1
|
Lauerer RJ, Lerche H. Voltage-gated calcium channels in genetic epilepsies. J Neurochem 2024; 168:3853-3871. [PMID: 37822150 PMCID: PMC11591408 DOI: 10.1111/jnc.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Voltage-gated calcium channels (VGCC) are abundant in the central nervous system and serve a broad spectrum of functions, either directly in cellular excitability or indirectly to regulate Ca2+ homeostasis. Ca2+ ions act as one of the main connections in excitation-transcription coupling, muscle contraction and excitation-exocytosis coupling, including synaptic transmission. In recent years, many genes encoding VGCCs main α or additional auxiliary subunits have been associated with epilepsy. This review sums up the current state of knowledge on disease mechanisms and provides guidance on disease-specific therapies where applicable.
Collapse
Affiliation(s)
- Robert J. Lauerer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity and University Hospital TuebingenTuebingenGermany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity and University Hospital TuebingenTuebingenGermany
| |
Collapse
|
2
|
Yazbeck H, Youssef J, Nasreddine W, El Kurdi A, Zgheib N, Beydoun A. The role of candidate pharmacogenetic variants in determining valproic acid efficacy, toxicity and concentrations in patients with epilepsy. Front Pharmacol 2024; 15:1483723. [PMID: 39539630 PMCID: PMC11558073 DOI: 10.3389/fphar.2024.1483723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background Antiseizure medications (ASM) exhibit considerable interindividual variability in terms of efficacy and adverse events. Genetic variation is thought to contribute to these differences in clinical outcomes. Specifically, the response to valproic acid (VPA), a widely used ASM, is influenced by multiple pharmacogenetic factors. However, and in contrast to other ASMs such as phenytoin and carbamazepine, there is a paucity of data on the association between VPA and various gene variants. The aim of this study was hence to evaluate the influence of candidate pharmacogenetic variants on VPA efficacy, toxicity and serum concentrations in a homogeneous cohort of patients newly diagnosed with genetic generalized epilepsies (GGE). Methods In this prospective cohort study, demographic, clinical and treatment outcomes of GGE patients were retrieved from their medical records. Whole exome sequencing was performed in collaboration with Epi25. Gene variants associated with VPA efficacy, metabolism and toxicities were retrieved from PharmGKB. An analysis was then conducted to explore potential associations between these gene variants and VPA clinical outcomes. Results Of the 166 patients included, 60 (36.1%) experienced treatment failure while 106 (63.9%) achieved treatment success. After adjusting for VPA maintenance dose, carriers of the rs3892097 (CYP2D6) variant were 2.5 times more likely to experience treatment failure compared to wildtype (p = 0.026). The rs1057910 variant (CYP2C9*3) was associated with increased serum VPA concentrations (p = 0.034). Moreover, the rs1137101 variant (LEPR gene, a metabolism regulator) was significantly associated with a higher risk of weight gain (regression coefficient of 3.430 [0.674; 6.186], p = 0.015) and a higher frequency of hair loss (OR = 3.394 [1.157; 9.956], p = 0.026), while the rs4480 variant (SOD2 gene, encoding for a mitochondrial scavenging enzyme) was correlated with a lower frequency of hair loss (OR = 0.276 [0.089; 0.858], p = 0.026). Conclusion These findings highlight the role of genetic factors in VPA treatment and underscore the potential for developing therapeutic strategies to enhance patient outcomes and minimize adverse effects.
Collapse
Affiliation(s)
- Hady Yazbeck
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Joe Youssef
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Nasreddine
- Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdullah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nathalie Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmad Beydoun
- Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
3
|
Chen S, Abou-Khalil BW, Afawi Z, Ali QZ, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Arslan M, Auce P, Bahlo M, Baker MD, Balagura G, Balestrini S, Banks E, Barba C, Barboza K, Bartolomei F, Bass N, Baum LW, Baumgartner TH, Baykan B, Bebek N, Becker F, Bennett CA, Beydoun A, Bianchini C, Bisulli F, Blackwood D, Blatt I, Borggräfe I, Bosselmann C, Braatz V, Brand H, Brockmann K, Buono RJ, Busch RM, Caglayan SH, Canafoglia L, Canavati C, Castellotti B, Cavalleri GL, Cerrato F, Chassoux F, Cherian C, Cherny SS, Cheung CL, Chou IJ, Chung SK, Churchhouse C, Ciullo V, Clark PO, Cole AJ, Cosico M, Cossette P, Cotsapas C, Cusick C, Daly MJ, Davis LK, Jonghe PD, Delanty N, Dennig D, Depondt C, Derambure P, Devinsky O, Vito LD, Dickerson F, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Ellis CA, Epstein L, Evans M, Faucon A, Feng YCA, Ferguson L, Ferraro TN, Silva IFD, Ferri L, Feucht M, Fields MC, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, French JA, Freri E, Fu JM, Gabriel S, Gagliardi M, Gambardella A, Gauthier L, Giangregorio T, Gili T, Glauser TA, Goldberg E, Goldman A, Goldstein DB, Granata T, Grant R, Greenberg DA, Guerrini R, Gundogdu-Eken A, Gupta N, Haas K, Hakonarson H, Haryanyan G, Häusler M, Hegde M, Heinzen EL, Helbig I, Hengsbach C, Heyne H, Hirose S, Hirsch E, Ho CJ, Hoeper O, Howrigan DP, Hucks D, Hung PC, Iacomino M, Inoue Y, Inuzuka LM, Ishii A, Jehi L, Johnson MR, Johnstone M, Kälviäinen R, Kanaan M, Kara B, Kariuki SM, Kegele J, Kesim Y, Khoueiry-Zgheib N, Khoury J, King C, Klein KM, Kluger G, Knake S, Kok F, Korczyn AD, Korinthenberg R, Koupparis A, Kousiappa I, Krause R, Krenn M, Krestel H, Krey I, Kunz WS, Kurlemann G, Kuzniecky RI, Kwan P, Vega-Talbott ML, Labate A, Lacey A, Lal D, Laššuthová P, Lauxmann S, Lawthom C, Leech SL, Lehesjoki AE, Lemke JR, Lerche H, Lesca G, Leu C, Lewin N, Lewis-Smith D, Li GHY, Liao C, Licchetta L, Lin CH, Lin KL, Linnankivi T, Lo W, Lowenstein DH, Lowther C, Lubbers L, Lui CHT, Macedo-Souza LI, Madeleyn R, Madia F, Magri S, Maillard L, Marcuse L, Marques P, Marson AG, Matthews AG, May P, Mayer T, McArdle W, McCarroll SM, McGoldrick P, McGraw CM, McIntosh A, McQuillan A, Meador KJ, Mei D, Michel V, Millichap JJ, Minardi R, Montomoli M, Mostacci B, Muccioli L, Muhle H, Müller-Schlüter K, Najm IM, Nasreddine W, Neaves S, Neubauer BA, Newton CRJC, Noebels JL, Northstone K, Novod S, O’Brien TJ, Owusu-Agyei S, Özkara Ç, Palotie A, Papacostas SS, Parrini E, Pato C, Pato M, Pendziwiat M, Pennell PB, Petrovski S, Pickrell WO, Pinsky R, Pinto D, Pippucci T, Piras F, Piras F, Poduri A, Pondrelli F, Posthuma D, Powell RHW, Privitera M, Rademacher A, Ragona F, Ramirez-Hamouz B, Rau S, Raynes HR, Rees MI, Regan BM, Reif A, Reinthaler E, Rheims S, Ring SM, Riva A, Rojas E, Rosenow F, Ryvlin P, Saarela A, Sadleir LG, Salman B, Salmon A, Salpietro V, Sammarra I, Scala M, Schachter S, Schaller A, Schankin CJ, Scheffer IE, Schneider N, Schubert-Bast S, Schulze-Bonhage A, Scudieri P, Sedláčková L, Shain C, Sham PC, Shiedley BR, Siena SA, Sills GJ, Sisodiya SM, Smoller JW, Solomonson M, Spalletta G, Sparks KR, Sperling MR, Stamberger H, Steinhoff BJ, Stephani U, Štěrbová K, Stewart WC, Stipa C, Striano P, Strzelczyk A, Surges R, Suzuki T, Talarico M, Talkowski ME, Taneja RS, Tanteles GA, Timonen O, Timpson NJ, Tinuper P, Todaro M, Topaloglu P, Tsai MH, Tumiene B, Turkdogan D, Uğur-İşeri S, Utkus A, Vaidiswaran P, Valton L, van Baalen A, Vari MS, Vetro A, Vlčková M, von Brauchitsch S, von Spiczak S, Wagner RG, Watts N, Weber YG, Weckhuysen S, Widdess-Walsh P, Wiebe S, Wolf SM, Wolff M, Wolking S, Wong I, von Wrede R, Wu D, Yamakawa K, Yapıcı Z, Yis U, Yolken R, Yücesan E, Zagaglia S, Zahnert F, Zara F, Zimprich F, Zizovic M, Zsurka G, Neale BM, Berkovic SF. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. Nat Neurosci 2024; 27:1864-1879. [PMID: 39363051 PMCID: PMC11646479 DOI: 10.1038/s41593-024-01747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/01/2024] [Indexed: 10/05/2024]
Abstract
Identifying genetic risk factors for highly heterogeneous disorders such as epilepsy remains challenging. Here we present, to our knowledge, the largest whole-exome sequencing study of epilepsy to date, with more than 54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies and generalized and focal epilepsies, whereas most other gene discoveries are subtype specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single-nucleotide/short insertion and deletion variants, copy number variants and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies.
Collapse
|
4
|
Chen S, Abou-Khalil BW, Afawi Z, Ali QZ, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Arslan M, Auce P, Bahlo M, Baker MD, Balagura G, Balestrini S, Banks E, Barba C, Barboza K, Bartolomei F, Bass N, Baum LW, Baumgartner TH, Baykan B, Bebek N, Becker F, Bennett CA, Beydoun A, Bianchini C, Bisulli F, Blackwood D, Blatt I, Borggräfe I, Bosselmann C, Braatz V, Brand H, Brockmann K, Buono RJ, Busch RM, Caglayan SH, Canafoglia L, Canavati C, Castellotti B, Cavalleri GL, Cerrato F, Chassoux F, Cherian C, Cherny SS, Cheung CL, Chou IJ, Chung SK, Churchhouse C, Ciullo V, Clark PO, Cole AJ, Cosico M, Cossette P, Cotsapas C, Cusick C, Daly MJ, Davis LK, Jonghe PD, Delanty N, Dennig D, Depondt C, Derambure P, Devinsky O, Di Vito L, Dickerson F, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Ellis CA, Epstein L, Evans M, Faucon A, Feng YCA, Ferguson L, Ferraro TN, Da Silva IF, Ferri L, Feucht M, Fields MC, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, French JA, Freri E, Fu JM, Gabriel S, Gagliardi M, Gambardella A, Gauthier L, Giangregorio T, Gili T, Glauser TA, Goldberg E, Goldman A, Goldstein DB, Granata T, Grant R, Greenberg DA, Guerrini R, Gundogdu-Eken A, Gupta N, Haas K, Hakonarson H, Haryanyan G, Häusler M, Hegde M, Heinzen EL, Helbig I, Hengsbach C, Heyne H, Hirose S, Hirsch E, Ho CJ, Hoeper O, Howrigan DP, Hucks D, Hung PC, Iacomino M, Inoue Y, Inuzuka LM, Ishii A, Jehi L, Johnson MR, Johnstone M, Kälviäinen R, Kanaan M, Kara B, Kariuki SM, Kegele J, Kesim Y, Khoueiry-Zgheib N, Khoury J, King C, Klein KM, Kluger G, Knake S, Kok F, Korczyn AD, Korinthenberg R, Koupparis A, Kousiappa I, Krause R, Krenn M, Krestel H, Krey I, Kunz WS, Kurlemann G, Kuzniecky RI, Kwan P, La Vega-Talbott M, Labate A, Lacey A, Lal D, Laššuthová P, Lauxmann S, Lawthom C, Leech SL, Lehesjoki AE, Lemke JR, Lerche H, Lesca G, Leu C, Lewin N, Lewis-Smith D, Li GHY, Liao C, Licchetta L, Lin CH, Lin KL, Linnankivi T, Lo W, Lowenstein DH, Lowther C, Lubbers L, Lui CHT, Macedo-Souza LI, Madeleyn R, Madia F, Magri S, Maillard L, Marcuse L, Marques P, Marson AG, Matthews AG, May P, Mayer T, McArdle W, McCarroll SM, McGoldrick P, McGraw CM, McIntosh A, McQuillan A, Meador KJ, Mei D, Michel V, Millichap JJ, Minardi R, Montomoli M, Mostacci B, Muccioli L, Muhle H, Müller-Schlüter K, Najm IM, Nasreddine W, Neaves S, Neubauer BA, Newton CRJC, Noebels JL, Northstone K, Novod S, O'Brien TJ, Owusu-Agyei S, Özkara Ç, Palotie A, Papacostas SS, Parrini E, Pato C, Pato M, Pendziwiat M, Pennell PB, Petrovski S, Pickrell WO, Pinsky R, Pinto D, Pippucci T, Piras F, Piras F, Poduri A, Pondrelli F, Posthuma D, Powell RHW, Privitera M, Rademacher A, Ragona F, Ramirez-Hamouz B, Rau S, Raynes HR, Rees MI, Regan BM, Reif A, Reinthaler E, Rheims S, Ring SM, Riva A, Rojas E, Rosenow F, Ryvlin P, Saarela A, Sadleir LG, Salman B, Salmon A, Salpietro V, Sammarra I, Scala M, Schachter S, Schaller A, Schankin CJ, Scheffer IE, Schneider N, Schubert-Bast S, Schulze-Bonhage A, Scudieri P, Sedláčková L, Shain C, Sham PC, Shiedley BR, Siena SA, Sills GJ, Sisodiya SM, Smoller JW, Solomonson M, Spalletta G, Sparks KR, Sperling MR, Stamberger H, Steinhoff BJ, Stephani U, Štěrbová K, Stewart WC, Stipa C, Striano P, Strzelczyk A, Surges R, Suzuki T, Talarico M, Talkowski ME, Taneja RS, Tanteles GA, Timonen O, Timpson NJ, Tinuper P, Todaro M, Topaloglu P, Tsai MH, Tumiene B, Turkdogan D, Uğur-İşeri S, Utkus A, Vaidiswaran P, Valton L, van Baalen A, Vari MS, Vetro A, Vlčková M, von Brauchitsch S, von Spiczak S, Wagner RG, Watts N, Weber YG, Weckhuysen S, Widdess-Walsh P, Wiebe S, Wolf SM, Wolff M, Wolking S, Wong I, von Wrede R, Wu D, Yamakawa K, Yapıcı Z, Yis U, Yolken R, Yücesan E, Zagaglia S, Zahnert F, Zara F, Zimprich F, Zizovic M, Zsurka G, Neale BM, Berkovic SF. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.02.22.23286310. [PMID: 36865150 PMCID: PMC9980234 DOI: 10.1101/2023.02.22.23286310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Identifying genetic risk factors for highly heterogeneous disorders like epilepsy remains challenging. Here, we present the largest whole-exome sequencing study of epilepsy to date, with >54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets, and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies, generalized and focal epilepsies, while most other gene discoveries are subtype-specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single nucleotide/short indel-, copy number-, and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies.
Collapse
Affiliation(s)
- Siwei Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bassel W Abou-Khalil
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zaid Afawi
- Tel-Aviv University Sackler Faculty of Medicine, Ramat Aviv 69978, Israel
| | | | | | - Alison Anderson
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia
| | - Joe Anderson
- Neurology Department, Aneurin Bevan University Health Board, Newport, Wales, UK
| | | | - Grazia Annesi
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Mutluay Arslan
- Department of Child Neurology, Gülhane Education and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Pauls Auce
- St George's University Hospital NHS Foundation Trust, London, UK
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Biology, University of Melbourne, Parkville 3010, Australia
| | - Mark D Baker
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Eric Banks
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carmen Barba
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Karen Barboza
- University Health Network, University of Toronto, Toronto, ON, Canada
| | - Fabrice Bartolomei
- Clinical Neurophysiology and Epileptology Department, Timone Hospital, Marseille, France
| | - Nick Bass
- Division of Psychiatry, University College London
| | - Larry W Baum
- Department of Psychiatry, The University of Hong Kong, Pokulam, Hong Kong
| | - Tobias H Baumgartner
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Felicitas Becker
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Neurology, University of Ulm, Ulm 89081, Germany
| | - Caitlin A Bennett
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Ahmad Beydoun
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Claudia Bianchini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Francesca Bisulli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Douglas Blackwood
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ilan Blatt
- Tel-Aviv University Sackler Faculty of Medicine, Ramat Aviv 69978, Israel
- Department of Neurology, Sheba Medical Center, Ramat Gan, Israel
| | - Ingo Borggräfe
- Department of Pediatric Neurology, Dr von Hauner Children's Hospital, Ludwig Maximilians University, Munchen, Germany
| | - Christian Bosselmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Vera Braatz
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Knut Brockmann
- Children's Hospital, Dept. of Pediatric Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Russell J Buono
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical Sciences, Cooper Medical School of Rowan University Camden, NJ 08103, USA
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Robyn M Busch
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - S Hande Caglayan
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | | | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta Milano, Italy
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The FutureNeuro Research Centre, Dublin, Ireland
| | - Felecia Cerrato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francine Chassoux
- Epilepsy Unit, Department of Neurosurgery, Centre Hospitalier Sainte-Anne, and University Paris Descartes, Paris, France
| | - Christina Cherian
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stacey S Cherny
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong
| | - I-Jun Chou
- Department of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Seo-Kyung Chung
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
- Kids Research, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Brain & Mind Centre, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - Claire Churchhouse
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Valentina Ciullo
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Peggy O Clark
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrew J Cole
- Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mahgenn Cosico
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Patrick Cossette
- Department of Neurosciences, Université de Montréal, Montréal, CA 26758, Canada
| | | | - Caroline Cusick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark J Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter De Jonghe
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem 2650, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Norman Delanty
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The FutureNeuro Research Centre, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin D09 FT51, Ireland
| | | | - Chantal Depondt
- Department of Neurology, CUB Erasme Hospital, Hôpital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Philippe Derambure
- Department of Clinical Neurophysiology, Lille University Medical Center, EA 1046, University of Lille
| | - Orrin Devinsky
- Department of Neurology, New York University/Langone Health, New York NY, USA
| | - Lidia Di Vito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Faith Dickerson
- Sheppard Pratt, 6501 North Charles Street, Baltimore, Maryland, USA
| | - Dennis J Dlugos
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Viola Doccini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Colin P Doherty
- The FutureNeuro Research Centre, Dublin, Ireland
- Neurology Department, St. James's Hospital, Dublin D03 VX82, Ireland
| | - Hany El-Naggar
- The FutureNeuro Research Centre, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin D09 FT51, Ireland
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Leon Epstein
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL USA
| | - Meghan Evans
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Annika Faucon
- Human Genetics Training Program, Vanderbilt University, Nashville, TN, USA
| | - Yen-Chen Anne Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Biostatistics, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Lisa Ferguson
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University Camden, NJ 08103, USA
- Department of Pharmacology and Psychiatry, University of Pennsylvania Perlman School of Medicine, Philadelphia, PA 19104, USA
| | - Izabela Ferreira Da Silva
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Lorenzo Ferri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Martha Feucht
- Department of Pediatrics and Neonatology, Medical University of Vienna, Vienna 1090, Austria
| | - Madeline C Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark Fitzgerald
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | | | - Francesco Fortunato
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy
| | | | - Jacqueline A French
- Department of Neurology, New York University/Langone Health, New York NY, USA
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stacey Gabriel
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monica Gagliardi
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Laura Gauthier
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tania Giangregorio
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Medical Genetics Unit, Bologna, Italy
| | - Tommaso Gili
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Tracy A Glauser
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ethan Goldberg
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | | | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Riley Grant
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David A Greenberg
- Department of Pediatrics, Nationwide Children's Hospital, Columbia, Ohio, USA
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Aslı Gundogdu-Eken
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kevin Haas
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hakon Hakonarson
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Garen Haryanyan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Martin Häusler
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, University Hospital, RWTH Aachen, Aachen, Germany
| | - Manu Hegde
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Erin L Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Christian Hengsbach
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Henrike Heyne
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Germany
| | - Shinichi Hirose
- General Medical Research Center, School of Medicine, Fukuoka University, Japan
| | - Edouard Hirsch
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Olivia Hoeper
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Daniel P Howrigan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Donald Hucks
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Po-Chen Hung
- Department of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorder, Shizuoka, Japan
| | - Luciana Midori Inuzuka
- Epilepsy Clinic, Hospital Sirio-Libanes, Sao Paulo, Brazil
- Department of Neurology, University of Sao Paulo School of Medicine, Brazil
| | - Atsushi Ishii
- Department of Pediatrics, Fukuoka Sanno Hospital, Japan
| | - Lara Jehi
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mandy Johnstone
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Reetta Kälviäinen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Kuopio 70210, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Moien Kanaan
- Hereditary Research Lab, Bethlehem University, Bethlehem, Palestine
| | - Bulent Kara
- Department of Child Neurology, Medical School, Kocaeli University, Kocaeli, Turkey
| | - Symon M Kariuki
- Neuroscience Unit, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Public Health, Pwani University, Kilifi, Kenya
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Yeşim Kesim
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nathalie Khoueiry-Zgheib
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Jean Khoury
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chontelle King
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Karl Martin Klein
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
| | - Gerhard Kluger
- Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Vogtareuth, Germany
- Research Institute Rehabilitation / Transition, / Palliation, PMU Salzburg, Austria
| | - Susanne Knake
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Fernando Kok
- Department of Neurology, University of Sao Paulo School of Medicine, Brazil
- Mendelics Genomic Analysis, São Paulo, Brazil
| | - Amos D Korczyn
- Tel-Aviv University Sackler Faculty of Medicine, Ramat Aviv 69978, Israel
| | - Rudolf Korinthenberg
- Department of Neuropediatrics and Muscular Disorders, University Medical Center, University of Freiburg, Freiburg, Germany
| | | | | | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Heinz Krestel
- Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Wolfram S Kunz
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerhard Kurlemann
- Bonifatius Hospital Lingen, Neuropediatrics Wilhelmstrasse 13, 49808 Lingen, Germany
| | - Ruben I Kuzniecky
- Department of Neurology, Hofstra-Northwell Medical School, New York, NY, USA
| | - Patrick Kwan
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
| | - Maite La Vega-Talbott
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angelo Labate
- Neurophysiopatology and Movement Disorders Clinic, University of Messina, Messina, Italy
| | - Austin Lacey
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The FutureNeuro Research Centre, Dublin, Ireland
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Petra Laššuthová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Charlotte Lawthom
- Neurology Department, Aneurin Bevan University Health Board, Newport, Wales, UK
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Stephanie L Leech
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki 00290, Finland
- Medicum, University of Helsinki, Helsinki 00290, Finland
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Gaetan Lesca
- Department of Medical Genetics, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Costin Leu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naomi Lewin
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - David Lewis-Smith
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Department of Clinical Neurosciences, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Gloria Hoi-Yee Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hum, Hong Kong
| | - Calwing Liao
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kuang-Lin Lin
- Department of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tarja Linnankivi
- Child Neurology, New Childreńs Hospital, Helsinki, Finland
- Pediatric Research Center, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
| | - Warren Lo
- Department of Pediatrics and Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel H Lowenstein
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Chelsea Lowther
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura Lubbers
- Citizens United for Research in Epilepsy, Chicago, Illinois, USA
| | - Colin H T Lui
- Department of Medicine, Tseung Kwan O Hospital, Hong Kong
| | - Lucia Inês Macedo-Souza
- Department of Biology, Institute of Biological Sciences and Center for Study on Human Genome, University of São Paulo, São Paulo, Brazil
| | - Rene Madeleyn
- Department of Pediatrics, Filderklinik, Filderstadt, Germany
| | | | - Stefania Magri
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Louis Maillard
- Neurology Department, University Hospital of Nancy, UMR 7039, CNRS, Lorraine University, Nancy, France
| | - Lara Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paula Marques
- University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anthony G Marson
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, UK
| | | | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Thomas Mayer
- Epilepsy Center Kleinwachau, Radeberg 01454, Germany
| | - Wendy McArdle
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Steven M McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Patricia McGoldrick
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Boston Children's Health Physicians, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, New York, NY 10595, USA
| | | | - Andrew McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | | | - Raffaella Minardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Martino Montomoli
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Lorenzo Muccioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Hiltrud Muhle
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Karen Müller-Schlüter
- Epilepsy Center for Children, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Imad M Najm
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Wassim Nasreddine
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samuel Neaves
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
| | | | - Charles R J C Newton
- Neuroscience Unit, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Public Health, Pwani University, Kilifi, Kenya
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Cape Town, South Africa
| | | | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Sam Novod
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Terence J O'Brien
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia
| | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
- University of Health and Allied Science in Ho, Ghana
| | - Çiğdem Özkara
- Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Aarno Palotie
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Neurology, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 0014, Finland
| | | | - Elena Parrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Carlos Pato
- Departments of Psychiatry, Rutgers University, Robert Wood Johnson Medical School and New Jersey Medical School, New Brunswick, NJ, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Michele Pato
- Departments of Psychiatry, Rutgers University, Robert Wood Johnson Medical School and New Jersey Medical School, New Brunswick, NJ, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Manuela Pendziwiat
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Slavé Petrovski
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - William O Pickrell
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
- Department of Neurology, Morriston Hospital, Swansea Bay University Bay Health Board, Swansea, Wales, UK
| | - Rebecca Pinsky
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Dalila Pinto
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Medical Genetics Unit, Bologna, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Federica Pondrelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
| | - Robert H W Powell
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
- Department of Neurology, Morriston Hospital, Swansea Bay University Bay Health Board, Swansea, Wales, UK
| | - Michael Privitera
- Department of Neurology, Gardner Neuroscience Institute, University of Cincinnati Medical Center, Cincinnati, OH 45220, USA
| | - Annika Rademacher
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Byron Ramirez-Hamouz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Rau
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Hillary R Raynes
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark I Rees
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
- Brain & Mind Centre, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - Brigid M Regan
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg
| | - Eva Reinthaler
- Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, France
- Lyon's Neuroscience Research Center, INSERM U1028 / CNRS UMR 5292, Lyon, France
| | - Susan M Ring
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
| | - Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Enrique Rojas
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL USA
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland
| | - Anni Saarela
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Kuopio 70210, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Barış Salman
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Andrea Salmon
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Ilaria Sammarra
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Marcello Scala
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Steven Schachter
- Departments of Neurology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02215, USA
| | - André Schaller
- Institute of Human Genetics, Bern University Hospital, Bern, Switzerland
| | - Christoph J Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - Ingrid E Scheffer
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
- Florey and Murdoch Children's Research Institutes, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Natascha Schneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Department of Neuropediatrics, Children's Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Paolo Scudieri
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Lucie Sedláčková
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Catherine Shain
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Pokulam, Hong Kong
| | - Beth R Shiedley
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - S Anthony Siena
- Medical School, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Matthew Solomonson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn R Sparks
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL USA
| | - Michael R Sperling
- Department of Neurology and Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hannah Stamberger
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem 2650, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | | | - Ulrich Stephani
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Katalin Štěrbová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - William C Stewart
- Department of Pediatrics, Nationwide Children's Hospital, Columbia, Ohio, USA
| | - Carlotta Stipa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
| | - Toshimitsu Suzuki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mariagrazia Talarico
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Randip S Taneja
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Oskari Timonen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Nicholas John Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Marian Todaro
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia
| | - Pınar Topaloglu
- Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Birute Tumiene
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Dilsad Turkdogan
- Department of Child Neurology, Medical School, Marmara University, Istanbul, Turkey
| | - Sibel Uğur-İşeri
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Algirdas Utkus
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Priya Vaidiswaran
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Luc Valton
- Department of Neurology, UMR 5549, CNRS, Toulouse University Hospital, University of Toulouse, Toulouse, France
| | - Andreas van Baalen
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | | | - Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Markéta Vlčková
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Sophie von Brauchitsch
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Sarah von Spiczak
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
- DRK-Northern German Epilepsy Centre for Children and Adolescents, 24223 Schwentinental-Raisdorf, Germany
| | - Ryan G Wagner
- MRC/Wits Rural Public Health & Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Nick Watts
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Neurology and Epileptology, University of Aachen, Aachen 52074, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem 2650, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Peter Widdess-Walsh
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The FutureNeuro Research Centre, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin D09 FT51, Ireland
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Clinical Research Unit, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steven M Wolf
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Boston Children's Health Physicians, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, New York, NY 10595, USA
| | - Markus Wolff
- Department of Pediatric Neurology, Vivantes Hospital Neukölln, 12351 Berlin, Germany
| | - Stefan Wolking
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Neurology and Epileptology, University of Aachen, Aachen 52074, Germany
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
| | - David Wu
- Human Genetics Training Program, Vanderbilt University, Nashville, TN, USA
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Zuhal Yapıcı
- Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Uluc Yis
- Department of Child Neurology, Medical School, Dokuz Eylul University, Izmir, Turkey
| | - Robert Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emrah Yücesan
- Bezmialem Vakif University, Institute of Life Sciences and Biotechnology, Istanbul, Turkey
| | - Sara Zagaglia
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Felix Zahnert
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Federico Zara
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Milena Zizovic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Gábor Zsurka
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin M Neale
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| |
Collapse
|
5
|
Paulet A, Bennett-Ness C, Ageorges F, Trost D, Green A, Goudie D, Jewell R, Kraatari-Tiri M, Piard J, Coubes C, Lam W, Lynch SA, Groeschel S, Ramond F, Fluss J, Fagerberg C, Brasch Andersen C, Varvagiannis K, Kleefstra T, Gérard B, Fradin M, Vitobello A, Tenconi R, Denommé-Pichon AS, Vincent-Devulder A, Haack T, Marsh JA, Laulund LW, Grimmel M, Riess A, de Boer E, Padilla-Lopez S, Bakhtiari S, Ostendorf A, Zweier C, Smol T, Willems M, Faivre L, Scala M, Striano P, Bagnasco I, Koboldt D, Iascone M, Suerink M, Kruer MC, Levy J, Verloes A, Abbott CM, Ruaud L. Expansion of the neurodevelopmental phenotype of individuals with EEF1A2 variants and genotype-phenotype study. Eur J Hum Genet 2024; 32:1144-1149. [PMID: 38355961 PMCID: PMC11369172 DOI: 10.1038/s41431-024-01560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.
Collapse
Affiliation(s)
- Alix Paulet
- Département de Génétique, Hôpital Robert-Debré, Paris, France.
| | - Cavan Bennett-Ness
- Centre for Genomic and Experimental Medicine and Simons Initiative for the Developing Brain, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | | | | | - Andrew Green
- UCD School of Medicine and Medical Science Consultant in Clinical Genetics, Dublin, Ireland
| | - David Goudie
- Regional Genetics Service, NHS Tayside, Dundee, Scotland, UK
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, England, UK
| | - Minna Kraatari-Tiri
- Department of Clinical Genetics, Research unit of Clinical Medicine, Medical Research Center Oulu, Oulu, Finland
- Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juliette Piard
- Centre de Génétique Humaine, CHU Besançon, Besançon, France
| | - Christine Coubes
- Service de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Wayne Lam
- South-East of Scotland Clinical Genetics Service, General Hospital, Edinburgh, Scotland, UK
| | - Sally Ann Lynch
- Clinical Genetics, Children's Health Ireland, Dublin, Ireland
| | - Samuel Groeschel
- Department of Neuropediatrics, University Children's Hospital, Tuebingen, Germany
| | - Francis Ramond
- Service de Génétique, CHU Saint-Etienne - Hôpital Nord, Saint-Etienne, France
| | - Joël Fluss
- University Hospitals of Geneva, Geneva, Switzerland
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | | | - Tjitske Kleefstra
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| | | | - Mélanie Fradin
- Service de Génétique Médicale, Hôpital Sud, CHU de Rennes, Rennes, France
| | - Antonio Vitobello
- UMR-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Romano Tenconi
- Servizio di Genetica Medica, Dipartimento di Pediatra, Padova, Italia
| | - Anne-Sophie Denommé-Pichon
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | | | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joseph A Marsh
- MRC Human Genetics Unit, Western General Hospital, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Elke de Boer
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Adam Ostendorf
- Steve and Cindy Rasmussen Institute for Genomic Medicine Nationwide Children's Hospital, Colombus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Colombus, USA
| | - Christiane Zweier
- Department of Human Genetics, Inselspital Bern, University of Bern, 3010, Bern, Switzerland
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Thomas Smol
- University of Lille, EA7364-RADEME, Medical Genetics Institute, Chu Lille, Lille, France
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Groupe DI, Inserm U1298, INM, Montpellier University, Montpellier, France
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Maladies Rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD et Institut GIMI, CHU dijon, Bourgogne, Dijon, France
| | - Marcello Scala
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Irene Bagnasco
- Division of Child Neuropsychiatry, Martini Hospital, Torino, Italy
| | - Daniel Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine Nationwide Children's Hospital, Colombus, Ohio, USA
| | | | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Jonathan Levy
- Département de Génétique, Hôpital Robert-Debré, Paris, France
| | - Alain Verloes
- Département de Génétique, Hôpital Robert-Debré, Paris, France
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine and Simons Initiative for the Developing Brain, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | - Lyse Ruaud
- Département de Génétique, Hôpital Robert-Debré, Paris, France
| |
Collapse
|
6
|
Silva DB, Trinidad M, Ljungdahl A, Revalde JL, Berguig GY, Wallace W, Patrick CS, Bomba L, Arkin M, Dong S, Estrada K, Hutchinson K, LeBowitz JH, Schlessinger A, Johannesen KM, Møller RS, Giacomini KM, Froelich S, Sanders SJ, Wuster A. Haploinsufficiency underlies the neurodevelopmental consequences of SLC6A1 variants. Am J Hum Genet 2024; 111:1222-1238. [PMID: 38781976 PMCID: PMC11179425 DOI: 10.1016/j.ajhg.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Heterozygous variants in SLC6A1, encoding the GAT-1 GABA transporter, are associated with seizures, developmental delay, and autism. The majority of affected individuals carry missense variants, many of which are recurrent germline de novo mutations, raising the possibility of gain-of-function or dominant-negative effects. To understand the functional consequences, we performed an in vitro GABA uptake assay for 213 unique variants, including 24 control variants. De novo variants consistently resulted in a decrease in GABA uptake, in keeping with haploinsufficiency underlying all neurodevelopmental phenotypes. Where present, ClinVar pathogenicity reports correlated well with GABA uptake data; the functional data can inform future reports for the remaining 72% of unscored variants. Surface localization was assessed for 86 variants; two-thirds of loss-of-function missense variants prevented GAT-1 from being present on the membrane while GAT-1 was on the surface but with reduced activity for the remaining third. Surprisingly, recurrent de novo missense variants showed moderate loss-of-function effects that reduced GABA uptake with no evidence for dominant-negative or gain-of-function effects. Using linear regression across multiple missense severity scores to extrapolate the functional data to all potential SLC6A1 missense variants, we observe an abundance of GAT-1 residues that are sensitive to substitution. The extent of this missense vulnerability accounts for the clinically observed missense enrichment; overlap with hypermutable CpG sites accounts for the recurrent missense variants. Strategies to increase the expression of the wild-type SLC6A1 allele are likely to be beneficial across neurodevelopmental disorders, though the developmental stage and extent of required rescue remain unknown.
Collapse
Affiliation(s)
- Dina Buitrago Silva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Marena Trinidad
- BioMarin Pharmaceutical Inc., Novato, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Alicia Ljungdahl
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford OX3 7TY, UK
| | - Jezrael L Revalde
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Cory S Patrick
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Michelle Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Keino Hutchinson
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katrine M Johannesen
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Rikke S Møller
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Epilepsy Genetics and Personalized Medicine, Member of ERN Epicare, Danish Epilepsy Centre, Dianalund, Denmark
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford OX3 7TY, UK.
| | | |
Collapse
|
7
|
Iacomino M, Houerbi N, Fortuna S, Howe J, Li S, Scorrano G, Riva A, Cheng KW, Steiman M, Peltekova I, Yusuf A, Baldassari S, Tamburro S, Scudieri P, Musante I, Di Ludovico A, Guerrisi S, Balagura G, Corsello A, Efthymiou S, Murphy D, Uva P, Verrotti A, Fiorillo C, Delvecchio M, Accogli A, Elsabbagh M, Houlden H, Scherer SW, Striano P, Zara F, Chou TF, Salpietro V. Allelic heterogeneity and abnormal vesicle recycling in PLAA-related neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1268013. [PMID: 38650658 PMCID: PMC11033462 DOI: 10.3389/fnmol.2024.1268013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/16/2024] [Indexed: 04/25/2024] Open
Abstract
The human PLAA gene encodes Phospholipase-A2-Activating-Protein (PLAA) involved in trafficking of membrane proteins. Through its PUL domain (PLAP, Ufd3p, and Lub1p), PLAA interacts with p97/VCP modulating synaptic vesicles recycling. Although few families carrying biallelic PLAA variants were reported with progressive neurodegeneration, consequences of monoallelic PLAA variants have not been elucidated. Using exome or genome sequencing we identified PLAA de-novo missense variants, affecting conserved residues within the PUL domain, in children affected with neurodevelopmental disorders (NDDs), including psychomotor regression, intellectual disability (ID) and autism spectrum disorders (ASDs). Computational and in-vitro studies of the identified variants revealed abnormal chain arrangements at C-terminal and reduced PLAA-p97/VCP interaction, respectively. These findings expand both allelic and phenotypic heterogeneity associated to PLAA-related neurological disorders, highlighting perturbed vesicle recycling as a potential disease mechanism in NDDs due to genetic defects of PLAA.
Collapse
Affiliation(s)
- Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Nadia Houerbi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Jennifer Howe
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Giovanna Scorrano
- Department of Pediatrics, Sant'Annunziata Hospital, University "G. D'Annunzio", Chieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Riva
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Mandy Steiman
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Iskra Peltekova
- McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Afiqah Yusuf
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Tamburro
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, Sant'Annunziata Hospital, University "G. D'Annunzio", Chieti, Italy
| | - Sara Guerrisi
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - David Murphy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, QC, Canada
| | - Mayada Elsabbagh
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Stephen W Scherer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, United States
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
8
|
Lin ZJ, He JW, Zhu SY, Xue LH, Zheng JF, Zheng LQ, Huang BX, Chen GZ, Lin PX. Gene-gene interaction network analysis indicates CNTN2 is a candidate gene for idiopathic generalized epilepsy. Neurogenetics 2024; 25:131-139. [PMID: 38460076 DOI: 10.1007/s10048-024-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 03/11/2024]
Abstract
Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene-gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene-gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene-gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.
Collapse
Affiliation(s)
- Zhi-Jian Lin
- Department of Neurology, School of Clinical Medicine, the Affiliated Hospital of Putian UniversityFujian Medical UniversityBrain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Jun-Wei He
- Department of Neurology, School of Clinical Medicine, the Affiliated Hospital of Putian UniversityFujian Medical UniversityBrain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Sheng-Yin Zhu
- Department of Neurology, School of Clinical Medicine, the Affiliated Hospital of Putian UniversityFujian Medical UniversityBrain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Li-Hong Xue
- Department of Neurology, School of Clinical Medicine, the Affiliated Hospital of Putian UniversityFujian Medical UniversityBrain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Jian-Feng Zheng
- Department of Neurology, School of Clinical Medicine, the Affiliated Hospital of Putian UniversityFujian Medical UniversityBrain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Li-Qin Zheng
- Department of Neurology, School of Clinical Medicine, the Affiliated Hospital of Putian UniversityFujian Medical UniversityBrain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Bi-Xia Huang
- Department of Neurology, School of Clinical Medicine, the Affiliated Hospital of Putian UniversityFujian Medical UniversityBrain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Guo-Zhang Chen
- Department of Neurology, School of Clinical Medicine, the Affiliated Hospital of Putian UniversityFujian Medical UniversityBrain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Peng-Xing Lin
- Department of Neurology, School of Clinical Medicine, the Affiliated Hospital of Putian UniversityFujian Medical UniversityBrain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China.
| |
Collapse
|
9
|
Sultan T, Scorrano G, Panciroli M, Christoforou M, Raza Alvi J, Di Ludovico A, Qureshi S, Efthymiou S, Salpietro V, Houlden H. Clinical and molecular heterogeneity of VPS13D-related neurodevelopmental and movement disorders. Gene 2024; 899:148119. [PMID: 38160741 DOI: 10.1016/j.gene.2023.148119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The VPS13 family of proteins has been implicated in lipid transport and trafficking between endoplasmic reticulum and organelles, to maintain homeostasis of subcellular membranes. Recently, pathogenic variants in each human VPS13S gene, have been linked to distinct human neurodevelopmental or neurodegenerative disorders. Within the VPS13 family of genes, VPS13D is known to be implicated in mitochondria homeostasis and function. METHODS We investigated a Pakistani sibship affected with neurodevelopmental impairment and severe hyperkinetic (choreoathetoid) movements. Whole exome sequencing (WES) and Sanger sequencing were performed to identify potential candidate variants segregating in the family. We described clinical phenotypes and natural history of the disease during a 3-year clinical follow-up and summarized literature data related to previously identified patients with VPS13D-related neurological disorders. RESULTS We identified by WES an homozygous non-synonymous variant in VPS13D (c.5723 T > C; p.Ile1908Thr) as the potential underlying cause of the disease in our family. Two young siblings developed an early-onset neurological impairment characterized by global developmental delay, with impaired speech and motor milestones, associated to hyperkinetic movement disorders as well as progressive and non-progressive neurological abnormalities. CONCLUSION In this study we delineated the heterogeneity of VPS13D-related clinical phenotypes and described a novel VPS13D homozygous variant associated with severe neurological impairment. Further studies will be pivotal to understand the exact VPS13D function and its impact on mitochondria homeostasis, brain development and regulation of movements, to further clarify genotype-phenotype correlations and provide crucial prognostic information and potential therapeutic implications.
Collapse
Affiliation(s)
- Tipu Sultan
- Department of Pediatric Neurology, Children Hospital Lahore, Main Boulevard Gulberg, Nishtar Town, Lahore, Punjab 54000, Pakistan
| | | | - Marta Panciroli
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Marilena Christoforou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, Children Hospital Lahore, Main Boulevard Gulberg, Nishtar Town, Lahore, Punjab 54000, Pakistan
| | | | - Sameen Qureshi
- Department of Pediatric Neurology, Children Hospital Lahore, Main Boulevard Gulberg, Nishtar Town, Lahore, Punjab 54000, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
10
|
Boussetta A, Abida N, Jellouli M, Ziadi J, Gargah T. Delayed Graft Function in Pediatric Kidney Transplant: Risk Factors and Outcomes. EXP CLIN TRANSPLANT 2024; 22:110-117. [PMID: 38385384 DOI: 10.6002/ect.mesot2023.o20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVES We aimed to identify risk factors and outcomes of delayed graft function in pediatric kidney transplant. MATERIALS AND METHODS This retrospective study included all kidney transplant recipients ≤19 years old followed up in our department for a period of 34 years, from January 1989 to December 2022. RESULTS We included 113 kidney transplant recipients. Delayed graft function occurred in 17 cases (15%). Posttransplant red blood cell transfusion was strongly associated with delayed graft function (adjusted odds ratio = 23.91; 95% CI, 2.889-197.915). Use of allografts with multiple arteries and cold ischemia time >20 hours were risk factors for delayed graft function (adjusted odds ratio = 52.51 and 49.4; 95% CI, 2.576-1070.407 and 1.833-1334.204, respectively). Sex-matched transplants and living donors were protective factors for delayed graft function (adjusted odds ratio = 0.043 and 0.027; 95% CI, 0.005-0.344 and 0.003-0.247, respectively). Total HLA mismatches <3 played a protective role for delayed graft function (adjusted odds ratio = 0.114; 95% CI, 0.020-0.662), whereas transplant within compatible but different blood types increased the risk of delayed graft function (adjusted odds ratio = 20.54; 95% CI, 1.960- 215.263). No significant correlation was shown between delayed graft function and allograft survival (P = .190). Our study suggested delayed graft function as a key factor in allograft rejection-free survival (adjusted odds ratio = 3.832; 95% CI, 1.186-12.377). Delayed graft function was a negative factor for early graft function; patients with delayed graft function had a lower estimated glomerular filtration rate at discharge (P = .024) and at 3 (P = .034), 6 (P = .019), and 12 months (P = .011) posttransplant. CONCLUSIONS Delayed graft function is a major determinant of early graft function and allograft rejection-free survival. Further research is required to establish proper preventive measures.
Collapse
Affiliation(s)
- Abir Boussetta
- From the Pediatric Nephrology Department, Charles Nicolle Hospital and the University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
| | | | | | | | | |
Collapse
|
11
|
Scorrano G, Battaglia L, Spiaggia R, Basile A, Palmucci S, Foti PV, David E, Marinangeli F, Mascilini I, Corsello A, Comisi F, Vittori A, Salpietro V. Neuroimaging in PRUNE1 syndrome: a mini-review of the literature. Front Neurol 2023; 14:1301147. [PMID: 38178891 PMCID: PMC10764560 DOI: 10.3389/fneur.2023.1301147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Prune exopolyphosphatase 1 (PRUNE1) is a short-chain phosphatase that is part of the aspartic acid-histidine-histidine (DHH) family of proteins. PRUNE1 is highly expressed in the central nervous system and is crucially involved in neurodevelopment, cytoskeletal rearrangement, cell migration, and proliferation. Recently, biallelic PRUNE1 variants have been identified in patients with neurodevelopmental disorders, hypotonia, microcephaly, variable cerebral anomalies, and other features. PRUNE1 hypomorphic mutations mainly affect the DHH1 domain, leading to an impactful decrease in enzymatic activity with a loss-of-function mechanism. In this review, we explored both the clinical and radiological spectrum related to PRUNE1 pathogenic variants described to date. Specifically, we focused on neuroradiological findings that, together with clinical phenotypes and genetic data, allow us to best characterize affected children with diagnostic and potential prognostic implications.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Battaglia
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Rossana Spiaggia
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Franco Marinangeli
- Department of Anesthesia, Critical Care and Pain Therapy, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Mascilini
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | | | | | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
12
|
Battaglia L, Scorrano G, Spiaggia R, Basile A, Palmucci S, Foti PV, Spatola C, Iacomino M, Marinangeli F, Francia E, Comisi F, Corsello A, Salpietro V, Vittori A, David E. Neuroimaging features of WOREE syndrome: a mini-review of the literature. Front Pediatr 2023; 11:1301166. [PMID: 38161429 PMCID: PMC10757851 DOI: 10.3389/fped.2023.1301166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The WWOX gene encodes a 414-amino-acid protein composed of two N-terminal WW domains and a C-terminal short-chain dehydrogenase/reductase (SDR) domain. WWOX protein is highly conserved among species and mainly expressed in the cerebellum, cerebral cortex, brain stem, thyroid, hypophysis, and reproductive organs. It plays a crucial role in the biology of the central nervous system, and it is involved in neuronal development, migration, and proliferation. Biallelic pathogenic variants in WWOX have been associated with an early infantile epileptic encephalopathy known as WOREE syndrome. Both missense and null variants have been described in affected patients, leading to a reduction in protein function and stability. The most severe WOREE phenotypes have been related to biallelic null/null variants, associated with the complete loss of function of the protein. All affected patients showed brain anomalies on magnetic resonance imaging (MRI), suggesting the pivotal role of WWOX protein in brain homeostasis and developmental processes. We provided a literature review, exploring both the clinical and radiological spectrum related to WWOX pathogenic variants, described to date. We focused on neuroradiological findings to better delineate the WOREE phenotype with diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Laura Battaglia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Giovanna Scorrano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rossana Spiaggia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Corrado Spatola
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Franco Marinangeli
- Department of Anesthesia, Critical Care and Pain Therapy, University of L’aquila, L’aquila, Italy
| | - Elisa Francia
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | | | | | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| |
Collapse
|
13
|
Girard A, Moreau C, Michaud JL, Minassian B, Cossette P, Girard SL. Unraveling the role of non-coding rare variants in epilepsy. PLoS One 2023; 18:e0291935. [PMID: 37756314 PMCID: PMC10529579 DOI: 10.1371/journal.pone.0291935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The discovery of new variants has leveled off in recent years in epilepsy studies, despite the use of very large cohorts. Consequently, most of the heritability is still unexplained. Rare non-coding variants have been largely ignored in studies on epilepsy, although non-coding single nucleotide variants can have a significant impact on gene expression. We had access to whole genome sequencing (WGS) from 247 epilepsy patients and 377 controls. To assess the functional impact of non-coding variants, ExPecto, a deep learning algorithm was used to predict expression change in brain tissues. We compared the burden of rare non-coding deleterious variants between cases and controls. Rare non-coding highly deleterious variants were significantly enriched in Genetic Generalized Epilepsy (GGE), but not in Non-Acquired Focal Epilepsy (NAFE) or all epilepsy cases when compared with controls. In this study we showed that rare non-coding deleterious variants are associated with epilepsy, specifically with GGE. Larger WGS epilepsy cohort will be needed to investigate those effects at a greater resolution. Nevertheless, we demonstrated the importance of studying non-coding regions in epilepsy, a disease where new discoveries are scarce.
Collapse
Affiliation(s)
- Alexandre Girard
- Centre Intersectoriel en Santé Durable, University of Quebec in Chicoutimi, Saguenay, Canada
| | - Claudia Moreau
- Centre Intersectoriel en Santé Durable, University of Quebec in Chicoutimi, Saguenay, Canada
| | - Jacques L. Michaud
- CHU Sainte-Justine, Montréal, Canada
- Department of Neurosciences and Department of Pediatrics, University of Montreal, Montréal, Canada
| | - Berge Minassian
- The Hospital for Sick Children, Department of Pediatrics, Toronto, Canada
- Department of Pediatrics, University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Patrick Cossette
- CHUM Research Center, Montréal, Canada
- Department of Neurosciences, University of Montreal, Montréal, Canada
| | - Simon L. Girard
- Centre Intersectoriel en Santé Durable, University of Quebec in Chicoutimi, Saguenay, Canada
- CERVO Research Center, Laval University, Québec, Canada
| |
Collapse
|
14
|
Stevelink R, Campbell C, Chen S, Abou-Khalil B, Adesoji OM, Afawi Z, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Auce P, Avbersek A, Bahlo M, Baker MD, Balagura G, Balestrini S, Barba C, Barboza K, Bartolomei F, Bast T, Baum L, Baumgartner T, Baykan B, Bebek N, Becker AJ, Becker F, Bennett CA, Berghuis B, Berkovic SF, Beydoun A, Bianchini C, Bisulli F, Blatt I, Bobbili DR, Borggraefe I, Bosselmann C, Braatz V, Bradfield JP, Brockmann K, Brody LC, Buono RJ, Busch RM, Caglayan H, Campbell E, Canafoglia L, Canavati C, Cascino GD, Castellotti B, Catarino CB, Cavalleri GL, Cerrato F, Chassoux F, Cherny SS, Cheung CL, Chinthapalli K, Chou IJ, Chung SK, Churchhouse C, Clark PO, Cole AJ, Compston A, Coppola A, Cosico M, Cossette P, Craig JJ, Cusick C, Daly MJ, Davis LK, de Haan GJ, Delanty N, Depondt C, Derambure P, Devinsky O, Di Vito L, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Elger CE, Ellis CA, Eriksson JG, Faucon A, Feng YCA, Ferguson L, Ferraro TN, Ferri L, Feucht M, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, Franke A, French JA, Freri E, Gagliardi M, Gambardella A, Geller EB, Giangregorio T, Gjerstad L, Glauser T, Goldberg E, Goldman A, Granata T, Greenberg DA, Guerrini R, Gupta N, Haas KF, Hakonarson H, Hallmann K, Hassanin E, Hegde M, Heinzen EL, Helbig I, Hengsbach C, Heyne HO, Hirose S, Hirsch E, Hjalgrim H, Howrigan DP, Hucks D, Hung PC, Iacomino M, Imbach LL, Inoue Y, Ishii A, Jamnadas-Khoda J, Jehi L, Johnson MR, Kälviäinen R, Kamatani Y, Kanaan M, Kanai M, Kantanen AM, Kara B, Kariuki SM, Kasperavičiūte D, Kasteleijn-Nolst Trenite D, Kato M, Kegele J, Kesim Y, Khoueiry-Zgheib N, King C, Kirsch HE, Klein KM, Kluger G, Knake S, Knowlton RC, Koeleman BPC, Korczyn AD, Koupparis A, Kousiappa I, Krause R, Krenn M, Krestel H, Krey I, Kunz WS, Kurki MI, Kurlemann G, Kuzniecky R, Kwan P, Labate A, Lacey A, Lal D, Landoulsi Z, Lau YL, Lauxmann S, Leech SL, Lehesjoki AE, Lemke JR, Lerche H, Lesca G, Leu C, Lewin N, Lewis-Smith D, Li GHY, Li QS, Licchetta L, Lin KL, Lindhout D, Linnankivi T, Lopes-Cendes I, Lowenstein DH, Lui CHT, Madia F, Magnusson S, Marson AG, May P, McGraw CM, Mei D, Mills JL, Minardi R, Mirza N, Møller RS, Molloy AM, Montomoli M, Mostacci B, Muccioli L, Muhle H, Müller-Schlüter K, Najm IM, Nasreddine W, Neale BM, Neubauer B, Newton CRJC, Nöthen MM, Nothnagel M, Nürnberg P, O’Brien TJ, Okada Y, Ólafsson E, Oliver KL, Özkara C, Palotie A, Pangilinan F, Papacostas SS, Parrini E, Pato CN, Pato MT, Pendziwiat M, Petrovski S, Pickrell WO, Pinsky R, Pippucci T, Poduri A, Pondrelli F, Powell RHW, Privitera M, Rademacher A, Radtke R, Ragona F, Rau S, Rees MI, Regan BM, Reif PS, Rhelms S, Riva A, Rosenow F, Ryvlin P, Saarela A, Sadleir LG, Sander JW, Sander T, Scala M, Scattergood T, Schachter SC, Schankin CJ, Scheffer IE, Schmitz B, Schoch S, Schubert-Bast S, Schulze-Bonhage A, Scudieri P, Sham P, Sheidley BR, Shih JJ, Sills GJ, Sisodiya SM, Smith MC, Smith PE, Sonsma ACM, Speed D, Sperling MR, Stefansson H, Stefansson K, Steinhoff BJ, Stephani U, Stewart WC, Stipa C, Striano P, Stroink H, Strzelczyk A, Surges R, Suzuki T, Tan KM, Taneja RS, Tanteles GA, Taubøll E, Thio LL, Thomas GN, Thomas RH, Timonen O, Tinuper P, Todaro M, Topaloğlu P, Tozzi R, Tsai MH, Tumiene B, Turkdogan D, Unnsteinsdóttir U, Utkus A, Vaidiswaran P, Valton L, van Baalen A, Vetro A, Vining EPG, Visscher F, von Brauchitsch S, von Wrede R, Wagner RG, Weber YG, Weckhuysen S, Weisenberg J, Weller M, Widdess-Walsh P, Wolff M, Wolking S, Wu D, Yamakawa K, Yang W, Yapıcı Z, Yücesan E, Zagaglia S, Zahnert F, Zara F, Zhou W, Zimprich F, Zsurka G, Zulfiqar Ali Q. GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture. Nat Genet 2023; 55:1471-1482. [PMID: 37653029 PMCID: PMC10484785 DOI: 10.1038/s41588-023-01485-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment.
Collapse
|
15
|
McKee JL, Karlin A, deCampo D, Helbig I. GLUT1, GGE, and the resilient fallacy of refuted epilepsy genes. Seizure 2023; 109:97-98. [PMID: 37331727 DOI: 10.1016/j.seizure.2023.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 06/20/2023] Open
Affiliation(s)
- Jillian L McKee
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alexis Karlin
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Danielle deCampo
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Boßelmann CM, Leu C, Lal D. Technological and computational approaches to detect somatic mosaicism in epilepsy. Neurobiol Dis 2023:106208. [PMID: 37343892 DOI: 10.1016/j.nbd.2023.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Lesional epilepsy is a common and severe disease commonly associated with malformations of cortical development, including focal cortical dysplasia and hemimegalencephaly. Recent advances in sequencing and variant calling technologies have identified several genetic causes, including both short/single nucleotide and structural somatic variation. In this review, we aim to provide a comprehensive overview of the methodological advancements in this field while highlighting the unresolved technological and computational challenges that persist, including ultra-low variant allele fractions in bulk tissue, low availability of paired control samples, spatial variability of mutational burden within the lesion, and the issue of false-positive calls and validation procedures. Information from genetic testing in focal epilepsy may be integrated into clinical care to inform histopathological diagnosis, postoperative prognosis, and candidate precision therapies.
Collapse
Affiliation(s)
- Christian M Boßelmann
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA, USA; Cologne Center for Genomics (CCG), University of Cologne, Cologne, DE, USA
| |
Collapse
|
17
|
Fife JD, Cassa CA. Estimating clinical risk in gene regions from population sequencing cohort data. Am J Hum Genet 2023; 110:940-949. [PMID: 37236177 PMCID: PMC10257006 DOI: 10.1016/j.ajhg.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
While pathogenic variants can significantly increase disease risk, it is still challenging to estimate the clinical impact of rare missense variants more generally. Even in genes such as BRCA2 or PALB2, large cohort studies find no significant association between breast cancer and rare missense variants collectively. Here, we introduce REGatta, a method to estimate clinical risk from variants in smaller segments of individual genes. We first define these regions by using the density of pathogenic diagnostic reports and then calculate the relative risk in each region by using over 200,000 exome sequences in the UK Biobank. We apply this method in 13 genes with established roles across several monogenic disorders. In genes with no significant difference at the gene level, this approach significantly separates disease risk for individuals with rare missense variants at higher or lower risk (BRCA2 regional model OR = 1.46 [1.12, 1.79], p = 0.0036 vs. BRCA2 gene model OR = 0.96 [0.85, 1.07] p = 0.4171). We find high concordance between these regional risk estimates and high-throughput functional assays of variant impact. We compare our method with existing methods and the use of protein domains (Pfam) as regions and find REGatta better identifies individuals at elevated or reduced risk. These regions provide useful priors and are potentially useful for improving risk assessment for genes associated with monogenic diseases.
Collapse
Affiliation(s)
- James D Fife
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher A Cassa
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Stella C, Díaz-Caneja CM, Penzol MJ, García-Alcón A, Solís A, Andreu-Bernabeu Á, Gurriarán X, Arango C, Parellada M, González-Peñas J. Analysis of common genetic variation across targets of microRNAs dysregulated both in ASD and epilepsy reveals negative correlation. Front Genet 2023; 14:1072563. [PMID: 36968597 PMCID: PMC10034058 DOI: 10.3389/fgene.2023.1072563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Genetic overlap involving rare disrupting mutations may contribute to high comorbidity rates between autism spectrum disorders and epilepsy. Despite their polygenic nature, genome-wide association studies have not reported a significant contribution of common genetic variation to comorbidity between both conditions. Analysis of common genetic variation affecting specific shared pathways such as miRNA dysregulation could help to elucidate the polygenic mechanisms underlying comorbidity between autism spectrum disorders and epilepsy. We evaluated here the role of common predisposing variation to autism spectrum disorders and epilepsy across target genes of 14 miRNAs selected through bibliographic research as being dysregulated in both disorders. We considered 4,581 target genes from various in silico sources. We described negative genetic correlation between autism spectrum disorders and epilepsy across variants located within target genes of the 14 miRNAs selected (p = 0.0228). Moreover, polygenic transmission disequilibrium test on an independent cohort of autism spectrum disorders trios (N = 233) revealed an under-transmission of autism spectrum disorders predisposing alleles within miRNAs’ target genes across autism spectrum disorders trios without comorbid epilepsy, thus reinforcing the negative relationship at the common genetic variation between both traits. Our study provides evidence of a negative relationship between autism spectrum disorders and epilepsy at the common genetic variation level that becomes more evident when focusing on the miRNA regulatory networks, which contrasts with observed clinical comorbidity and results from rare variation studies. Our findings may help to conceptualize the genetic heterogeneity and the comorbidity with epilepsy in autism spectrum disorders.
Collapse
Affiliation(s)
- Carol Stella
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Covadonga M. Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Maria Jose Penzol
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Alicia García-Alcón
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Solís
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Xaquín Gurriarán
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mara Parellada
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Javier González-Peñas,
| |
Collapse
|
19
|
Kovačević M, Janković M, Branković M, Milićević O, Novaković I, Sokić D, Ristić A, Shamsani J, Vojvodić N. Novel GATOR1 variants in focal epilepsy. Epilepsy Behav 2023; 141:109139. [PMID: 36848747 DOI: 10.1016/j.yebeh.2023.109139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/27/2023]
Abstract
INTRODUCTION Variants in GATOR1 genes are well established in focal epilepsy syndromes. A strong association of GATOR1 variants with drug-resistant epilepsy as well as an increased risk of sudden unexplained death in epilepsy warrants developing strategies to facilitate the identification of patients who could potentially benefit from genetic testing and precision medicine. We aimed to determine the yield of GATOR1 gene sequencing in patients with focal epilepsy typically referred for genetic testing, establish novel GATOR1 variants and determine clinical, electroencephalographic, and radiological characteristics of variant carriers. PATIENTS AND METHODS Ninety-six patients with clinical suspicion of genetic focal epilepsy with previous comprehensive diagnostic epilepsy evaluation in The Neurology Clinic, University Clinical Center of Serbia, were included in the study. Sequencing was performed using a custom gene panel encompassing DEPDC5, NPRL2, and NPRL3. Variants of interest (VOI) were classified according to criteria proposed by the American College of Medical Genetics and the Association for Molecular Pathology. RESULTS Four previously unreported VOI in 4/96 (4.2%) patients were found in our cohort. Three likely pathogenic variants were determined in 3/96 (3.1%) patients, one frameshift variant in DEPDC5 in a patient with nonlesional frontal lobe epilepsy, one splicogenic DEPDC5 variant in a patient with nonlesional posterior quadrant epilepsy, and one frameshift variant in NPRL2 in a patient with temporal lobe epilepsy associated with hippocampal sclerosis. Only one VOI, a missense variant in NPRL3, found in 1/96 (1.1%) patients, was classified as a variant of unknown significance. CONCLUSION GATOR1 gene sequencing was diagnostic in 3.1% of our cohort and revealed three novel likely pathogenic variants, including a previously unreported association of temporal lobe epilepsy with hippocampal sclerosis with an NPRL2 variant. Further research is essential for a better understanding of the clinical scope of GATOR1 gene-associated epilepsy.
Collapse
Affiliation(s)
- Maša Kovačević
- Neurology Clinic, University Clinical Center of Serbia, Serbia; Faculty of Medicine, University of Belgrade, Serbia.
| | - Milena Janković
- Neurology Clinic, University Clinical Center of Serbia, Serbia
| | | | | | | | - Dragoslav Sokić
- Neurology Clinic, University Clinical Center of Serbia, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| | - Aleksandar Ristić
- Neurology Clinic, University Clinical Center of Serbia, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| | | | - Nikola Vojvodić
- Neurology Clinic, University Clinical Center of Serbia, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
20
|
Fife JD, Cassa CA. Estimating clinical risk in gene regions from population sequencing cohort data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.06.23284281. [PMID: 36711752 PMCID: PMC9882564 DOI: 10.1101/2023.01.06.23284281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While pathogenic variants significantly increase disease risk in many genes, it is still challenging to estimate the clinical impact of rare missense variants more generally. Even in genes such as BRCA2 or PALB2 , large cohort studies find no significant association between breast cancer and rare germline missense variants collectively. Here we introduce REGatta, a method to improve the estimation of clinical risk in gene segments. We define gene regions using the density of pathogenic diagnostic reports, and then calculate the relative risk in each of these regions using 109,581 exome sequences from women in the UK Biobank. We apply this method in seven established breast cancer genes, and identify regions in each gene with statistically significant differences in breast cancer incidence for rare missense carriers. Even in genes with no significant difference at the gene level, this approach significantly separates rare missense variant carriers at higher or lower risk ( BRCA2 regional model OR=1.46 [1.12, 1.79], p=0.0036 vs. BRCA2 gene model OR=0.96 [0.85,1.07] p=0.4171). We find high concordance between these regional risk estimates and high-throughput functional assays of variant impact. We compare with existing methods and the use of protein domains (Pfam) as regions, and find REGatta better identifies individuals at elevated or reduced risk. These regions provide useful priors which can potentially be used to improve risk assessment and clinical management.
Collapse
Affiliation(s)
- James D Fife
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher A Cassa
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Motelow JE, Lippa NC, Hostyk J, Feldman E, Nelligan M, Ren Z, Alkelai A, Milner JD, Gharavi AG, Tang Y, Goldstein DB, Kernie SG. Risk Variants in the Exomes of Children With Critical Illness. JAMA Netw Open 2022; 5:e2239122. [PMID: 36306130 PMCID: PMC9617179 DOI: 10.1001/jamanetworkopen.2022.39122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Diagnostic genetic testing can lead to changes in management in the pediatric intensive care unit. Genetic risk in children with critical illness but nondiagnostic exome sequencing (ES) has not been explored. OBJECTIVE To assess the association between loss-of-function (LOF) variants and pediatric critical illness. DESIGN, SETTING, AND PARTICIPANTS This genetic association study examined ES first screened for causative variants among 267 children at the Morgan Stanley Children's Hospital of NewYork-Presbyterian, of whom 22 were otherwise healthy with viral respiratory failure; 18 deceased children with bronchiolitis from the Office of the Chief Medical Examiner of New York City, of whom 14 were previously healthy; and 9990 controls from the Institute for Genomic Medicine at Columbia University Irving Medical Center. The ES data were generated between January 1, 2015, and December 31, 2020, and analyzed between January 1, 2017, and September 2, 2022. EXPOSURE Critical illness. MAIN OUTCOMES AND MEASURES Odds ratios and P values for genes and gene-sets enriched for rare LOF variants and the loss-of-function observed/expected upper bound fraction (LOEUF) score at which cases have a significant enrichment. RESULTS This study included 285 children with critical illness (median [range] age, 4.1 [0-18.9] years; 148 [52%] male) and 9990 controls. A total of 228 children (80%) did not receive a genetic diagnosis. After quality control (QC), 231 children harbored excess rare LOF variants in genes with a LOEUF score of 0.680 or less (intolerant genes) (P = 1.0 × 10-5). After QC, 176 children without a diagnosis harbored excess ultrarare LOF variants in intolerant genes but only in those without a known disease association (odds ratio, 1.8; 95% CI, 1.3-2.5). After QC, 25 children with viral respiratory failure harbored excess ultrarare LOF variants in intolerant genes but only in those without a known disease association (odds ratio, 2.8; 95% CI, 1.1-6.6). A total of 114 undiagnosed children were enriched for de novo LOF variants in genes without a known disease association (observed, 14; expected, 6.8; enrichment, 2.05). CONCLUSIONS AND RELEVANCE In this genetic association study, excess LOF variants were observed among critically ill children despite nondiagnostic ES. Variants lay in genes without a known disease association, suggesting future investigation may connect phenotypes to causative genes.
Collapse
Affiliation(s)
- Joshua E. Motelow
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Natalie C. Lippa
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Joseph Hostyk
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Evin Feldman
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Matthew Nelligan
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York
| | | | - Ali G. Gharavi
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian, New York, New York
| | - Yingying Tang
- Molecular Genetics Laboratory, New York City Office of Chief Medical Examiner, New York, New York
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Steven G. Kernie
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
- NewYork-Presbyterian Hospital, New York, New York
| |
Collapse
|
22
|
Green TE, Motelow JE, Bennett MF, Ye Z, Bennett CA, Griffin NG, Damiano JA, Leventer RJ, Freeman JL, Harvey AS, Lockhart PJ, Sadleir LG, Boys A, Scheffer IE, Major H, Darbro BW, Bahlo M, Goldstein DB, Kerrigan JF, Heinzen EL, Berkovic SF, Hildebrand MS. Sporadic hypothalamic hamartoma is a ciliopathy with somatic and bi-allelic contributions. Hum Mol Genet 2022; 31:2307-2316. [PMID: 35137044 PMCID: PMC9307310 DOI: 10.1093/hmg/ddab366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1 and other key regulators of the sonic-hedgehog pathway in a minority of cases. Sonic-hedgehog signalling proteins localize to the cellular organelle primary cilia. We therefore explored the hypothesis that cilia gene variants may underlie hitherto unsolved cases of sporadic hypothalamic hamartoma. We performed high-depth exome sequencing and chromosomal microarray on surgically resected hypothalamic hamartoma tissue and paired leukocyte-derived DNA from 27 patients. We searched for both germline and somatic variants under both dominant and bi-allelic genetic models. In hamartoma-derived DNA of seven patients we identified bi-allelic (one germline, one somatic) variants within one of four cilia genes-DYNC2I1, DYNC2H1, IFT140 or SMO. In eight patients, we identified single somatic variants in the previously established hypothalamic hamartoma disease genes GLI3 or OFD1. Overall, we established a plausible molecular cause for 15/27 (56%) patients. Here, we expand the genetic architecture beyond single variants within dominant disease genes that cause sporadic hypothalamic hamartoma to bi-allelic (one germline/one somatic) variants, implicate three novel cilia genes and reconceptualize the disorder as a ciliopathy.
Collapse
Affiliation(s)
- Timothy E Green
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Joshua E Motelow
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Mark F Bennett
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Zimeng Ye
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Caitlin A Bennett
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Nicole G Griffin
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - John A Damiano
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Richard J Leventer
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Jeremy L Freeman
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - A Simon Harvey
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Paul J Lockhart
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand
| | - Amber Boys
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Heather Major
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52246, USA
| | - Benjamin W Darbro
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52246, USA
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - John F Kerrigan
- Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85013, USA
| | - Erin L Heinzen
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
23
|
Joyce KE, Onabanjo E, Brownlow S, Nur F, Olupona K, Fakayode K, Sroya M, Thomas GA, Ferguson T, Redhead J, Millar CM, Cooper N, Layton DM, Boardman-Pretty F, Caulfield MJ, Shovlin CL. Whole genome sequences discriminate hereditary hemorrhagic telangiectasia phenotypes by non-HHT deleterious DNA variation. Blood Adv 2022; 6:3956-3969. [PMID: 35316832 PMCID: PMC9278305 DOI: 10.1182/bloodadvances.2022007136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
The abnormal vascular structures of hereditary hemorrhagic telangiectasia (HHT) often cause severe anemia due to recurrent hemorrhage, but HHT causal genes do not predict the severity of hematological complications. We tested for chance inheritance and clinical associations of rare deleterious variants in which loss-of-function causes bleeding or hemolytic disorders in the general population. In double-blinded analyses, all 104 patients with HHT from a single reference center recruited to the 100 000 Genomes Project were categorized on new MALO (more/as-expected/less/opposite) sub-phenotype severity scales, and whole genome sequencing data were tested for high impact variants in 75 HHT-independent genes encoding coagulation factors, or platelet, hemoglobin, erythrocyte enzyme, and erythrocyte membrane constituents. Rare variants (all gnomAD allele frequencies <0.003) were identified in 56 (75%) of these 75 HHT-unrelated genes. Deleteriousness assignments by Combined Annotation Dependent Depletion (CADD) scores >15 were supported by gene-level mutation significance cutoff scores. CADD >15 variants were identified in 38/104 (36.5%) patients with HHT, found for 1 in 10 patients within platelet genes; 1 in 8 within coagulation genes; and 1 in 4 within erythrocyte hemolytic genes. In blinded analyses, patients with greater hemorrhagic severity that had been attributed solely to HHT vessels had more CADD-deleterious variants in platelet (Spearman ρ = 0.25; P = .008) and coagulation (Spearman ρ = 0.21; P = .024) genes. However, the HHT cohort had 60% fewer deleterious variants in platelet and coagulation genes than expected (Mann-Whitney test P = .021). In conclusion, patients with HHT commonly have rare variants in genes of relevance to their phenotype, offering new therapeutic targets and opportunities for informed, personalized medicine strategies.
Collapse
Affiliation(s)
- Katie E. Joyce
- Imperial College School of Medicine, Imperial College, London, United Kingdom
- Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, United Kingdom
| | - Ebun Onabanjo
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Sheila Brownlow
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Fadumo Nur
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Kike Olupona
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Kehinde Fakayode
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Manveer Sroya
- Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | | | - Teena Ferguson
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Julian Redhead
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Carolyn M. Millar
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - Nichola Cooper
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - D. Mark Layton
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | | | - Mark J. Caulfield
- Genomics England Research Consortium, Genomics England, London, United Kingdom
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; and
| | | | - Claire L. Shovlin
- Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, United Kingdom
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
24
|
Zhao X, Ning H, Wang Y, Zhao G, Mei S, Liu N, Wang C, Cai A, Wei E, Kong X. Genetic analysis and identification of novel variations in Chinese patients with pediatric epilepsy by whole-exome sequencing. Neurol Sci 2022; 43:4439-4451. [DOI: 10.1007/s10072-022-05953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
|
25
|
Duan R, Li HM, Hu WB, Hong CG, Chen ML, Cao J, Wang ZX, Chen CY, Yin F, Hu ZH, Li JD, Xie H, Liu ZZ. Recurrent de novo single point variant on the gene encoding Na +/K + pump results in epilepsy. Prog Neurobiol 2022; 216:102310. [PMID: 35724808 DOI: 10.1016/j.pneurobio.2022.102310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Abstract
The etiology of epilepsy remains undefined in two-thirds of patients. Here, we identified a de novo variant of ATP1A2 (c.2426 T > G, p.Leu809Arg), which encodes the α2 subunit of Na+/K+-ATPase, from a family with idiopathic epilepsy. This variant caused epilepsy with hemiplegic migraine in the study patients. We generated the point variant mouse model Atp1a2L809R, which recapitulated the epilepsy observed in the study patients. In Atp1a2L809R/WT mice, convulsions were observed and cognitive and memory function was impaired. This variant affected the potassium binding function of the protein, disabling its ion transport ability, thereby increasing the frequency of nerve impulses. Valproate (VPA) and Carbamazepine (CBZ) have limited therapeutic efficacy in ameliorating the epileptic syndromes of Atp1a2L809R/WT mice. Our work revealed that ATP1A2L809R variants cause a predisposition to epilepsy. Moreover, we provide a point variant mouse model for epilepsy research and drug screening.
Collapse
Affiliation(s)
- Ran Duan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong-Ming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wen-Bao Hu
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Meng-Lu Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhen-Xing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun-Yuan Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhong-Hua Hu
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia-Da Li
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Hui Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China; Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China.
| | - Zheng-Zhao Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China.
| |
Collapse
|
26
|
Machine learning approaches to explore digenic inheritance. Trends Genet 2022; 38:1013-1018. [DOI: 10.1016/j.tig.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
|
27
|
Koko M, Motelow JE, Stanley KE, Bobbili DR, Dhindsa RS, May P. Association of ultra-rare coding variants with genetic generalized epilepsy: A case-control whole exome sequencing study. Epilepsia 2022; 63:723-735. [PMID: 35032048 PMCID: PMC8891088 DOI: 10.1111/epi.17166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE We aimed to identify genes associated with genetic generalized epilepsy (GGE) by combining large cohorts enriched with individuals with a positive family history. Secondarily, we set out to compare the association of genes independently with familial and sporadic GGE. METHODS We performed a case-control whole exome sequencing study in unrelated individuals of European descent diagnosed with GGE (previously recruited and sequenced through multiple international collaborations) and ancestry-matched controls. The association of ultra-rare variants (URVs; in 18 834 protein-coding genes) with epilepsy was examined in 1928 individuals with GGE (vs. 8578 controls), then separately in 945 individuals with familial GGE (vs. 8626 controls), and finally in 1005 individuals with sporadic GGE (vs. 8621 controls). We additionally examined the association of URVs with familial and sporadic GGE in two gene sets important for inhibitory signaling (19 genes encoding γ-aminobutyric acid type A [GABAA ] receptors, 113 genes representing the GABAergic pathway). RESULTS GABRG2 was associated with GGE (p = 1.8 × 10-5 ), approaching study-wide significance in familial GGE (p = 3.0 × 10-6 ), whereas no gene approached a significant association with sporadic GGE. Deleterious URVs in the most intolerant subgenic regions in genes encoding GABAA receptors were associated with familial GGE (odds ratio [OR] = 3.9, 95% confidence interval [CI] = 1.9-7.8, false discovery rate [FDR]-adjusted p = .0024), whereas their association with sporadic GGE had marginally lower odds (OR = 3.1, 95% CI = 1.3-6.7, FDR-adjusted p = .022). URVs in GABAergic pathway genes were associated with familial GGE (OR = 1.8, 95% CI = 1.3-2.5, FDR-adjusted p = .0024) but not with sporadic GGE (OR = 1.3, 95% CI = .9-1.9, FDR-adjusted p = .19). SIGNIFICANCE URVs in GABRG2 are likely an important risk factor for familial GGE. The association of gene sets of GABAergic signaling with familial GGE is more prominent than with sporadic GGE.
Collapse
Affiliation(s)
- Mahmoud Koko
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Joshua E. Motelow
- Institute for Genomic Medicine, Columbia University, 10032 New York, USA
| | - Kate E. Stanley
- Institute for Genomic Medicine, Columbia University, 10032 New York, USA
| | - Dheeraj R. Bobbili
- Luxembourg Centre for Systems Biomedicine, University Luxembourg, 4367 Belvaux, Luxembourg
| | - Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University, 10032 New York, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University Luxembourg, 4367 Belvaux, Luxembourg
| | | | | | | | | | | |
Collapse
|
28
|
Riva A, Nobile G, Giacomini T, Ognibene M, Scala M, Balagura G, Madia F, Accogli A, Romano F, Tortora D, Severino M, Scudieri P, Baldassari S, Musante I, Uva P, Salpietro V, Torella A, Nigro V, Capra V, Nobili L, Striano P, Mancardi MM, Zara F, Iacomino M. A Phenotypic-Driven Approach for the Diagnosis of WOREE Syndrome. Front Pediatr 2022; 10:847549. [PMID: 35573960 PMCID: PMC9100683 DOI: 10.3389/fped.2022.847549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND WOREE syndrome is a rare neurodevelopmental disorder featuring drug-resistant epilepsy and global developmental delay. The disease, caused by biallelic pathogenic variants in the WWOX gene, usually leads to severe disability or death within the first years of life. Clinicians have become more confident with the phenotypic picture of WOREE syndrome, allowing earlier clinical diagnosis. We report a boy with a peculiar clinic-radiological pattern supporting the diagnosis of WOREE syndrome. METHODS DNA was extracted from blood samples of the proband and his parents and subjected to Exome Sequencing (ES). Agarose gel electrophoresis, real-time quantitative PCR (Q-PCR), and array-CGH 180K were also performed. RESULTS ES detected a pathogenic stop variant (c.790C > T, p.Arg264*) in one allele of WWOX in the proband and his unaffected mother. A 180K array-CGH analysis revealed a 84,828-bp (g.chr16:78,360,803-78,445,630) deletion encompassing exon 6. The Q-PCR product showed that the proband and his father harbored the same deleted fragment, fusing exons 5 and 7 of WWOX. CONCLUSIONS Genetic testing remains crucial in establishing the definitive diagnosis of WOREE syndrome and allows prenatal interventions/parental counseling. However, our findings suggest that targeted Next Generation Sequencing-based testing may occasionally show technical pitfalls, prompting further genetic investigation in selected cases with high clinical suspicion.
Collapse
Affiliation(s)
- Antonella Riva
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Giulia Nobile
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Thea Giacomini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Unit of Child Neuropsychiatry, Epilepsy Centre, Department of Medical and Surgical Neuroscience and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marzia Ognibene
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ganna Balagura
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, Netherlands
| | - Francesca Madia
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ferruccio Romano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Uva
- Bioinformatica Clinica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vincenzo Salpietro
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Valeria Capra
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lino Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Unit of Child Neuropsychiatry, Epilepsy Centre, Department of Medical and Surgical Neuroscience and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Margherita Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Unit of Child Neuropsychiatry, Epilepsy Centre, Department of Medical and Surgical Neuroscience and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Bioinformatica Clinica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
29
|
Stenshorne I, Syvertsen M, Ramm-Pettersen A, Henning S, Weatherup E, Bjørnstad A, Brüggemann N, Spetalen T, Selmer KK, Koht J. Monogenic developmental and epileptic encephalopathies of infancy and childhood, a population cohort from Norway. Front Pediatr 2022; 10:965282. [PMID: 35979408 PMCID: PMC9376386 DOI: 10.3389/fped.2022.965282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/07/2022] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Developmental and epileptic encephalopathies (DEE) is a group of epilepsies where the epileptic activity, seizures and the underlying neurobiology contributes to cognitive and behavioral impairments. Uncovering the causes of DEE is important in order to develop guidelines for treatment and follow-up. The aim of the present study was to describe the clinical picture and to identify genetic causes in a patient cohort with DEE without known etiology, from a Norwegian regional hospital. METHODS Systematic searches of medical records were performed at Drammen Hospital, Vestre Viken Health Trust, to identify patients with epilepsy in the period 1999-2018. Medical records were reviewed to identify patients with DEE of unknown cause. In 2018, patients were also recruited consecutively from treating physicians. All patients underwent thorough clinical evaluation and updated genetic diagnostic analyses. RESULTS Fifty-five of 2,225 patients with epilepsy had DEE of unknown etiology. Disease-causing genetic variants were found in 15/33 (45%) included patients. Three had potentially treatable metabolic disorders (SLC2A1, COQ4 and SLC6A8). Developmental comorbidity was higher in the group with a genetic diagnosis, compared to those who remained undiagnosed. Five novel variants in known genes were found, and the patient phenotypes are described. CONCLUSION The results from this study illustrate the importance of performing updated genetic investigations and/or analyses in patients with DEE of unknown etiology. A genetic cause was identified in 45% of the patients, and three of these patients had potentially treatable conditions where available targeted therapy may improve patient outcome.
Collapse
Affiliation(s)
- Ida Stenshorne
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Children and Adolescents, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Marte Syvertsen
- Department of Neurology, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Anette Ramm-Pettersen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway
| | - Susanne Henning
- Department of Children and Adolescents, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Elisabeth Weatherup
- Department of Children and Adolescents, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Alf Bjørnstad
- Department of Children and Adolescents, Stavanger University Hospital, Stavanger Health Trust, Stavanger, Norway
| | - Natalia Brüggemann
- Department of Children and Adolescents, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Torstein Spetalen
- Department of Neurology, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Kaja K Selmer
- National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Jeanette Koht
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
30
|
Zoghbi AW, Dhindsa RS, Goldberg TE, Mehralizade A, Motelow JE, Wang X, Alkelai A, Harms MB, Lieberman JA, Markx S, Goldstein DB. High-impact rare genetic variants in severe schizophrenia. Proc Natl Acad Sci U S A 2021; 118:e2112560118. [PMID: 34903660 PMCID: PMC8713775 DOI: 10.1073/pnas.2112560118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 02/04/2023] Open
Abstract
Extreme phenotype sequencing has led to the identification of high-impact rare genetic variants for many complex disorders but has not been applied to studies of severe schizophrenia. We sequenced 112 individuals with severe, extremely treatment-resistant schizophrenia, 218 individuals with typical schizophrenia, and 4,929 controls. We compared the burden of rare, damaging missense and loss-of-function variants between severe, extremely treatment-resistant schizophrenia, typical schizophrenia, and controls across mutation intolerant genes. Individuals with severe, extremely treatment-resistant schizophrenia had a high burden of rare loss-of-function (odds ratio, 1.91; 95% CI, 1.39 to 2.63; P = 7.8 × 10-5) and damaging missense variants in intolerant genes (odds ratio, 2.90; 95% CI, 2.02 to 4.15; P = 3.2 × 10-9). A total of 48.2% of individuals with severe, extremely treatment-resistant schizophrenia carried at least one rare, damaging missense or loss-of-function variant in intolerant genes compared to 29.8% of typical schizophrenia individuals (odds ratio, 2.18; 95% CI, 1.33 to 3.60; P = 1.6 × 10-3) and 25.4% of controls (odds ratio, 2.74; 95% CI, 1.85 to 4.06; P = 2.9 × 10-7). Restricting to genes previously associated with schizophrenia risk strengthened the enrichment with 8.9% of individuals with severe, extremely treatment-resistant schizophrenia carrying a damaging missense or loss-of-function variant compared to 2.3% of typical schizophrenia (odds ratio, 5.48; 95% CI, 1.52 to 19.74; P = 0.02) and 1.6% of controls (odds ratio, 5.82; 95% CI, 3.00 to 11.28; P = 2.6 × 10-8). These results demonstrate the power of extreme phenotype case selection in psychiatric genetics and an approach to augment schizophrenia gene discovery efforts.
Collapse
Affiliation(s)
- Anthony W Zoghbi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Institute of Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032
- Office of Mental Health, New York State Psychiatric Institute, New York, NY 10032
| | - Ryan S Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Institute of Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| | - Terry E Goldberg
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Office of Mental Health, New York State Psychiatric Institute, New York, NY 10032
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032
| | - Aydan Mehralizade
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Office of Mental Health, New York State Psychiatric Institute, New York, NY 10032
| | - Joshua E Motelow
- Institute of Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Columbia University Irving Medical Center, New York-Presbyterian Morgan Stanley Children's Hospital of New York, New York, NY 10032
| | - Xinchen Wang
- Institute of Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
- Waypoint Bio, New York, NY 10014
| | - Anna Alkelai
- Institute of Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| | - Matthew B Harms
- Institute of Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032
| | - Jeffrey A Lieberman
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Office of Mental Health, New York State Psychiatric Institute, New York, NY 10032
| | - Sander Markx
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032;
- Office of Mental Health, New York State Psychiatric Institute, New York, NY 10032
| | - David B Goldstein
- Institute of Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032;
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
31
|
Dahawi M, Elmagzoub MS, A. Ahmed E, Baldassari S, Achaz G, Elmugadam FA, Abdelgadir WA, Baulac S, Buratti J, Abdalla O, Gamil S, Alzubeir M, Abubaker R, Noé E, Elsayed L, Ahmed AE, Leguern E. Involvement of ADGRV1 Gene in Familial Forms of Genetic Generalized Epilepsy. Front Neurol 2021; 12:738272. [PMID: 34744978 PMCID: PMC8567843 DOI: 10.3389/fneur.2021.738272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Genetic generalized epilepsies (GGE) including childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures alone (GGE-TCS), are common types of epilepsy mostly determined by a polygenic mode of inheritance. Recent studies showed that susceptibility genes for GGE are numerous, and their variants rare, challenging their identification. In this study, we aimed to assess GGE genetic etiology in a Sudanese population. Methods: We performed whole-exome sequencing (WES) on DNA of 40 patients from 20 Sudanese families with GGE searching for candidate susceptibility variants, which were prioritized by CADD software and functional features of the corresponding gene. We assessed their segregation in 138 individuals and performed genotype-phenotype correlations. Results: In a family including three sibs with GGE-TCS, we identified a rare missense variant in ADGRV1 encoding an adhesion G protein-coupled receptor V1, which was already involved in the autosomal recessive Usher type C syndrome. In addition, five other ADGRV1 rare missense variants were identified in four additional families and absent from 119 Sudanese controls. In one of these families, an ADGRV1 variant was found at a homozygous state, in a female more severely affected than her heterozygous brother, suggesting a gene dosage effect. In the five families, GGE phenotype was statistically associated with ADGRV1 variants (0R = 0.9 103). Conclusion: This study highly supports, for the first time, the involvement of ADGRV1 missense variants in familial GGE and that ADGRV1 is a susceptibility gene for CAE/JAE and GGE-TCS phenotypes.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohamed S. Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Elhami A. Ahmed
- UNESCO Chair on Bioethics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Guillaume Achaz
- Institut Systématique Evolution Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- SMILE Group, CIRB, Collège de France, CNRS, INSERM, Paris, France
- Éco-anthropologie, Muséum National d'Histoire Naturelle, Université de Paris, Paris, France
| | | | - Wasma A. Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Sciences and Technology, Al-Neelain University, Khartoum, Sudan
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Julien Buratti
- Department of Medical Genetics, AP-HP Sorbonne Université, Sorbonne Université, Paris, France
| | - Omer Abdalla
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sahar Gamil
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha Alzubeir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Neurology, Sudan Medical Council, Khartoum, Sudan
| | - Rayan Abubaker
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Sorbonne Université, Paris, France
| | - Liena Elsayed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ammar E. Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Neurology, Sudan Medical Council, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Department of Medical Genetics, AP-HP Sorbonne Université, Sorbonne Université, Paris, France
| |
Collapse
|
32
|
Distinct gene-set burden patterns underlie common generalized and focal epilepsies. EBioMedicine 2021; 72:103588. [PMID: 34571366 PMCID: PMC8479647 DOI: 10.1016/j.ebiom.2021.103588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
Background Analyses of few gene-sets in epilepsy showed a potential to unravel key disease associations. We set out to investigate the burden of ultra-rare variants (URVs) in a comprehensive range of biologically informed gene-sets presumed to be implicated in epileptogenesis. Methods The burden of 12 URV types in 92 gene-sets was compared between cases and controls using whole exome sequencing data from individuals of European descent with developmental and epileptic encephalopathies (DEE, n = 1,003), genetic generalized epilepsy (GGE, n = 3,064), or non-acquired focal epilepsy (NAFE, n = 3,522), collected by the Epi25 Collaborative, compared to 3,962 ancestry-matched controls. Findings Missense URVs in highly constrained regions were enriched in neuron-specific and developmental genes, whereas genes not expressed in brain were not affected. GGE featured a higher burden in gene-sets derived from inhibitory vs. excitatory neurons or associated receptors, whereas the opposite was found for NAFE, and DEE featured a burden in both. Top-ranked susceptibility genes from recent genome-wide association studies (GWAS) and gene-sets derived from generalized vs. focal epilepsies revealed specific enrichment patterns of URVs in GGE vs. NAFE. Interpretation Missense URVs affecting highly constrained sites differentially impact genes expressed in inhibitory vs. excitatory pathways in generalized vs. focal epilepsies. The excess of URVs in top-ranked GWAS risk-genes suggests a convergence of rare deleterious and common risk-variants in the pathogenesis of generalized and focal epilepsies. Funding DFG Research Unit FOR-2715 (Germany), FNR (Luxembourg), NHGRI (US), NHLBI (US), DAAD (Germany).
Collapse
|