context, their assessment and classification remain a significant challenge. The aim of the study was to investigate whether the in silico prediction tools (PolyPhen-2, SIFT, Mutation Taster and PROVEAN) could predict the potential clinical impact and significance of BRCA1/2 CIP/VUS alterations, eventually impacting the clinical management of Breast Cancer subjects. In a cohort of 860 BC patients, 10.6% harbored BRCA1 or BRCA2 CIP/VUS alterations, mostly observed in BRCA2 sequences (85%). Among them, forty-two out of fifty-five alterations were predicted as damaging, with at least one in silico that used tools. Prediction agreement of the four tools was achieved in 45.5% of patients. Moreover, the highest consensus was obtained in twelve out of forty-two (28.6%) mutations by considering three out of four in silico algorithms. The use of prediction tools may help to identify variants with a potentially damaging effect. The lack of substantial agreement between the different algorithms suggests that the bioinformatic approaches should be combined with the personal and family history of the cancer patients.
Collapse
Affiliation(s)
- Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (F.M.); (I.T.); (C.T.); (M.D.); (G.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (S.R.V.); (M.M.)
| | - Silvia Rita Vitale
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (S.R.V.); (M.M.)
| | - Michele Massimino
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (S.R.V.); (M.M.)
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (F.M.); (I.T.); (C.T.); (M.D.); (G.P.); (L.M.)
| | - Irene Tornabene
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (F.M.); (I.T.); (C.T.); (M.D.); (G.P.); (L.M.)
- Division of Pathology, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy
| | - Cristina Tomarchio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (F.M.); (I.T.); (C.T.); (M.D.); (G.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (S.R.V.); (M.M.)
| | - Melissa Drago
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (F.M.); (I.T.); (C.T.); (M.D.); (G.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (S.R.V.); (M.M.)
| | - Giuliana Pavone
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (F.M.); (I.T.); (C.T.); (M.D.); (G.P.); (L.M.)
- Medical Oncology Unit, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy
| | | | | | | | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (F.M.); (I.T.); (C.T.); (M.D.); (G.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (S.R.V.); (M.M.)
| |
Collapse
|
3
|
Grigore LG, Radoi VE, Serban A, Mihai AD, Stoica I. The Molecular Detection of Germline Mutations in the BRCA1 and BRCA2 Genes Associated with Breast and Ovarian Cancer in a Romanian Cohort of 616 Patients. Curr Issues Mol Biol 2024; 46:4630-4645. [PMID: 38785549 PMCID: PMC11119367 DOI: 10.3390/cimb46050281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The objective of this study was to identify and classify the spectrum of mutations found in the BRCA1 and BRCA2 genes associated with breast and ovarian cancer in female patients in Romania. Germline BRCA1 and BRCA2 mutations were investigated in a cohort of 616 female patients using NGS and/or MLPA methods followed by software-based data analysis and classification according to international guidelines. Out of the 616 female patients included in this study, we found that 482 patients (78.2%) did not have any mutation present in the two genes investigated; 69 patients (11.2%) had a BRCA1 mutation, 34 (5.5%) had a BRCA2 mutation, and 31 (5%) presented different type of mutations with uncertain clinical significance, moderate risk or a large mutation in the BRCA1 gene. Our investigation indicates the most common mutations in the BRCA1 and BRCA2 genes, associated with breast and ovarian cancer in the Romanian population. Our results also bring more data in support of the frequency of the c.5266 mutation in the BRCA1 gene, acknowledged in the literature as a founder mutation in Eastern Europe. We consider that the results of our study will provide necessary data regarding BRCA1 and BRCA2 mutations that would help to create a genetic database for the Romanian population.
Collapse
Affiliation(s)
- Liliana-Georgiana Grigore
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
- Personal Genetics, 010987 Bucharest, Romania
| | - Viorica-Elena Radoi
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | | | | | - Ileana Stoica
- Department of Genetics, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| |
Collapse
|
4
|
Hu C, Huang H, Na J, Lumby C, Abozaid M, Holdren MA, Rao TJ, Karam R, Pesaran T, Weyandt JD, Csuy CM, Seelaus CA, Young CC, Fulk K, Heidari Z, Morais Lyra PC, Couch RE, Persons B, Polley EC, Gnanaolivu RD, Boddicker NJ, Monteiro ANA, Yadav S, Domchek SM, Richardson ME, Couch FJ. Functional analysis and clinical classification of 462 germline BRCA2 missense variants affecting the DNA binding domain. Am J Hum Genet 2024; 111:584-593. [PMID: 38417439 PMCID: PMC10940015 DOI: 10.1016/j.ajhg.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024] Open
Abstract
Variants of uncertain significance (VUSs) in BRCA2 are a common result of hereditary cancer genetic testing. While more than 4,000 unique VUSs, comprised of missense or intronic variants, have been identified in BRCA2, the few missense variants now classified clinically as pathogenic or likely pathogenic are predominantly located in the region encoding the C-terminal DNA binding domain (DBD). We report on functional evaluation of the influence of 462 BRCA2 missense variants affecting the DBD on DNA repair activity of BRCA2 using a homology-directed DNA double-strand break repair assay. Of these, 137 were functionally abnormal, 313 were functionally normal, and 12 demonstrated intermediate function. Comparisons with other functional studies of BRCA2 missense variants yielded strong correlations. Sequence-based in silico prediction models had high sensitivity, but limited specificity, relative to the homology-directed repair assay. Combining the functional results with clinical and genetic data in an American College of Medical Genetics (ACMG)/Association for Molecular Pathology (AMP)-like variant classification framework from a clinical testing laboratory, after excluding known splicing variants and functionally intermediate variants, classified 431 of 442 (97.5%) missense variants (129 as pathogenic/likely pathogenic and 302 as benign/likely benign). Functionally abnormal variants classified as pathogenic by ACMG/AMP rules were associated with a slightly lower risk of breast cancer (odds ratio [OR] 5.15, 95% confidence interval [CI] 3.43-7.83) than BRCA2 DBD protein truncating variants (OR 8.56, 95% CI 6.03-12.36). Overall, functional studies of BRCA2 variants using validated assays substantially improved the variant classification yield from ACMG/AMP models and are expected to improve clinical management of many individuals found to harbor germline BRCA2 missense VUS.
Collapse
Affiliation(s)
- Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Huaizhi Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jie Na
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Carolyn Lumby
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Mohamed Abozaid
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Megan A Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Tara J Rao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | | | | | | | | | | | | | - Kelly Fulk
- Ambry Genetics, Aliso Viejo, CA 92656, USA
| | | | | | - Ronan E Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Benjamin Persons
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Eric C Polley
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Rohan D Gnanaolivu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Nicholas J Boddicker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | | | - Siddhartha Yadav
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Susan M Domchek
- Division of Hematology Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA.
| |
Collapse
|
5
|
Arslan A. Algorithmic assessment reveals functional implications of GABRD gene variants linked to idiopathic generalized epilepsy. Int J Neurosci 2024:1-11. [PMID: 38289414 DOI: 10.1080/00207454.2024.2312987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE The primary objective of this study is to address the challenge posed by the increasing number of variants of unknown clinical significance (VUS) within the GABRD gene, which encodes the δ subunit of γ-Aminobutyric acid type A receptors. The focus is on predicting the most pathogenic GABRD VUS to enhance precision medicine and improve our understanding of relevant pathophysiology. METHODS The study employs a combination of in silico algorithms to analyze 82 variants of unknown clinical significance of GABRD gene sourced from the ClinVar database. Initially, separate algorithms based on sequence homology are utilized to assess this variant set. Subsequently, consensus variants predicted as pathogenic undergo further evaluation through a web server employing an algorithm based on structural homology. The resulting 11 variants are then validated using in silico tools that assess variant effects based on genetic and molecular data. The evaluation includes consideration of disease association and protein stability due to amino acid substitutions. RESULTS The study identifies specific variants (L111R, R114C, D123N, G150S, and L243P) in the coding region of the GABRD gene, which are predicted as deleterious by multiple algorithms. These variants are evolutionarily conserved, mapped onto the extracellular domain of the δ subunit, and associated with idiopathic generalized epilepsy. CONCLUSIONS The findings suggest structural or functional consequences that lead to pathogenicity, offering valuable insights for wet-lab experimentation. Besides, the findings contribute to the validation of clinically significant genetic variants in the GABRD gene, which is critical for epilepsy precision medicine.
Collapse
Affiliation(s)
- Ayla Arslan
- Molecular Biology and Genetics Department, Üsküdar University, Istanbul, Turkiye
| |
Collapse
|
6
|
Guo Q, Ji S, Takeuchi K, Urasaki W, Suzuki A, Iwasaki Y, Saito H, Xu Z, Arai M, Nakamura S, Momozawa Y, Chiba N, Miki Y, Matsuura M, Sunada S. Functional evaluation of BRCA1/2 variants of unknown significance with homologous recombination assay and integrative in silico prediction model. J Hum Genet 2023; 68:849-857. [PMID: 37731132 DOI: 10.1038/s10038-023-01194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
Numerous variants of unknown significance (VUSs) exist in hereditary breast and ovarian cancers. Although multiple methods have been developed to assess the significance of BRCA1/2 variants, functional discrepancies among these approaches remain. Therefore, a comprehensive functional evaluation system for these variants should be established. We performed conventional homologous recombination (HR) assays for 50 BRCA1 and 108 BRCA2 VUSs and complementarily predicted VUSs using a statistical logistic regression prediction model that integrated six in silico functional prediction tools. BRCA1/2 VUSs were classified according to the results of the integrative in vitro and in silico analyses. Using HR assays, we identified 10 BRCA1 and 4 BRCA2 VUSs as low-functional pathogenic variants. For in silico prediction, the statistical prediction model showed high accuracy for both BRCA1 and BRCA2 compared with each in silico prediction tool individually and predicted nine BRCA1 and seven BRCA2 variants to be pathogenic. Integrative functional evaluation in this study and the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines strongly suggested that seven BRCA1 variants (p.Glu272Gly, p.Lys1095Glu, p.Val1653Leu, p.Thr1681Pro, p.Phe1761Val, p.Thr1773Ile, and p.Gly1803Ser) and four BRCA2 variants (p.Trp31Gly, p.Ser2616Phe, p.Tyr2660Cys, and p.Leu2792Arg) were pathogenic. This study demonstrates that integrative evaluation using conventional HR assays and optimized in silico prediction comprehensively classified the significance of BRCA VUSs for future clinical applications.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shuting Ji
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kazuma Takeuchi
- Graduate School of Public Health, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Wataru Urasaki
- Department of Information Sciences, Tokyo University of Science, 2641 Yamazaki, Noda City, Chiba, 278-8510, Japan
| | - Asuka Suzuki
- Graduate School of Public Health, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yusuke Iwasaki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Hiroko Saito
- Department of Genetic Diagnosis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Zeyu Xu
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masami Arai
- Department of Clinical Genetics, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Natsuko Chiba
- Department of Cancer Biology; Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Department of Genetic Diagnosis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Masaaki Matsuura
- Graduate School of Public Health, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Shigeaki Sunada
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Juntendo Advanced Research Institute for Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Oncology, School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
7
|
Militello AM, Orsi G, Cavaliere A, Niger M, Avallone A, Salvatore L, Tortora G, Rapposelli IG, Giordano G, Noventa S, Giommoni E, Bozzarelli S, Macchini M, Peretti U, Procaccio L, Puccini A, Cascinu S, Montagna C, Milella M, Reni M. Clinical outcomes and response to chemotherapy in a cohort of pancreatic cancer patients with germline variants of unknown significance (VUS) in BRCA1 and BRCA2 genes. Cancer Chemother Pharmacol 2023; 92:501-510. [PMID: 37725113 DOI: 10.1007/s00280-023-04585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE The clinical outcome and the efficacy of chemotherapy in pancreatic cancer patients with BRCA1/2 Variants of Unknown Significance (VUS) is unknown. We explored the effects of chemotherapy with or without Platinum in non metastatic and metastatic pancreatic cancer patients with BRCA1/2 VUS. METHODS A retrospective analysis of non-metastatic or metastatic pancreatic cancer patients with gBRCA1/2 VUS treated in 13 Italian centers between November 2015 and December 2020 was performed. All patients were assessed for toxicity and RECIST 1.1 response. Metastatic patients were evaluated for survival outcome. RESULTS 30 pancreatic cancer patients with gBRCA1/2 VUS were considered: 20 were M+ and 10 were non-M+. Pl-CT was recommended to 16 patients: 10 M+ (6 FOLFIRINOX and 4 PAXG) and 6 non-M+ (3 FOLFIRINOX and 3 PAXG); 11 patients received Nabpaclitaxel-Gemcitabine (AG; 8 M+) and 3 patients (2 M+) were treated with Gemcitabine (G). The RECIST 1.1 response rate was 27% for AG and 44% for Pl-CT (22% for (m) FOLFIRINOX and 71% PAXG). 1 year Progression-Free Survival was 37.5% for patients treated with AG and 33% in the Pl-CT subgroup. Median Overall Survival (OS) was 23.5 months for patients treated with AG and 14 months for the Pl-CT subgroup. 1 Year and 2 Year OS were numerically better for AG (1 Year OS: 75% vs 60% and 2 Year OS: 50% and 20% in AG and Pl-CT subgroups, respectively) as well. CONCLUSIONS Pl-CT does not seem to be associated with a better outcome compared to AG chemotherapy in PDAC patients with BRCA 1/2 VUS.
Collapse
Affiliation(s)
- Anna Maria Militello
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Cavaliere
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS Candiolo, Candiolo, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Antonio Avallone
- Biologia Cellulare e Bioterapie, Istituto Nazionale per lo Studio e la Cura dei Tumori ''Fondazione Giovanni Pascale'' - IRCCS, Naples, Italy
| | - Lisa Salvatore
- Unit of Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario, Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Unit of Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario, Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ''Dino Amadori'', Meldola, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Policlinico Riuniti, Foggia, Italy
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Silvia Noventa
- Department of Medical Oncology, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elisa Giommoni
- Medical Oncology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Silvia Bozzarelli
- Department of Medical Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Procaccio
- Medical Oncology 1 Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Alberto Puccini
- University of Genoa, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Montagna
- Department of Radiation Oncology and Genomic Instability and Cancer Genetics, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy.
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Biswas K, Mitrophanov AY, Sahu S, Sullivan T, Southon E, Nousome D, Reid S, Narula S, Smolen J, Sengupta T, Riedel-Topper M, Kapoor M, Babbar A, Stauffer S, Cleveland L, Tandon M, Malys T, Sharan SK. Sequencing-based functional assays for classification of BRCA2 variants in mouse ESCs. CELL REPORTS METHODS 2023; 3:100628. [PMID: 37922907 PMCID: PMC10694496 DOI: 10.1016/j.crmeth.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Sequencing of genes, such as BRCA1 and BRCA2, is recommended for individuals with a personal or family history of early onset and/or bilateral breast and/or ovarian cancer or a history of male breast cancer. Such sequencing efforts have resulted in the identification of more than 17,000 BRCA2 variants. The functional significance of most variants remains unknown; consequently, they are called variants of uncertain clinical significance (VUSs). We have previously developed mouse embryonic stem cell (mESC)-based assays for functional classification of BRCA2 variants. We now developed a next-generation sequencing (NGS)-based approach for functional evaluation of BRCA2 variants using pools of mESCs expressing 10-25 BRCA2 variants from a given exon. We use this approach for functional evaluation of 223 variants listed in ClinVar. Our functional classification of BRCA2 variants is concordant with the classification reported in ClinVar or those reported by other orthogonal assays.
Collapse
Affiliation(s)
- Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Alexander Y Mitrophanov
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; Leidos Biomed Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Darryl Nousome
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Sakshi Narula
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Julia Smolen
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Trisha Sengupta
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Maximilian Riedel-Topper
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Medha Kapoor
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Anav Babbar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Mayank Tandon
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tyler Malys
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
9
|
Sahu S, Sullivan TL, Mitrophanov AY, Galloux M, Nousome D, Southon E, Caylor D, Mishra AP, Evans CN, Clapp ME, Burkett S, Malys T, Chari R, Biswas K, Sharan SK. Saturation genome editing of 11 codons and exon 13 of BRCA2 coupled with chemotherapeutic drug response accurately determines pathogenicity of variants. PLoS Genet 2023; 19:e1010940. [PMID: 37713444 PMCID: PMC10529611 DOI: 10.1371/journal.pgen.1010940] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/27/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
The unknown pathogenicity of a significant number of variants found in cancer-related genes is attributed to limited epidemiological data, resulting in their classification as variant of uncertain significance (VUS). To date, Breast Cancer gene-2 (BRCA2) has the highest number of VUSs, which has necessitated the development of several robust functional assays to determine their functional significance. Here we report the use of a humanized-mouse embryonic stem cell (mESC) line expressing a single copy of the human BRCA2 for a CRISPR-Cas9-based high-throughput functional assay. As a proof-of-principle, we have saturated 11 codons encoded by BRCA2 exons 3, 18, 19 and all possible single-nucleotide variants in exon 13 and multiplexed these variants for their functional categorization. Specifically, we used a pool of 180-mer single-stranded donor DNA to generate all possible combination of variants. Using a high throughput sequencing-based approach, we show a significant drop in the frequency of non-functional variants, whereas functional variants are enriched in the pool of the cells. We further demonstrate the response of these variants to the DNA-damaging agents, cisplatin and olaparib, allowing us to use cellular survival and drug response as parameters for variant classification. Using this approach, we have categorized 599 BRCA2 variants including 93-single nucleotide variants (SNVs) across the 11 codons, of which 28 are reported in ClinVar. We also functionally categorized 252 SNVs from exon 13 into 188 functional and 60 non-functional variants, demonstrating that saturation genome editing (SGE) coupled with drug sensitivity assays can enhance functional annotation of BRCA2 VUS.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Teresa L. Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Alexander Y. Mitrophanov
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland, United States of America
| | | | - Darryl Nousome
- CCR Bioinformatics Resource, Leidos Biomedical Sciences, Inc. Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Dylan Caylor
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Arun Prakash Mishra
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Christine N. Evans
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michelle E. Clapp
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Tyler Malys
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland, United States of America
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
10
|
Hu C, Nagaraj AB, Shimelis H, Montalban G, Lee KY, Huang H, Lumby CA, Na J, Susswein LR, Roberts ME, Marshall ML, Hiraki S, LaDuca H, Chao E, Yussuf A, Pesaran T, Neuhausen SL, Haiman CA, Kraft P, Lindstrom S, Palmer JR, Teras LR, Vachon CM, Yao S, Ong I, Nathanson KL, Weitzel JN, Boddicker N, Gnanaolivu R, Polley EC, Mer G, Cui G, Karam R, Richardson ME, Domchek SM, Yadav S, Hruska KS, Dolinsky J, Weroha SJ, Hart SN, Simard J, Masson JY, Pang YP, Couch FJ. Functional and Clinical Characterization of Variants of Uncertain Significance Identifies a Hotspot for Inactivating Missense Variants in RAD51C. Cancer Res 2023; 83:2557-2571. [PMID: 37253112 PMCID: PMC10390864 DOI: 10.1158/0008-5472.can-22-2319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/07/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Pathogenic protein-truncating variants of RAD51C, which plays an integral role in promoting DNA damage repair, increase the risk of breast and ovarian cancer. A large number of RAD51C missense variants of uncertain significance (VUS) have been identified, but the effects of the majority of these variants on RAD51C function and cancer predisposition have not been established. Here, analysis of 173 missense variants by a homology-directed repair (HDR) assay in reconstituted RAD51C-/- cells identified 30 nonfunctional (deleterious) variants, including 18 in a hotspot within the ATP-binding region. The deleterious variants conferred sensitivity to cisplatin and olaparib and disrupted formation of RAD51C/XRCC3 and RAD51B/RAD51C/RAD51D/XRCC2 complexes. Computational analysis indicated the deleterious variant effects were consistent with structural effects on ATP-binding to RAD51C. A subset of the variants displayed similar effects on RAD51C activity in reconstituted human RAD51C-depleted cancer cells. Case-control association studies of deleterious variants in women with breast and ovarian cancer and noncancer controls showed associations with moderate breast cancer risk [OR, 3.92; 95% confidence interval (95% CI), 2.18-7.59] and high ovarian cancer risk (OR, 14.8; 95% CI, 7.71-30.36), similar to protein-truncating variants. This functional data supports the clinical classification of inactivating RAD51C missense variants as pathogenic or likely pathogenic, which may improve the clinical management of variant carriers. SIGNIFICANCE Functional analysis of the impact of a large number of missense variants on RAD51C function provides insight into RAD51C activity and information for classification of the cancer relevance of RAD51C variants.
Collapse
Affiliation(s)
| | | | | | - Gemma Montalban
- CHU de Quebec-Université Laval Research Center, Université Laval, Quebec City, Quebec, Canada
| | | | | | | | - Jie Na
- Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | | - Peter Kraft
- T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Sara Lindstrom
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - Lauren R. Teras
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | | | - Song Yao
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irene Ong
- University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jacques Simard
- CHU de Quebec-Université Laval Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Jean Yves Masson
- CHU de Quebec-Université Laval Research Center, Université Laval, Quebec City, Quebec, Canada
| | | | | |
Collapse
|
11
|
Dong Z, Wang Y, Zhang J, Zhu F, Liu Z, Kang Y, Lin M, Shi H. Analyzing the effects of BRCA1/2 variants on mRNA splicing by minigene assay. J Hum Genet 2023; 68:65-71. [PMID: 36446827 DOI: 10.1038/s10038-022-01077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
As BRCA1/2 gene sequencing become more extensive, a large number VUS (variants of uncertain significance) emerge rapidly. Verifying the splicing effect is an effective means for VUS reclassification. The Minigene Assay platform was established and its reliability was verified in this article. 47 BRCA1 or BRCA2 variants were selected and performed to validate their effect on mRNA splicing. The results showed that, a total of 16 variants were experimentally proved to have effects on mRNA splicing, among which 14 variants were shown to cause truncated proteins by Sanger sequencing. While the other two variants, BRCA2 c.7976 + 3 A > G and BRCA1 c.5152 + 3_5152 + 4insT was analyzed to cause 57 bp and 26 bp base in-frame deletion, respectively. The remaining 31 variants were not shown to cause mRNA splicing abnormity, including several sites at the edge of exons, which were predicted to affect splicing of mRNA by multiple bioinformatic software. Based on our experimental results, 37 variants were reclassified by ACMG rules. Our study showed that experimental splicing analysis was effectual for variants classification, and multiple functional assay or clinical data were also necessary for comprehensive judgment of variants.
Collapse
Affiliation(s)
- Zhouhuan Dong
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China
| | - Yun Wang
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China
| | - Jing Zhang
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China
| | - Fengwei Zhu
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China
| | - Zhiyuan Liu
- Amoy Diagnostics Co., Ltd., Xiamen, 361027, PR China
| | - Yajun Kang
- Amoy Diagnostics Co., Ltd., Xiamen, 361027, PR China
| | - Mingyuan Lin
- Amoy Diagnostics Co., Ltd., Xiamen, 361027, PR China
| | - Huaiyin Shi
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China.
| |
Collapse
|
12
|
Thomassen M, Mesman RLS, Hansen TVO, Menendez M, Rossing M, Esteban‐Sánchez A, Tudini E, Törngren T, Parsons MT, Pedersen IS, Teo SH, Kruse TA, Møller P, Borg Å, Jensen UB, Christensen LL, Singer CF, Muhr D, Santamarina M, Brandao R, Andresen BS, Feng B, Canson D, Richardson ME, Karam R, Pesaran T, LaDuca H, Conner BR, Abualkheir N, Hoang L, Calléja FMGR, Andrews L, James PA, Bunyan D, Hamblett A, Radice P, Goldgar DE, Walker LC, Engel C, Claes KBM, Macháčková E, Baralle D, Viel A, Wappenschmidt B, Lazaro C, Vega A, Vreeswijk MPG, de la Hoya M, Spurdle AB. Clinical, splicing, and functional analysis to classify BRCA2 exon 3 variants: Application of a points-based ACMG/AMP approach. Hum Mutat 2022; 43:1921-1944. [PMID: 35979650 PMCID: PMC10946542 DOI: 10.1002/humu.24449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023]
Abstract
Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.
Collapse
Affiliation(s)
- Mads Thomassen
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Romy L. S. Mesman
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Thomas V. O. Hansen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Mireia Menendez
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Maria Rossing
- Center for Genomic Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Emma Tudini
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Therese Törngren
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Inge S. Pedersen
- Molecular Diagnostics, Aalborg University HospitalAalborgDenmark
- Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Soo H. Teo
- Breast Cancer Research ProgrammeCancer Research MalaysiaSubang JayaSelangorMalaysia
- Department of Surgery, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Torben A. Kruse
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Pål Møller
- Department of Tumour BiologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Uffe B. Jensen
- Department of Clinical GeneticsAarhus University HospitalAarhus NDenmark
| | | | - Christian F. Singer
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Daniela Muhr
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marta Santamarina
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - Rita Brandao
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Bing‐Jian Feng
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Daffodil Canson
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | | | | | | | | | | | | | | | - Lesley Andrews
- Hereditary Cancer Clinic, Nelune Comprehensive Cancer Care CentreSydneyNew South WalesAustralia
| | - Paul A. James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer CenterMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Dave Bunyan
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Amanda Hamblett
- Middlesex Health Shoreline Cancer CenterWestbrookConnecticutUSA
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of ResearchFondazione IRCCS Istituto Nazionale dei Tumori (INT)MilanItaly
| | - David E. Goldgar
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | | | - Eva Macháčková
- Department of Cancer Epidemiology and GeneticsMasaryk Memorial Cancer InstituteBrnoCzech Republic
| | - Diana Baralle
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Alessandra Viel
- Division of Functional Onco‐genomics and GeneticsCentro di Riferimento Oncologico di Aviano (CRO), IRCCSAvianoItaly
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Conxi Lazaro
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Ana Vega
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - ENIGMA Consortium
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
13
|
Khandakji MN, Mifsud B. Gene-specific machine learning model to predict the pathogenicity of BRCA2 variants. Front Genet 2022; 13:982930. [PMID: 36246618 PMCID: PMC9561395 DOI: 10.3389/fgene.2022.982930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Existing BRCA2-specific variant pathogenicity prediction algorithms focus on the prediction of the functional impact of a subtype of variants alone. General variant effect predictors are applicable to all subtypes, but are trained on putative benign and pathogenic variants and do not account for gene-specific information, such as hotspots of pathogenic variants. Local, gene-specific information have been shown to aid variant pathogenicity prediction; therefore, our aim was to develop a BRCA2-specific machine learning model to predict pathogenicity of all types of BRCA2 variants. Methods: We developed an XGBoost-based machine learning model to predict pathogenicity of BRCA2 variants. The model utilizes general variant information such as position, frequency, and consequence for the canonical BRCA2 transcript, as well as deleteriousness prediction scores from several tools. We trained the model on 80% of the expert reviewed variants by the Evidence-Based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium and tested its performance on the remaining 20%, as well as on an independent set of variants of uncertain significance with experimentally determined functional scores. Results: The novel gene-specific model predicted the pathogenicity of ENIGMA BRCA2 variants with an accuracy of 99.9%. The model also performed excellently on predicting the functional consequence of the independent set of variants (accuracy was up to 91.3%). Conclusion: This new, gene-specific model is an accurate method for interpreting the pathogenicity of variants in the BRCA2 gene. It is a valuable addition for variant classification and can prioritize unreviewed variants for functional analysis or expert review.
Collapse
Affiliation(s)
- Mohannad N. Khandakji
- College of Health and Life Sciences, Hamad Bin Khalifa University, Ar-Rayyan, Qatar
- Hamad Medical Corporation, Doha, Qatar
| | - Borbala Mifsud
- College of Health and Life Sciences, Hamad Bin Khalifa University, Ar-Rayyan, Qatar
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Borbala Mifsud,
| |
Collapse
|
14
|
Hu C, Susswein LR, Roberts ME, Yang H, Marshall ML, Hiraki S, Berkofsky-Fessler W, Gupta S, Shen W, Dunn CA, Huang H, Na J, Domchek SM, Yadav S, Monteiro AN, Polley EC, Hart SN, Hruska KS, Couch FJ. Classification of BRCA2 Variants of Uncertain Significance (VUS) Using an ACMG/AMP Model Incorporating a Homology-Directed Repair (HDR) Functional Assay. Clin Cancer Res 2022; 28:3742-3751. [PMID: 35736817 PMCID: PMC9433957 DOI: 10.1158/1078-0432.ccr-22-0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE The identification of variants of uncertain significance (VUS) in the BRCA1 and BRCA2 genes by hereditary cancer testing poses great challenges for the clinical management of variant carriers. The ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology) variant classification framework, which incorporates multiple sources of evidence, has the potential to establish the clinical relevance of many VUS. We sought to classify the clinical relevance of 133 single-nucleotide substitution variants encoding missense variants in the DNA-binding domain (DBD) of BRCA2 by incorporating results from a validated functional assay into an ACMG/AMP-variant classification model from a hereditary cancer-testing laboratory. EXPERIMENTAL DESIGN The 133 selected VUS were evaluated using a validated homology-directed double-strand DNA break repair (HDR) functional assay. Results were combined with clinical and genetic data from variant carriers in a rules-based variant classification model for BRCA2. RESULTS Of 133 missense variants, 44 were designated as non-functional and 89 were designated as functional in the HDR assay. When combined with genetic and clinical information from a single diagnostic laboratory in an ACMG/AMP-variant classification framework, 66 variants previously classified by the diagnostic laboratory were correctly classified, and 62 of 67 VUS (92.5%) were reclassified as likely pathogenic (n = 22) or likely benign (n = 40). In total, 44 variants were classified as pathogenic/likely pathogenic, 84 as benign/likely benign, and 5 remained as VUS. CONCLUSIONS Incorporation of HDR functional analysis into an ACMG/AMP framework model substantially improves BRCA2 VUS re-classification and provides an important tool for determining the clinical relevance of individual BRCA2 VUS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Shen
- Mayo Clinic, Rochester, Minnesota
| | | | | | - Jie Na
- Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Iversen ES, Lipton G, Hart SN, Lee KY, Hu C, Polley EC, Pesaran T, Yussuf A, LaDuca H, Chao E, Karam R, Goldgar DE, Couch FJ, Monteiro ANA. An integrative model for the comprehensive classification of BRCA1 and BRCA2 variants of uncertain clinical significance. NPJ Genom Med 2022; 7:35. [PMID: 35665744 PMCID: PMC9166814 DOI: 10.1038/s41525-022-00302-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Loss-of-function variants in the BRCA1 and BRCA2 susceptibility genes predispose carriers to breast and/or ovarian cancer. The use of germline testing panels containing these genes has grown dramatically, but the interpretation of the results has been complicated by the identification of many sequence variants of undefined cancer relevance, termed "Variants of Uncertain Significance (VUS)." We have developed functional assays and a statistical model called VarCall for classifying BRCA1 and BRCA2 VUS. Here we describe a multifactorial extension of VarCall, called VarCall XT, that allows for co-analysis of multiple forms of genetic evidence. We evaluated the accuracy of models defined by the combinations of functional, in silico protein predictors, and family data for VUS classification. VarCall XT classified variants of known pathogenicity status with high sensitivity and specificity, with the functional assays contributing the greatest predictive power. This approach could be used to identify more patients that would benefit from personalized cancer risk assessment and management.
Collapse
Affiliation(s)
- Edwin S. Iversen
- grid.26009.3d0000 0004 1936 7961Department of Statistical Science, Duke University, Durham, NC 27708 USA
| | - Gary Lipton
- grid.26009.3d0000 0004 1936 7961Department of Statistical Science, Duke University, Durham, NC 27708 USA
| | - Steven N. Hart
- grid.66875.3a0000 0004 0459 167XDepartment of Health Sciences Research, Mayo Clinic, Rochester, MN 55901 USA
| | - Kun Y. Lee
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902 USA
| | - Chunling Hu
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902 USA
| | - Eric C. Polley
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902 USA
| | - Tina Pesaran
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - Amal Yussuf
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - Holly LaDuca
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - Elizabeth Chao
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - Rachid Karam
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - David E. Goldgar
- grid.223827.e0000 0001 2193 0096Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Fergus J. Couch
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902 USA
| | - Alvaro N. A. Monteiro
- grid.468198.a0000 0000 9891 5233Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612 USA
| |
Collapse
|
16
|
Jimenez-Sainz J, Krysztofiak A, Garbarino J, Rogers F, Jensen RB. The Pathogenic R3052W BRCA2 Variant Disrupts Homology-Directed Repair by Failing to Localize to the Nucleus. Front Genet 2022; 13:884210. [PMID: 35711920 PMCID: PMC9197106 DOI: 10.3389/fgene.2022.884210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
The BRCA2 germline missense variant, R3052W, resides in the DNA binding domain and has been previously classified as a pathogenic allele. In this study, we sought to determine how R3052W alters the cellular functions of BRCA2 in the DNA damage response. The BRCA2 R3052W mutated protein exacerbates genome instability, is unable to rescue homology-directed repair, and fails to complement cell survival following exposure to PARP inhibitors and crosslinking drugs. Surprisingly, despite anticipated defects in DNA binding or RAD51-mediated DNA strand exchange, the BRCA2 R3052W protein mislocalizes to the cytoplasm precluding its ability to perform any DNA repair functions. Rather than acting as a simple loss-of-function mutation, R3052W behaves as a dominant negative allele, likely by sequestering RAD51 in the cytoplasm.
Collapse
Affiliation(s)
| | | | | | | | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
17
|
Fanale D, Pivetti A, Cancelliere D, Spera A, Bono M, Fiorino A, Pedone E, Barraco N, Brando C, Perez A, Guarneri MF, Russo TDB, Vieni S, Guarneri G, Russo A, Bazan V. BRCA1/2 variants of unknown significance in hereditary breast and ovarian cancer (HBOC) syndrome: looking for the hidden meaning. Crit Rev Oncol Hematol 2022; 172:103626. [PMID: 35150867 DOI: 10.1016/j.critrevonc.2022.103626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Hereditary breast and ovarian cancer syndrome is caused by germline mutations in BRCA1/2 genes. These genes are very large and their mutations are heterogeneous and scattered throughout the coding sequence. In addition to the above-mentioned mutations, variants of uncertain/unknown significance (VUSs) have been identified in BRCA genes, which make more difficult the clinical management of the patient and risk assessment. In the last decades, several laboratories have developed different databases that contain more than 2000 variants for the two genes and integrated strategies which include multifactorial prediction models based on direct and indirect genetic evidence, to classify the VUS and attribute them a clinical significance associated with a deleterious, high-low or neutral risk. This review provides a comprehensive overview of literature studies concerning the VUSs, in order to assess their impact on the population and provide new insight for the appropriate patient management in clinical practice.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Pivetti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Daniela Cancelliere
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Spera
- Department of Radiotherapy, San Giovanni di Dio Hospital, ASP of Agrigento, Agrigento, Italy
| | - Marco Bono
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Fiorino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Nadia Barraco
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Perez
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | | | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Salvatore Vieni
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Italy
| | - Girolamo Guarneri
- Gynecology Section, Mother - Child Department, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
18
|
McReynolds LJ, Biswas K, Giri N, Sharan SK, Alter BP. Genotype-cancer association in patients with Fanconi anemia due to pathogenic variants in FANCD1 (BRCA2) or FANCN (PALB2). Cancer Genet 2021; 258-259:101-109. [PMID: 34687993 DOI: 10.1016/j.cancergen.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/28/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023]
Abstract
Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome and a cancer predisposition disorder. Cancers in FA include acute leukemia and solid tumors; the most frequent solid tumor is head and neck squamous cell carcinoma. FA is a primarily autosomal recessive disorder. Several of the genes in which biallelic pathogenic variants cause FA are also autosomal monoallelic cancer predisposition genes e.g. FANCD1 (BRCA2) and FANCN (PALB2). We observed that patients with FA due to biallelic or homozygous pathogenic variants in FANCD1 and FANCN have a unique cancer association. We curated published cases plus our NCI cohort cases, including 71 patients in the FANCD1 group (94 cancers and 69 variants) and 16 patients in the FANCN group (23 cancers and 20 variants). Only patients in FANCD1 and FANCN groups had one or more of these tumors: brain tumors (primarily medulloblastoma), Wilms tumor and neuroblastoma; this is a genotype-specific cancer combination of tumors of embryonal origin. Acute leukemias, seen in all FA genotypes, also occurred in FANCD1 and FANCN group patients at young ages. In silico predictions of pathogenicity for FANCD1 variants were compared with results from a mouse embryonic stem cell-based functional assay. Patients with two null FANCD1 variants did not have an increased frequency of cancer nor earlier onset of cancer compared with those with hypomorphic variants. Patients with FA and these specific cancers should consider genetic testing focused on FANCD1 and FANCN, and patients with these genotypes may consider ongoing surveillance for these specific cancers.
Collapse
Affiliation(s)
- Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
19
|
How I faced my prostate cancer: a molecular biologist's perspective. NPJ Precis Oncol 2021; 5:88. [PMID: 34561542 PMCID: PMC8463686 DOI: 10.1038/s41698-021-00229-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
|
20
|
Gillyard T, Davis J. DNA double-strand break repair in cancer: A path to achieving precision medicine. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:111-137. [PMID: 34507781 DOI: 10.1016/bs.ircmb.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The assessment of DNA damage can be a significant diagnostic for precision medicine. DNA double strand break (DSBs) pathways in cancer are the primary targets in a majority of anticancer therapies, yet the molecular vulnerabilities that underlie each tumor can vary widely making the application of precision medicine challenging. Identifying and understanding these interindividual vulnerabilities enables the design of targeted DSB inhibitors along with evolving precision medicine approaches to selectively kill cancer cells with minimal side effects. A major challenge however, is defining exactly how to target unique differences in DSB repair pathway mechanisms. This review comprises a brief overview of the DSB repair mechanisms in cancer and includes results obtained with revolutionary advances such as CRISPR/Cas9 and machine learning/artificial intelligence, which are rapidly advancing not only our understanding of determinants of DSB repair choice, but also how it can be used to advance precision medicine. Scientific innovation in the methods used to diagnose and treat cancer is converging with advances in basic science and translational research. This revolution will continue to be a critical driver of precision medicine that will enable precise targeting of unique individual mechanisms. This review aims to lay the foundation for achieving this goal.
Collapse
Affiliation(s)
- Taneisha Gillyard
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
21
|
The Genetic Analyses of French Canadians of Quebec Facilitate the Characterization of New Cancer Predisposing Genes Implicated in Hereditary Breast and/or Ovarian Cancer Syndrome Families. Cancers (Basel) 2021; 13:cancers13143406. [PMID: 34298626 PMCID: PMC8305212 DOI: 10.3390/cancers13143406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
The French Canadian population of the province of Quebec has been recognized for its contribution to research in medical genetics, especially in defining the role of heritable pathogenic variants in cancer predisposing genes. Multiple carriers of a limited number of pathogenic variants in BRCA1 and BRCA2, the major risk genes for hereditary breast and/or ovarian cancer syndrome families, have been identified in French Canadians, which is in stark contrast to the array of over 2000 different pathogenic variants reported in each of these genes in other populations. As not all such cancer syndrome families are explained by BRCA1 and BRCA2, newly proposed gene candidates identified in other populations have been investigated for their role in conferring risk in French Canadian cancer families. For example, multiple carriers of distinct variants were identified in PALB2 and RAD51D. The unique genetic architecture of French Canadians has been attributed to shared ancestry due to common ancestors of early settlers of this population with origins mainly from France. In this review, we discuss the merits of genetically characterizing cancer predisposing genes in French Canadians of Quebec. We focused on genes that have been implicated in hereditary breast and/or ovarian cancer syndrome families as they have been the most thoroughly characterized cancer syndromes in this population. We describe how genetic analyses of French Canadians have facilitated: (i) the classification of variants in BRCA1 and BRCA2; (ii) the identification and classification of variants in newly proposed breast and/or ovarian cancer predisposing genes; and (iii) the identification of a new breast cancer predisposing gene candidate, RECQL. The genetic architecture of French Canadians provides a unique opportunity to evaluate new candidate cancer predisposing genes regardless of the population in which they were identified.
Collapse
|
22
|
Clinical likelihood ratios and balanced accuracy for 44 in silico tools against multiple large-scale functional assays of cancer susceptibility genes. Genet Med 2021; 23:2096-2104. [PMID: 34230640 PMCID: PMC8553612 DOI: 10.1038/s41436-021-01265-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose Where multiple in silico tools are concordant, the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) framework affords supporting evidence toward pathogenicity or benignity, equivalent to a likelihood ratio of ~2. However, limited availability of “clinical truth sets” and prior use in tool training limits their utility for evaluation of tool performance. Methods We created a truth set of 9,436 missense variants classified as deleterious or tolerated in clinically validated high-throughput functional assays for BRCA1, BRCA2, MSH2, PTEN, and TP53 to evaluate predictive performance for 44 recommended/commonly used in silico tools. Results Over two-thirds of the tool–threshold combinations examined had specificity of <50%, thus substantially overcalling deleteriousness. REVEL scores of 0.8–1.0 had a Positive Likelihood Ratio (PLR) of 6.74 (5.24–8.82) compared to scores <0.7 and scores of 0–0.4 had a Negative Likelihood Ratio (NLR) of 34.3 (31.5–37.3) compared to scores of >0.7. For Meta-SNP, the equivalent PLR = 42.9 (14.4–406) and NLR = 19.4 (15.6–24.9). Conclusion Against these clinically validated “functional truth sets," there was wide variation in the predictive performance of commonly used in silico tools. Overall, REVEL and Meta-SNP had best balanced accuracy and might potentially be used at stronger evidence weighting than current ACMG/AMP prescription, in particular for predictions of benignity.
Collapse
|
23
|
Andreassen PR, Seo J, Wiek C, Hanenberg H. Understanding BRCA2 Function as a Tumor Suppressor Based on Domain-Specific Activities in DNA Damage Responses. Genes (Basel) 2021; 12:genes12071034. [PMID: 34356050 PMCID: PMC8307705 DOI: 10.3390/genes12071034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 01/14/2023] Open
Abstract
BRCA2 is an essential genome stability gene that has various functions in cells, including roles in homologous recombination, G2 checkpoint control, protection of stalled replication forks, and promotion of cellular resistance to numerous types of DNA damage. Heterozygous mutation of BRCA2 is associated with an increased risk of developing cancers of the breast, ovaries, pancreas, and other sites, thus BRCA2 acts as a classic tumor suppressor gene. However, understanding BRCA2 function as a tumor suppressor is severely limited by the fact that ~70% of the encoded protein has not been tested or assigned a function in the cellular DNA damage response. Remarkably, even the specific role(s) of many known domains in BRCA2 are not well characterized, predominantly because stable expression of the very large BRCA2 protein in cells, for experimental purposes, is challenging. Here, we review what is known about these domains and the assay systems that are available to study the cellular roles of BRCA2 domains in DNA damage responses. We also list criteria for better testing systems because, ultimately, functional assays for assessing the impact of germline and acquired mutations identified in genetic screens are important for guiding cancer prevention measures and for tailored cancer treatments.
Collapse
Affiliation(s)
- Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-(513)-636-0499
| | - Joonbae Seo
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany; (C.W.); (H.H.)
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany; (C.W.); (H.H.)
- Department of Pediatrics III, Children’s Hospital, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
24
|
Brnich SE, Arteaga EC, Wang Y, Tan X, Berg JS. A Validated Functional Analysis of Partner and Localizer of BRCA2 Missense Variants for Use in Clinical Variant Interpretation. J Mol Diagn 2021; 23:847-864. [PMID: 33964450 PMCID: PMC8491091 DOI: 10.1016/j.jmoldx.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Clinical genetic testing readily detects germline genetic variants. Yet, the rarity of individual variants limits the evidence available for variant classification, leading to many variants of uncertain significance (VUS). VUS cannot guide clinical decisions, complicating counseling and management. In hereditary breast cancer gene PALB2, approximately 50% of clinically identified germline variants are VUS and approximately 90% of VUS are missense. Truncating PALB2 variants have homologous recombination (HR) defects and rely on error-prone nonhomologous end-joining for DNA damage repair (DDR). Recent reports show that some missense PALB2 variants may also be damaging, but most functional studies have lacked benchmarking controls required for sufficient predictive power for clinical use. Here, variant-level DDR capacity in hereditary breast cancer genes was assessed using the Traffic Light Reporter (TLR) to quantify cellular HR/nonhomologous end-joining with fluorescent markers. First, using BRCA2 missense variants of known significance as benchmarks, the TLR distinguished between normal/abnormal HR function. The TLR was then validated for PALB2 and used to test 37 PALB2 variants. Based on the TLR's ability to correctly classify PALB2 validation controls, these functional data where applied in subsequent germline variant interpretations at a moderate level of evidence toward a pathogenic interpretation (PS3_moderate) for 8 variants with abnormal DDR, or a supporting level of evidence toward a benign interpretation (BS3_supporting) for 13 variants with normal DDR.
Collapse
Affiliation(s)
- Sarah E Brnich
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eyla Cristina Arteaga
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yueting Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
25
|
Jimenez-Sainz J, Jensen RB. Imprecise Medicine: BRCA2 Variants of Uncertain Significance (VUS), the Challenges and Benefits to Integrate a Functional Assay Workflow with Clinical Decision Rules. Genes (Basel) 2021; 12:genes12050780. [PMID: 34065235 PMCID: PMC8161351 DOI: 10.3390/genes12050780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pathological mutations in homology-directed repair (HDR) genes impact both future cancer risk and therapeutic options for patients. HDR is a high-fidelity DNA repair pathway for resolving DNA double-strand breaks throughout the genome. BRCA2 is an essential protein that mediates the loading of RAD51 onto resected DNA breaks, a key step in HDR. Germline mutations in BRCA2 are associated with an increased risk for breast, ovarian, prostate, and pancreatic cancer. Clinical findings of germline or somatic BRCA2 mutations in tumors suggest treatment with platinum agents or PARP inhibitors. However, when genetic analysis reveals a variant of uncertain significance (VUS) in the BRCA2 gene, precision medicine-based decisions become complex. VUS are genetic changes with unknown pathological impact. Current statistics indicate that between 10–20% of BRCA sequencing results are VUS, and of these, more than 50% are missense mutations. Functional assays to determine the pathological outcome of VUS are urgently needed to provide clinical guidance regarding cancer risk and treatment options. In this review, we provide a brief overview of BRCA2 functions in HDR, describe how BRCA2 VUS are currently assessed in the clinic, and how genetic and biochemical functional assays could be integrated into the clinical decision process. We suggest a multi-step workflow composed of robust and accurate functional assays to correctly evaluate the potential pathogenic or benign nature of BRCA2 VUS. Success in this precision medicine endeavor will offer actionable information to patients and their physicians.
Collapse
Affiliation(s)
- Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| |
Collapse
|
26
|
Zimmermann MT, Mathison AJ, Stodola T, Evans DB, Abrudan JL, Demos W, Tschannen M, Aldakkak M, Geurts J, Lomberk G, Tsai S, Urrutia R. Interpreting Sequence Variation in PDAC-Predisposing Genes Using a Multi-Tier Annotation Approach Performed at the Gene, Patient, and Cohort Level. Front Oncol 2021; 11:606820. [PMID: 33747920 PMCID: PMC7973372 DOI: 10.3389/fonc.2021.606820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
We investigated germline variation in pancreatic ductal adenocarcinoma (PDAC) predisposition genes in 535 patients, using a custom-built panel and a new complementary bioinformatic approach. Our panel assessed genes belonging to DNA repair, cell cycle checkpoints, migration, and preneoplastic pancreatic conditions. Our bioinformatics approach integrated annotations of variants by using data derived from both germline and somatic references. This integrated approach with expanded evidence enabled us to consider patterns even among private mutations, supporting a functional role for certain alleles, which we believe enhances individualized medicine beyond classic gene-centric approaches. Concurrent evaluation of three levels of evidence, at the gene, sample, and cohort level, has not been previously done. Overall, we identified in PDAC patient germline samples, 12% with mutations previously observed in pancreatic cancers, 23% with mutations previously discovered by sequencing other human tumors, and 46% with mutations with germline associations to cancer. Non-polymorphic protein-coding pathogenic variants were found in 18.4% of patient samples. Moreover, among patients with metastatic PDAC, 16% carried at least one pathogenic variant, and this subgroup was found to have an improved overall survival (22.0 months versus 9.8; p=0.008) despite a higher pre-treatment CA19-9 level (p=0.02). Genetic alterations in DNA damage repair genes were associated with longer overall survival among patients who underwent resection surgery (92 months vs. 46; p=0.06). ATM alterations were associated with more frequent metastatic stage (p = 0.04) while patients with BRCA1 or BRCA2 alterations had improved overall survival (79 months vs. 39; p=0.05). We found that mutations in genes associated with chronic pancreatitis were more common in non-white patients (p<0.001) and associated with longer overall survival (52 months vs. 26; p=0.004), indicating the need for greater study of the relationship among these factors. More than 90% of patients were found to have variants of uncertain significance, which is higher than previously reported. Furthermore, we generated 3D models for selected mutant proteins, which suggested distinct mechanisms underlying their dysfunction, likely caused by genetic alterations. Notably, this type of information is not predictable from sequence alone, underscoring the value of structural bioinformatics to improve genomic interpretation. In conclusion, the variation in PDAC predisposition genes appears to be more extensive than anticipated. This information adds to the growing body of literature on the genomic landscape of PDAC and brings us closer to a more widespread use of precision medicine for this challenging disease.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Angela J Mathison
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tim Stodola
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Douglas B Evans
- Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenica L Abrudan
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wendy Demos
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Tschannen
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammed Aldakkak
- Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer Geurts
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Genetic Counseling Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan Tsai
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Raul Urrutia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
27
|
Richardson ME, Hu C, Lee KY, LaDuca H, Fulk K, Durda KM, Deckman AM, Goldgar DE, Monteiro AN, Gnanaolivu R, Hart SN, Polley EC, Chao E, Pesaran T, Couch FJ. Strong functional data for pathogenicity or neutrality classify BRCA2 DNA-binding-domain variants of uncertain significance. Am J Hum Genet 2021; 108:458-468. [PMID: 33609447 PMCID: PMC8008494 DOI: 10.1016/j.ajhg.2021.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Determination of the clinical relevance of rare germline variants of uncertain significance (VUSs) in the BRCA2 cancer predisposition gene remains a challenge as a result of limited availability of data for use in classification models. However, laboratory-based functional data derived from validated functional assays of known sensitivity and specificity may influence the interpretation of VUSs. We evaluated 252 missense VUSs from the BRCA2 DNA-binding domain by using a homology-directed DNA repair (HDR) assay and identified 90 as non-functional and 162 as functional. The functional assay results were integrated with other available data sources into an ACMG/AMP rules-based classification framework used by a hereditary cancer testing laboratory. Of the 186 missense variants observed by the testing laboratory, 154 were classified as VUSs without functional data. However, after applying protein functional data, 86% (132/154) of the VUSs were reclassified as either likely pathogenic/pathogenic (39/132) or likely benign/benign (93/132), which impacted testing results for 1,900 individuals. These results indicate that validated functional assay data can have a substantial impact on VUS classification and associated clinical management for many individuals with inherited alterations in BRCA2.
Collapse
|
28
|
Sullivan T, Thirthagiri E, Chong CE, Stauffer S, Reid S, Southon E, Hassan T, Ravichandran A, Wijaya E, Lim J, Taib NAM, Fadzli F, Yip CH, Hartman M, Li J, van Dam RM, North SL, Das R, Easton DF, Biswas K, Teo SH, Sharan SK. Epidemiological and ES cell-based functional evaluation of BRCA2 variants identified in families with breast cancer. Hum Mutat 2021; 42:200-212. [PMID: 33314489 PMCID: PMC7919386 DOI: 10.1002/humu.24154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/29/2020] [Accepted: 11/28/2020] [Indexed: 01/06/2023]
Abstract
The discovery of high-risk breast cancer susceptibility genes, such as Breast cancer associated gene 1 (BRCA1) and Breast cancer associated gene 2 (BRCA2) has led to accurate identification of individuals for risk management and targeted therapy. The rapid decline in sequencing costs has tremendously increased the number of individuals who are undergoing genetic testing world-wide. However, given the significant differences in population-specific variants, interpreting the results of these tests can be challenging especially for novel genetic variants in understudied populations. Here we report the characterization of novel variants in the Malaysian and Singaporean population that consist of different ethnic groups (Malays, Chinese, Indian, and other indigenous groups). We have evaluated the functional significance of 14 BRCA2 variants of uncertain clinical significance by using multiple in silico prediction tools and examined their frequency in a cohort of 7840 breast cancer cases and 7928 healthy controls. In addition, we have used a mouse embryonic stem cell (mESC)-based functional assay to assess the impact of these variants on BRCA2 function. We found these variants to be functionally indistinguishable from wild-type BRCA2. These variants could fully rescue the lethality of Brca2-null mESCs and exhibited no sensitivity to six different DNA damaging agents including a poly ADP ribose polymerase inhibitor. Our findings strongly suggest that all 14 evaluated variants are functionally neutral. Our findings should be valuable in risk assessment of individuals carrying these variants.
Collapse
Affiliation(s)
- Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eswary Thirthagiri
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.,Servier, Kuala Lumpur, Malaysia.,Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Chan-Eng Chong
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tiara Hassan
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Aravind Ravichandran
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India.,SASTRA University, Thirumalaisamudram, Thanjavur, Tamil Nadu, India
| | | | - Joanna Lim
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Farhana Fadzli
- Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | | | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Jingmei Li
- Genome Institute of Singapore, Human Genetics, Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Susan L North
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ranabir Das
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia.,Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | | | | |
Collapse
|
29
|
Biswas K, Lipton GB, Stauffer S, Sullivan T, Cleveland L, Southon E, Reid S, Magidson V, Iversen ES, Sharan SK. A computational model for classification of BRCA2 variants using mouse embryonic stem cell-based functional assays. NPJ Genom Med 2020; 5:52. [PMID: 33293522 PMCID: PMC7722754 DOI: 10.1038/s41525-020-00158-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Sequencing-based genetic tests to identify individuals at increased risk of hereditary breast and ovarian cancers have resulted in the identification of more than 40,000 sequence variants of BRCA1 and BRCA2. A majority of these variants are considered to be variants of uncertain significance (VUS) because their impact on disease risk remains unknown, largely due to lack of sufficient familial linkage and epidemiological data. Several assays have been developed to examine the effect of VUS on protein function, which can be used to assess their impact on cancer susceptibility. In this study, we report the functional characterization of 88 BRCA2 variants, including several previously uncharacterized variants, using a well-established mouse embryonic stem cell (mESC)-based assay. We have examined their ability to rescue the lethality of Brca2 null mESC as well as sensitivity to six DNA damaging agents including ionizing radiation and a PARP inhibitor. We have also examined the impact of BRCA2 variants on splicing. In addition, we have developed a computational model to determine the probability of impact on function of the variants that can be used for risk assessment. In contrast to the previous VarCall models that are based on a single functional assay, we have developed a new platform to analyze the data from multiple functional assays separately and in combination. We have validated our VarCall models using 12 known pathogenic and 10 neutral variants and demonstrated their usefulness in determining the pathogenicity of BRCA2 variants that are listed as VUS or as variants with conflicting functional interpretation.
Collapse
Affiliation(s)
- Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Gary B Lipton
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA.
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
30
|
Hirsch S, Gieldon L, Sutter C, Dikow N, Schaaf CP. Germline testing for homologous recombination repair genes—opportunities and challenges. Genes Chromosomes Cancer 2020; 60:332-343. [DOI: 10.1002/gcc.22900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Steffen Hirsch
- Institute of Human Genetics Heidelberg University Hospital Heidelberg Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ) Heidelberg Germany
| | - Laura Gieldon
- Institute of Human Genetics Heidelberg University Hospital Heidelberg Germany
| | - Christian Sutter
- Institute of Human Genetics Heidelberg University Hospital Heidelberg Germany
| | - Nicola Dikow
- Institute of Human Genetics Heidelberg University Hospital Heidelberg Germany
| | - Christian P. Schaaf
- Institute of Human Genetics Heidelberg University Hospital Heidelberg Germany
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
- Jan and Dan Duncan Neurological Research Institute Texas Children's Hospital Houston Texas
| |
Collapse
|
31
|
Barbosa A, Pinto P, Peixoto A, Guerra J, Pinto C, Santos C, Pinheiro M, Escudeiro C, Bartosch C, Silva J, Teixeira MR. Gene Panel Tumor Testing in Ovarian Cancer Patients Significantly Increases the Yield of Clinically Actionable Germline Variants beyond BRCA1/ BRCA2. Cancers (Basel) 2020; 12:cancers12102834. [PMID: 33008098 PMCID: PMC7650720 DOI: 10.3390/cancers12102834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/13/2023] Open
Abstract
Simple Summary Germline and somatic variant testing of the BRCA1 and BRCA2 genes are important to predict treatment response to PARP inhibitors in ovarian cancer patients. However, germline variants in other genes besides BRCA1 and BRCA2 are associated with ovarian cancer predisposition, which would be missed by a genetic testing aimed only at treatment decision. We aimed to evaluate the yield of clinically actionable germline variants using next-generation sequencing of a customized panel of 10 genes for the analysis of pathology samples of ovarian carcinomas. We identified clinically actionable germline variants in a significantly higher proportion of ovarian cancer patients when compared with genetic testing focused only on BRCA1 and BRCA2. This strategy increases the chance to make available genetic counseling, presymptomatic genetic testing, and gynecological cancer prophylaxis to female relatives who turn out to be healthy carriers of deleterious germline variants. Abstract Since the approval of PARP inhibitors for the treatment of high-grade serous ovarian cancer, in addition to cancer risk assessment, BRCA1 and BRCA2 genetic testing also has therapeutic implications (germline and somatic variants) and should be offered to these patients at diagnosis, irrespective of family history. However, variants in other genes besides BRCA1 and BRCA2 are associated with ovarian cancer predisposition, which would be missed by a genetic testing aimed only at indication for PARP inhibitor treatment. In this study, we aimed to evaluate the yield of clinically actionable germline variants using next-generation sequencing of a customized panel of 10 genes for the analysis of formalin-fixed paraffin-embedded samples from 96 ovarian carcinomas, a strategy that allows the detection of both somatic and germline variants in a single test. In addition to 13.7% of deleterious germline BRCA1/BRCA2 carriers, we identified 7.4% additional patients with pathogenic germline variants in other genes predisposing for ovarian cancer, namely RAD51C, RAD51D, and MSH6, representing 35% of all pathogenic germline variants. We conclude that the strategy of reflex gene-panel tumor testing enables the identification of clinically actionable germline variants in a significantly higher proportion of ovarian cancer patients, which may be valuable information in patients with advanced disease that have run out of approved therapeutic options. Furthermore, this approach increases the chance to make available genetic counseling, presymptomatic genetic testing, and gynecological cancer prophylaxis to female relatives who turn out to be healthy carriers of deleterious germline variants.
Collapse
Affiliation(s)
- Ana Barbosa
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (A.P.); (J.G.); (C.P.); (C.S.); (M.P.); (C.E.); (J.S.)
| | - Pedro Pinto
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (A.P.); (J.G.); (C.P.); (C.S.); (M.P.); (C.E.); (J.S.)
| | - Ana Peixoto
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (A.P.); (J.G.); (C.P.); (C.S.); (M.P.); (C.E.); (J.S.)
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Joana Guerra
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (A.P.); (J.G.); (C.P.); (C.S.); (M.P.); (C.E.); (J.S.)
| | - Carla Pinto
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (A.P.); (J.G.); (C.P.); (C.S.); (M.P.); (C.E.); (J.S.)
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Catarina Santos
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (A.P.); (J.G.); (C.P.); (C.S.); (M.P.); (C.E.); (J.S.)
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Manuela Pinheiro
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (A.P.); (J.G.); (C.P.); (C.S.); (M.P.); (C.E.); (J.S.)
| | - Carla Escudeiro
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (A.P.); (J.G.); (C.P.); (C.S.); (M.P.); (C.E.); (J.S.)
| | - Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - João Silva
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (A.P.); (J.G.); (C.P.); (C.S.); (M.P.); (C.E.); (J.S.)
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Manuel R. Teixeira
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (A.P.); (J.G.); (C.P.); (C.S.); (M.P.); (C.E.); (J.S.)
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
32
|
Agata S, Tognazzo S, Alducci E, Matricardi L, Moserle L, Barana D, Montagna M. Segregation analysis of the BRCA2 c.9227G>T variant in multiple families suggests a pathogenic role in breast and ovarian cancer predisposition. Sci Rep 2020; 10:13987. [PMID: 32814805 PMCID: PMC7438490 DOI: 10.1038/s41598-020-70729-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 11/09/2022] Open
Abstract
Classification of variants in the BRCA1 and BRCA2 genes has a major impact on the clinical management of subjects at high risk for breast and ovarian cancer. The identification of a pathogenic variant allows for early detection/prevention strategies in healthy carriers as well as targeted treatments in patients affected by BRCA-associated tumors. The BRCA2 c.9227G>T p.(Gly3076Val) variant recurs in families from Northeast Italy and is rarely reported in international databases. This variant substitutes the evolutionary invariant glycine 3076 with a valine in the DNA binding domain of the BRCA2 protein, thus suggesting a high probability of pathogenicity. We analysed clinical and genealogic data of carriers from 15 breast/ovarian cancer families in whom no other pathogenic variants were detected. The variant was shown to co-segregate with breast and ovarian cancer in the most informative families. Combined segregation data led to a likelihood ratio of 81,527:1 of pathogenicity vs. neutrality. We conclude that c.9227G>T is a BRCA2 pathogenic variant that recurs in Northeast Italy. It can now be safely used for the predictive testing of healthy family members to guide preventive surgery and/or early tumor detection strategies, as well as for PARP inhibitors treatments in patients with BRCA2-associated tumors.
Collapse
Affiliation(s)
- Simona Agata
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Silvia Tognazzo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Elisa Alducci
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Laura Matricardi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Lidia Moserle
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Daniela Barana
- Oncology Unit, Local Health and Social Care Unit ULSS8 Berica, Montecchio Maggiore, Italy
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
33
|
Bouwman P, van der Heijden I, van der Gulden H, de Bruijn R, Braspenning ME, Moghadasi S, Wessels LFA, Vreeswijk MPG, Jonkers J. Functional Categorization of BRCA1 Variants of Uncertain Clinical Significance in Homologous Recombination Repair Complementation Assays. Clin Cancer Res 2020; 26:4559-4568. [PMID: 32546644 DOI: 10.1158/1078-0432.ccr-20-0255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/29/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Because BRCA1 is a high-risk breast/ovarian cancer susceptibility gene, BRCA1 sequence variants of uncertain clinical significance (VUS) complicate genetic counseling. As most VUS are rare, reliable classification based on clinical and genetic data is often impossible. However, all pathogenic BRCA1 variants analyzed result in defective homologous recombination DNA repair (HRR). Thus, BRCA1 VUS may be categorized based on their functional impact on this pathway. EXPERIMENTAL DESIGN Two hundred thirty-eight BRCA1 VUS-comprising most BRCA1 VUS known in the Netherlands and Belgium-were tested for their ability to complement Brca1-deficient mouse embryonic stem cells in HRR, using cisplatin and olaparib sensitivity assays and a direct repeat GFP (DR-GFP) HRR assay. Assays were validated using 25 known benign and 25 known pathogenic BRCA1 variants. For assessment of pathogenicity by a multifactorial likelihood analysis method, we collected clinical and genetic data for functionally deleterious VUS and VUS occurring in three or more families. RESULTS All three assays showed 100% sensitivity and specificity (95% confidence interval, 83%-100%). Out of 238 VUS, 45 showed functional defects, 26 of which were deleterious in all three assays. For 13 of these 26 variants, we could calculate the probability of pathogenicity using clinical and genetic data, resulting in the identification of 7 (likely) pathogenic variants. CONCLUSIONS We have functionally categorized 238 BRCA1 VUS using three different HRR-related assays. Classification based on clinical and genetic data alone for a subset of these variants confirmed the high sensitivity and specificity of our functional assays.
Collapse
Affiliation(s)
- Peter Bouwman
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Ingrid van der Heijden
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hanneke van der Gulden
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roebi de Bruijn
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute and Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Merel E Braspenning
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Setareh Moghadasi
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute and Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos Jonkers
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
34
|
High-throughput functional evaluation of BRCA2 variants of unknown significance. Nat Commun 2020; 11:2573. [PMID: 32444794 PMCID: PMC7244490 DOI: 10.1038/s41467-020-16141-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous nontruncating missense variants of the BRCA2 gene have been identified, but there is a lack of convincing evidence, such as familial data, demonstrating their clinical relevance and they thus remain unactionable. To assess the pathogenicity of variants of unknown significance (VUSs) within BRCA2, here we develop a method, the MANO-B method, for high-throughput functional evaluation utilizing BRCA2-deficient cells and poly (ADP-ribose) polymerase (PARP) inhibitors. The estimated sensitivity and specificity of this assay compared to those of the International Agency for Research on Cancer classification system is 95% and 95% (95% confidence intervals: 77–100% and 82–99%), respectively. We classify the functional impact of 186 BRCA2 VUSs with our computational pipeline, resulting in the classification of 126 variants as normal/likely normal, 23 as intermediate, and 37 as abnormal/likely abnormal. We further describe a simplified, on-demand annotation system that could be used as a companion diagnostic for PARP inhibitors in patients with unknown BRCA2 VUSs. Many germline variants are found in the BRCA2 gene, some of which pre-dispose women to breast and ovarian cancer. Here, the authors develop a method to determine the functional significance of BRCA2 variants and show that it is comparable to the IARC system of classifying variants.
Collapse
|
35
|
Sirisena N, Biswas K, Sullivan T, Stauffer S, Cleveland L, Southon E, Dissanayake VHW, Sharan SK. Functional evaluation of five BRCA2 unclassified variants identified in a Sri Lankan cohort with inherited cancer syndromes using a mouse embryonic stem cell-based assay. Breast Cancer Res 2020; 22:43. [PMID: 32393398 PMCID: PMC7216543 DOI: 10.1186/s13058-020-01272-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022] Open
Abstract
Next-generation sequencing of Sri Lankan families with inherited cancer syndromes resulted in the identification of five BRCA2 variants of unknown clinical significance. Interpreting such variants poses significant challenges for both clinicians and patients. Using a mouse embryonic stem cell-based functional assay, we found I785V, N830D, and K2077N to be functionally indistinguishable from wild-type BRCA2. Specific but mild sensitivity to olaparib and reduction in homologous recombination (HR) efficiency suggest partial loss of function of the A262T variant. This variant is located in the N-terminal DNA binding domain of BRCA2 that can facilitate HR by binding to dsDNA/ssDNA junctions. P3039P is clearly pathogenic because of premature protein truncation caused by exon 23 skipping. These findings highlight the value of mouse embryonic stem cell-based assays for determining the functional significance of variants of unknown clinical significance and provide valuable information regarding risk estimation and genetic counseling of families carrying these BRCA2 variants.
Collapse
Affiliation(s)
- Nirmala Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, 8, Sri Lanka
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | | | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA.
| |
Collapse
|
36
|
Monteiro AN, Bouwman P, Kousholt AN, Eccles DM, Millot GA, Masson JY, Schmidt MK, Sharan SK, Scully R, Wiesmüller L, Couch F, Vreeswijk MPG. Variants of uncertain clinical significance in hereditary breast and ovarian cancer genes: best practices in functional analysis for clinical annotation. J Med Genet 2020; 57:509-518. [PMID: 32152249 DOI: 10.1136/jmedgenet-2019-106368] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Alvaro N Monteiro
- Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Peter Bouwman
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arne N Kousholt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Diana M Eccles
- Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Gael A Millot
- Hub-DBC, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Marjanka K Schmidt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Shyam K Sharan
- National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Ralph Scully
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
37
|
Meulemans L, Mesman RLS, Caputo SM, Krieger S, Guillaud-Bataille M, Caux-Moncoutier V, Léone M, Boutry-Kryza N, Sokolowska J, Révillion F, Delnatte C, Tubeuf H, Soukarieh O, Bonnet-Dorion F, Guibert V, Bronner M, Bourdon V, Lizard S, Vilquin P, Privat M, Drouet A, Grout C, Calléja FMGR, Golmard L, Vrieling H, Stoppa-Lyonnet D, Houdayer C, Frebourg T, Vreeswijk MPG, Martins A, Gaildrat P. Skipping Nonsense to Maintain Function: The Paradigm of BRCA2 Exon 12. Cancer Res 2020; 80:1374-1386. [PMID: 32046981 DOI: 10.1158/0008-5472.can-19-2491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/18/2019] [Accepted: 02/06/2020] [Indexed: 11/16/2022]
Abstract
Germline nonsense and canonical splice site variants identified in disease-causing genes are generally considered as loss-of-function (LoF) alleles and classified as pathogenic. However, a fraction of such variants could maintain function through their impact on RNA splicing. To test this hypothesis, we used the alternatively spliced BRCA2 exon 12 (E12) as a model system because its in-frame skipping leads to a potentially functional protein. All E12 variants corresponding to putative LoF variants or predicted to alter splicing (n = 40) were selected from human variation databases and characterized for their impact on splicing in minigene assays and, when available, in patient lymphoblastoid cell lines. Moreover, a selection of variants was analyzed in a mouse embryonic stem cell-based functional assay. Using these complementary approaches, we demonstrate that a subset of variants, including nonsense variants, induced in-frame E12 skipping through the modification of splice sites or regulatory elements and, consequently, led to an internally deleted but partially functional protein. These data provide evidence, for the first time in a cancer-predisposition gene, that certain presumed null variants can retain function due to their impact on splicing. Further studies are required to estimate cancer risk associated with these hypomorphic variants. More generally, our findings highlight the need to exercise caution in the interpretation of putative LoF variants susceptible to induce in-frame splicing modifications. SIGNIFICANCE: This study presents evidence that certain presumed loss-of-function variants in a cancer predisposition gene can retain function due to their direct impact on RNA splicing.
Collapse
Affiliation(s)
- Laëtitia Meulemans
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Romy L S Mesman
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | - Sophie Krieger
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Laboratory of Cancer Biology and Genetics, Centre François Baclesse, Caen, France.,Normandie University, UNICAEN, Caen, France
| | | | | | | | | | | | | | | | - Hélène Tubeuf
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Omar Soukarieh
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Virginie Guibert
- Department of Genetics, Nantes University Hospital, Nantes, France
| | - Myriam Bronner
- Department of Genetics, Nancy University Hospital, Nancy, France
| | - Violaine Bourdon
- Department of Genetics, Institut Paoli-Calmettes, Marseille, France
| | - Sarab Lizard
- Department of Genetics, Nancy University Hospital, Nancy, France
| | - Paul Vilquin
- Department of Pathology and Oncobiology, Montpellier University Hospital, Montpellier, France
| | - Maud Privat
- University of Clermont Auvergne, Inserm U1240, Clermont Ferrand, France.,Department of Oncogenetics, Centre Jean Perrin, Clermont Ferrand, France
| | - Aurélie Drouet
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Charlotte Grout
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France.,Inserm U830, University Paris Descartes, Paris, France
| | - Claude Houdayer
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, Institut Curie, Paris, France.,Department of Genetics, Rouen University Hospital, Rouen, France
| | - Thierry Frebourg
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, Rouen University Hospital, Rouen, France
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexandra Martins
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pascaline Gaildrat
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|
38
|
Systematic misclassification of missense variants in BRCA1 and BRCA2 "coldspots". Genet Med 2020; 22:825-830. [PMID: 31911673 PMCID: PMC7200594 DOI: 10.1038/s41436-019-0740-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Guidelines for variant interpretation incorporate variant hotspots in critical functional domains as evidence for pathogenicity (e.g., PM1 and PP2), but do not use “coldspots,” that is, regions without essential functions that tolerate variation, as evidence a variant is benign. To improve variant classification we evaluated BRCA1 and BRCA2 missense variants reported in ClinVar to identify regions where pathogenic missenses are extremely infrequent, defined as coldspots. Methods We used Bayesian approaches to model variant classification in these regions. Results BRCA1 exon 11 (~60% of the coding sequence), and BRCA2 exons 10 and 11 (~65% of the coding sequence), are coldspots. Of 89 pathogenic (P) or likely pathogenic (LP) missense variants in BRCA1, none are in exon 11 (odds <0.01, 95% confidence interval [CI] 0.0–0.01). Of 34 P or LP missense variants in BRCA2, none are in exons 10–11 (odds <0.01, 95% CI 0.0–0.01). More than half of reported missense variants of uncertain significance (VUS) in BRCA1 and BRCA2 are in coldspots (3115/5301 = 58.8%). Reclassifying these 3115 VUS as likely benign would substantially improve variant classification. Conclusion In BRCA1 and BRCA2 coldspots, missense variants are very unlikely to be pathogenic. Classification schemes that incorporate coldspots can reduce the number of VUS and mitigate risks from reporting benign variation as VUS.
Collapse
|
39
|
Impact of proactive high-throughput functional assay data on BRCA1 variant interpretation in 3684 patients with breast or ovarian cancer. J Hum Genet 2020; 65:209-220. [PMID: 31907386 DOI: 10.1038/s10038-019-0713-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 11/08/2022]
Abstract
The clinical utility of BRCA1/2 genotyping was recently extended from the selection of subjects at high risk for hereditary breast and ovary cancer to the identification of candidates for poly (ADP-ribose) polymerase (PARP) inhibitor treatment. This underscores the importance of accurate interpretation of BRCA1/2 genetic variants and of reducing the number of variants of uncertain significance (VUSs). Two recent studies by Findlay et al. and Starita et al. introduced high-throughput functional assays, and proactively analyzed variants in specific regions regardless of whether they had been previously observed. We retrospectively reviewed all BRCA1 and BRCA2 germline genetic test reports from patients with breast or ovarian cancer examined at Asan Medical Center (Seoul, Korea) between September 2011 and December 2018. Variants were assigned pathogenic or benign strong evidence codes according to the functional classification and were reclassified according to the ACMG/AMP 2015 guidelines. Among 3684 patients with available BRCA1 and BRCA2 germline genetic test reports, 429 unique variants (181 from BRCA1) were identified. Of 34 BRCA1 variants intersecting with the data reported by Findlay et al., three missense single-nucleotide variants from four patients (0.11%, 4/3684) were reclassified from VUSs to likely pathogenic variants. Four variants scored as functional were reclassified into benign or likely benign variants. Three variants that overlapped with the data reported by Starita et al. could not be reclassified. In conclusion, proactive high-throughput functional study data are useful for the reclassification of clinically observed VUSs. Integrating additional evidence, including functional assay results, may help reduce the number of VUSs.
Collapse
|
40
|
Functional characterization of 84 PALB2 variants of uncertain significance. Genet Med 2019; 22:622-632. [PMID: 31636395 PMCID: PMC7056643 DOI: 10.1038/s41436-019-0682-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose Inherited pathogenic variants in PALB2 are associated with increased risk of breast and pancreatic cancer. However, the functional and clinical relevance of many missense variants of uncertain significance (VUS) identified through clinical genetic testing is unclear. The ability of patient-derived germline missense VUS to disrupt PALB2 function was assessed to identify variants with potential clinical relevance. Methods The influence of 84 VUS on PALB2 function was evaluated using a cellular homology directed DNA repair (HDR) assay and VUS impacting activity were further characterized using secondary functional assays. Results Four (~5%) variants (p.L24S,c.71T>C; p.L35P,c.104T>C; pI944N,c.2831T>A; and p.L1070P,c.3209T>C) disrupted PALB2-mediated HDR activity. These variants conferred sensitivity to cisplatin and a poly(ADP-ribose) polymerase (PARP) inhibitor and reduced RAD51 foci formation in response to DNA damage. The p.L24S and p.L35P variants disrupted BRCA1–PALB2 protein complexes, p.I944N was associated with protein instability, and both p.I944N and p.L1070P mislocalized PALB2 to the cytoplasm. Conclusion These findings show that the HDR assay is an effective method for screening the influence of inherited variants on PALB2 function, that four missense variants impact PALB2 function and may influence cancer risk and response to therapy, and suggest that few inherited PALB2 missense variants disrupt PALB2 function in DNA repair.
Collapse
|
41
|
Cao Y, Sun Y, Karimi M, Chen H, Moronfoye O, Shen Y. Predicting pathogenicity of missense variants with weakly supervised regression. Hum Mutat 2019; 40:1579-1592. [PMID: 31144781 PMCID: PMC6744350 DOI: 10.1002/humu.23826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022]
Abstract
Quickly growing genetic variation data of unknown clinical significance demand computational methods that can reliably predict clinical phenotypes and deeply unravel molecular mechanisms. On the platform enabled by the Critical Assessment of Genome Interpretation (CAGI), we develop a novel "weakly supervised" regression (WSR) model that not only predicts precise clinical significance (probability of pathogenicity) from inexact training annotations (class of pathogenicity) but also infers underlying molecular mechanisms in a variant-specific manner. Compared to multiclass logistic regression, a representative multiclass classifier, our kernelized WSR improves the performance for the ENIGMA Challenge set from 0.72 to 0.97 in binary area under the receiver operating characteristic curve (AUC) and from 0.64 to 0.80 in ordinal multiclass AUC. WSR model interpretation and protein structural interpretation reach consensus in corroborating the most probable molecular mechanisms by which some pathogenic BRCA1 variants confer clinical significance, namely metal-binding disruption for p.C44F and p.C47Y, protein-binding disruption for p.M18T, and structure destabilization for p.S1715N.
Collapse
Affiliation(s)
- Yue Cao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, 77843-3128, United States
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, 77843-3128, United States
| | - Mostafa Karimi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, 77843-3128, United States
| | - Haoran Chen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, 77843-3128, United States
| | - Oluwaseyi Moronfoye
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, 77843-3128, United States
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, 77843-3128, United States
| |
Collapse
|
42
|
Padilla N, Moles-Fernández A, Riera C, Montalban G, Özkan S, Ootes L, Bonache S, Díez O, Gutiérrez-Enríquez S, de la Cruz X. BRCA1- and BRCA2-specific in silico tools for variant interpretation in the CAGI 5 ENIGMA challenge. Hum Mutat 2019; 40:1593-1611. [PMID: 31112341 DOI: 10.1002/humu.23802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/09/2022]
Abstract
BRCA1 and BRCA2 (BRCA1/2) germline variants disrupting the DNA protective role of these genes increase the risk of hereditary breast and ovarian cancers. Correct identification of these variants then becomes clinically relevant, because it may increase the survival rates of the carriers. Unfortunately, we are still unable to systematically predict the impact of BRCA1/2 variants. In this article, we present a family of in silico predictors that address this problem, using a gene-specific approach. For each protein, we have developed two tools, aimed at predicting the impact of a variant at two different levels: Functional and clinical. Testing their performance in different datasets shows that specific information compensates the small number of predictive features and the reduced training sets employed to develop our models. When applied to the variants of the BRCA1/2 (ENIGMA) challenge in the fifth Critical Assessment of Genome Interpretation (CAGI 5) we find that these methods, particularly those predicting the functional impact of variants, have a good performance, identifying the large compositional bias towards neutral variants in the CAGI sample. This performance is further improved when incorporating to our prediction protocol estimates of the impact on splicing of the target variant.
Collapse
Affiliation(s)
- Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Casandra Riera
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Selen Özkan
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lars Ootes
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sandra Bonache
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Orland Díez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | | | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
43
|
McGarvey PB, Nightingale A, Luo J, Huang H, Martin MJ, Wu C, Consortium U. UniProt genomic mapping for deciphering functional effects of missense variants. Hum Mutat 2019; 40:694-705. [PMID: 30840782 PMCID: PMC6563471 DOI: 10.1002/humu.23738] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/17/2018] [Accepted: 02/17/2019] [Indexed: 01/08/2023]
Abstract
Understanding the association of genetic variation with its functional consequences in proteins is essential for the interpretation of genomic data and identifying causal variants in diseases. Integration of protein function knowledge with genome annotation can assist in rapidly comprehending genetic variation within complex biological processes. Here, we describe mapping UniProtKB human sequences and positional annotations, such as active sites, binding sites, and variants to the human genome (GRCh38) and the release of a public genome track hub for genome browsers. To demonstrate the power of combining protein annotations with genome annotations for functional interpretation of variants, we present specific biological examples in disease-related genes and proteins. Computational comparisons of UniProtKB annotations and protein variants with ClinVar clinically annotated single nucleotide polymorphism (SNP) data show that 32% of UniProtKB variants colocate with 8% of ClinVar SNPs. The majority of colocated UniProtKB disease-associated variants (86%) map to 'pathogenic' ClinVar SNPs. UniProt and ClinVar are collaborating to provide a unified clinical variant annotation for genomic, protein, and clinical researchers. The genome track hubs, and related UniProtKB files, are downloadable from the UniProt FTP site and discoverable as public track hubs at the UCSC and Ensembl genome browsers.
Collapse
Affiliation(s)
- Peter B. McGarvey
- Innovation Center for Biomedical InformaticsGeorgetown University Medical CenterWashingtonDC
- Protein Information ResourceGeorgetown Medical CenterWashingtonDC
| | - Andrew Nightingale
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Jie Luo
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Hongzhan Huang
- Center for Bioinformatics and Computational BiologyUniversity of DelawareNewarkDelaware
| | - Maria J. Martin
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Cathy Wu
- Center for Bioinformatics and Computational BiologyUniversity of DelawareNewarkDelaware
| | - UniProt Consortium
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Swiss Institute of BioinformaticsCentre Medical UniversitaireGenevaSwitzerland
- Protein Information ResourceGeorgetown Medical CenterWashingtonDC
| |
Collapse
|
44
|
Negron C, Pearlman DA, del Angel G. Predicting mutations deleterious to function in beta-lactamase TEM1 using MM-GBSA. PLoS One 2019; 14:e0214015. [PMID: 30889230 PMCID: PMC6424398 DOI: 10.1371/journal.pone.0214015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Missense mutations can have disastrous effects on the function of a protein. And as a result, they have been implicated in numerous diseases. However, the majority of missense variants only have a nominal impact on protein function. Thus, the ability to distinguish these two classes of missense mutations would greatly aid drug discovery efforts in target identification and validation as well as medical diagnosis. Monitoring the co-occurrence of a given missense mutation and a disease phenotype provides a pathway for classifying functionally disrupting missense mutations. But, the occurrence of a specific missense variant is often extremely rare making statistical links challenging to infer. In this study, we benchmark a physics-based approach for predicting changes in stability, MM-GBSA, and apply it to classifying mutations as functionally disrupting. A large and diverse dataset of 990 residue mutations in beta-lactamase TEM1 is used to assess performance as it is rich in both functionally disrupting mutations and functionally neutral/beneficial mutations. On this dataset, we compare the performance of MM-GBSA to alternative strategies for predicting functionally disrupting mutations. We observe that the MM-GBSA method obtains an area under the curve (AUC) of 0.75 on the entire dataset, outperforming all other predictors tested. More importantly, MM-GBSA’s performance is robust to various divisions of the dataset, speaking to the generality of the approach. Though there is one notable exception: Mutations on the surface of the protein are the mutations that are the most difficult to classify as functionally disrupting for all methods tested. This is likely due to the many mechanisms available to surface mutations to disrupt function, and thus provides a direction of focus for future studies.
Collapse
Affiliation(s)
| | | | - Guillermo del Angel
- Alexion Pharmaceuticals Inc., Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
|
46
|
Genetic Testing to Guide Risk-Stratified Screens for Breast Cancer. J Pers Med 2019; 9:jpm9010015. [PMID: 30832243 PMCID: PMC6462925 DOI: 10.3390/jpm9010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer screening modalities and guidelines continue to evolve and are increasingly based on risk factors, including genetic risk and a personal or family history of cancer. Here, we review genetic testing of high-penetrance hereditary breast and ovarian cancer genes, including BRCA1 and BRCA2, for the purpose of identifying high-risk individuals who would benefit from earlier screening and more sensitive methods such as magnetic resonance imaging. We also consider risk-based screening in the general population, including whether every woman should be genetically tested for high-risk genes and the potential use of polygenic risk scores. In addition to enabling early detection, the results of genetic screens of breast cancer susceptibility genes can be utilized to guide decision-making about when to elect prophylactic surgeries that reduce cancer risk and the choice of therapeutic options. Variants of uncertain significance, especially missense variants, are being identified during panel testing for hereditary breast and ovarian cancer. A finding of a variant of uncertain significance does not provide a basis for increased cancer surveillance or prophylactic procedures. Given that variant classification is often challenging, we also consider the role of multifactorial statistical analyses by large consortia and functional tests for this purpose.
Collapse
|
47
|
Hurley RM, Wahner Hendrickson AE, Visscher DW, Ansell P, Harrell MI, Wagner JM, Negron V, Goergen KM, Maurer MJ, Oberg AL, Meng XW, Flatten KS, De Jonge MJA, Van Herpen CD, Gietema JA, Koornstra RHT, Jager A, den Hollander MW, Dudley M, Shepherd SP, Swisher EM, Kaufmann SH. 53BP1 as a potential predictor of response in PARP inhibitor-treated homologous recombination-deficient ovarian cancer. Gynecol Oncol 2019. [PMID: 30686551 DOI: 10.1016/j.ygyno.2019.01.015]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Poly(ADP-ribose) polymerase (PARP) inhibitors have shown substantial activity in homologous recombination- (HR-) deficient ovarian cancer and are undergoing testing in other HR-deficient tumors. For reasons that are incompletely understood, not all patients with HR-deficient cancers respond to these agents. Preclinical studies have demonstrated that changes in alternative DNA repair pathways affect PARP inhibitor (PARPi) sensitivity in ovarian cancer models. This has not previously been assessed in the clinical setting. METHODS Clonogenic and plasmid-based HR repair assays were performed to compare BRCA1-mutant COV362 ovarian cancer cells with or without 53BP1 gene deletion. Archival biopsies from ovarian cancer patients in the phase I, open-label clinical trial of PARPi ABT-767 were stained for PARP1, RAD51, 53BP1 and multiple components of the nonhomologous end-joining (NHEJ) DNA repair pathway. Modified histochemistry- (H-) scores were determined for each repair protein in each sample. HRD score was determined from tumor DNA. RESULTS 53BP1 deletion increased HR in BRCA1-mutant COV362 cells and decreased PARPi sensitivity in vitro. In 36 women with relapsed ovarian cancer, responses to the PARPi ABT-767 were observed exclusively in cancers with HR deficiency. In this subset, 7 of 18 patients (39%) had objective responses. The actual HRD score did not further correlate with change from baseline tumor volume (r = 0.050; p = 0.87). However, in the HR-deficient subset, decreased 53BP1 H-score was associated with decreased antitumor efficacy of ABT-767 (r = -0.69, p = 0.004). CONCLUSION Differences in complementary repair pathways, particularly 53BP1, correlate with PARPi response of HR-deficient ovarian cancers.
Collapse
Affiliation(s)
- Rachel M Hurley
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States of America
| | | | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Peter Ansell
- Abbvie, North Chicago, IL, United States of America
| | - Maria I Harrell
- Department of Obstetrics and Gynecology, Univ. of Washington, Seattle, WA, United States of America
| | - Jill M Wagner
- Department of Oncology, Mayo Clinic, Rochester, MN, United States of America
| | - Vivian Negron
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Krista M Goergen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Matthew J Maurer
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - X Wei Meng
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States of America
| | - Karen S Flatten
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States of America
| | | | | | | | | | - Agnes Jager
- Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | | | | | | | - Elizabeth M Swisher
- Department of Obstetrics and Gynecology, Univ. of Washington, Seattle, WA, United States of America
| | - Scott H Kaufmann
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States of America; Department of Oncology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
48
|
53BP1 as a potential predictor of response in PARP inhibitor-treated homologous recombination-deficient ovarian cancer. Gynecol Oncol 2019. [PMID: 30686551 DOI: 10.1016/j.ygyno.2019.01.015] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Poly(ADP-ribose) polymerase (PARP) inhibitors have shown substantial activity in homologous recombination- (HR-) deficient ovarian cancer and are undergoing testing in other HR-deficient tumors. For reasons that are incompletely understood, not all patients with HR-deficient cancers respond to these agents. Preclinical studies have demonstrated that changes in alternative DNA repair pathways affect PARP inhibitor (PARPi) sensitivity in ovarian cancer models. This has not previously been assessed in the clinical setting. METHODS Clonogenic and plasmid-based HR repair assays were performed to compare BRCA1-mutant COV362 ovarian cancer cells with or without 53BP1 gene deletion. Archival biopsies from ovarian cancer patients in the phase I, open-label clinical trial of PARPi ABT-767 were stained for PARP1, RAD51, 53BP1 and multiple components of the nonhomologous end-joining (NHEJ) DNA repair pathway. Modified histochemistry- (H-) scores were determined for each repair protein in each sample. HRD score was determined from tumor DNA. RESULTS 53BP1 deletion increased HR in BRCA1-mutant COV362 cells and decreased PARPi sensitivity in vitro. In 36 women with relapsed ovarian cancer, responses to the PARPi ABT-767 were observed exclusively in cancers with HR deficiency. In this subset, 7 of 18 patients (39%) had objective responses. The actual HRD score did not further correlate with change from baseline tumor volume (r = 0.050; p = 0.87). However, in the HR-deficient subset, decreased 53BP1 H-score was associated with decreased antitumor efficacy of ABT-767 (r = -0.69, p = 0.004). CONCLUSION Differences in complementary repair pathways, particularly 53BP1, correlate with PARPi response of HR-deficient ovarian cancers.
Collapse
|
49
|
Caleca L, Colombo M, van Overeem Hansen T, Lázaro C, Manoukian S, Parsons MT, Spurdle AB, Radice P. GFP-Fragment Reassembly Screens for the Functional Characterization of Variants of Uncertain Significance in Protein Interaction Domains of the BRCA1 and BRCA2 Genes. Cancers (Basel) 2019; 11:E151. [PMID: 30696104 PMCID: PMC6406614 DOI: 10.3390/cancers11020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 01/14/2023] Open
Abstract
Genetic testing for BRCA1 and BRCA2 genes has led to the identification of many unique variants of uncertain significance (VUS). Multifactorial likelihood models that predict the odds ratio for VUS in favor or against cancer causality, have been developed, but their use is conditioned by the amount of necessary data, which are difficult to obtain if a variant is rare. As an alternative, variants mapping to the coding regions can be examined using in vitro functional assays. BRCA1 and BRCA2 proteins promote genome protection by interacting with different proteins. In this study, we assessed the functional effect of two sets of variants in BRCA genes by exploiting the green fluorescent protein (GFP)-reassembly in vitro assay, which was set-up to test the BRCA1/BARD1, BRCA1/UbcH5a, and BRCA2/DSS1 interactions. Based on the findings observed for the validation panels of previously classified variants, BRCA1/UbcH5a and BRCA2/DSS1 binding assays showed 100% sensitivity and specificity in identifying pathogenic and non-pathogenic variants. While the actual efficiency of these assays in assessing the clinical significance of BRCA VUS has to be verified using larger validation panels, our results suggest that the GFP-reassembly assay is a robust method to identify variants affecting normal protein functioning and contributes to the classification of VUS.
Collapse
Affiliation(s)
- Laura Caleca
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Thomas van Overeem Hansen
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology. Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08900 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
50
|
53BP1 as a potential predictor of response in PARP inhibitor-treated homologous recombination-deficient ovarian cancer. Gynecol Oncol 2019; 153:127-134. [PMID: 30686551 DOI: 10.1016/j.ygyno.2019.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Poly(ADP-ribose) polymerase (PARP) inhibitors have shown substantial activity in homologous recombination- (HR-) deficient ovarian cancer and are undergoing testing in other HR-deficient tumors. For reasons that are incompletely understood, not all patients with HR-deficient cancers respond to these agents. Preclinical studies have demonstrated that changes in alternative DNA repair pathways affect PARP inhibitor (PARPi) sensitivity in ovarian cancer models. This has not previously been assessed in the clinical setting. METHODS Clonogenic and plasmid-based HR repair assays were performed to compare BRCA1-mutant COV362 ovarian cancer cells with or without 53BP1 gene deletion. Archival biopsies from ovarian cancer patients in the phase I, open-label clinical trial of PARPi ABT-767 were stained for PARP1, RAD51, 53BP1 and multiple components of the nonhomologous end-joining (NHEJ) DNA repair pathway. Modified histochemistry- (H-) scores were determined for each repair protein in each sample. HRD score was determined from tumor DNA. RESULTS 53BP1 deletion increased HR in BRCA1-mutant COV362 cells and decreased PARPi sensitivity in vitro. In 36 women with relapsed ovarian cancer, responses to the PARPi ABT-767 were observed exclusively in cancers with HR deficiency. In this subset, 7 of 18 patients (39%) had objective responses. The actual HRD score did not further correlate with change from baseline tumor volume (r = 0.050; p = 0.87). However, in the HR-deficient subset, decreased 53BP1 H-score was associated with decreased antitumor efficacy of ABT-767 (r = -0.69, p = 0.004). CONCLUSION Differences in complementary repair pathways, particularly 53BP1, correlate with PARPi response of HR-deficient ovarian cancers.
Collapse
|