1
|
Vacca F, Yalcin B, Ansar M. Exploring the pathological mechanisms underlying Cohen syndrome. Front Neurosci 2024; 18:1431400. [PMID: 39010945 PMCID: PMC11247020 DOI: 10.3389/fnins.2024.1431400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Cohen Syndrome (CS) is a rare autosomal recessive disorder caused by biallelic mutations in the VPS13B gene. It is characterized by multiple clinical features, including acquired microcephaly, developmental delay, intellectual disability, neutropenia, and retinal degeneration. VPS13B is part of the bridge-like lipid transport (BLTP) protein family, which in mammals also includes VPS13A, -C, and -D. The proteins of this family are peripheral membrane proteins with different sub-cellular localization, but all share similar structural features and have been proposed to act as lipid transport proteins at organellar membrane contact sites. VPS13B is localized at the Golgi apparatus and is essential for the maintenance of organelle architecture. Here we present a review of the experimental data on the function of the protein at the cellular level, discussing the potential link with disease phenotype and review the studies on animal models recapitulating features of the human disease.
Collapse
Affiliation(s)
- Fabrizio Vacca
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Binnaz Yalcin
- Inserm UMR1231, Université de Bourgogne, Dijon, France
| | - Muhammad Ansar
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
- Advanced Molecular Genetics and Genomics Disease Research and Treatment Centre, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
2
|
Iacobescu GL, Corlatescu AD, Popa M, Iacobescu L, Cirstoiu C, Orban C. Exploring the Implications of Golgi Apparatus Dysfunction in Bone Diseases. Cureus 2024; 16:e56982. [PMID: 38665758 PMCID: PMC11045246 DOI: 10.7759/cureus.56982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The Golgi apparatus is an organelle responsible for protein processing, sorting, and transport in cells. Recent research has shed light on its possible role in the pathogenesis of various bone diseases. This review seeks to explore its significance in osteoporosis, osteogenesis imperfecta, and other bone conditions such as dysplasias. Numerous lines of evidence demonstrate that perturbations to Golgi apparatus function can disrupt post-translational protein modification, folding and trafficking functions crucial for bone formation, mineralization, and remodeling. Abnormalities related to glycosylation, protein sorting, or vesicular transport in Golgi have been associated with altered osteoblast and osteoclast function, compromised extracellular matrix composition, as well as disrupted signaling pathways involved with homeostasis of bones. Mutations or dysregulation of Golgi-associated proteins, including golgins and coat protein complex I and coat protein complex II coat components, have also been implicated in bone diseases. Such genetic alterations may disrupt Golgi structure, membrane dynamics, and protein transport, leading to bone phenotype abnormalities. Understanding the links between Golgi apparatus dysfunction and bone diseases could provide novel insights into disease pathogenesis and potential therapeutic targets. Future research should focus on unraveling specific molecular mechanisms underlying Golgi dysfunction associated with bone diseases to develop targeted interventions for restoring normal bone homeostasis while decreasing clinical manifestations associated with these issues.
Collapse
Affiliation(s)
- Georgian L Iacobescu
- Orthopaedics and Traumatology Department, University Emergency Hospital, Bucharest, ROU
- Orthopaedics and Traumatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | | | - Mihnea Popa
- Orthopaedics and Traumatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Orthopaedics and Traumatology Department, University Emergency Hospital, Bucharest, ROU
| | - Loredana Iacobescu
- Cardiology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Cardiology Department, University Emergency Hospital, Bucharest, ROU
| | - Catalin Cirstoiu
- Orthopaedics and Traumatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Orthopaedics and Traumatology Department, University Emergency Hospital, Bucharest, ROU
| | - Carmen Orban
- Anaesthesiology and Critical Care, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Anaesthesiology and Critical Care Department, University Emergency Hospital, Bucharest, ROU
| |
Collapse
|
3
|
Delafontaine S, Iannuzzo A, Bigley TM, Mylemans B, Rana R, Baatsen P, Poli MC, Rymen D, Jansen K, Mekahli D, Casteels I, Cassiman C, Demaerel P, Lepelley A, Frémond ML, Schrijvers R, Bossuyt X, Vints K, Huybrechts W, Tacine R, Willekens K, Corveleyn A, Boeckx B, Baggio M, Ehlers L, Munck S, Lambrechts D, Voet A, Moens L, Bucciol G, Cooper MA, Davis CM, Delon J, Meyts I. Heterozygous mutations in the C-terminal domain of COPA underlie a complex autoinflammatory syndrome. J Clin Invest 2024; 134:e163604. [PMID: 38175705 PMCID: PMC10866661 DOI: 10.1172/jci163604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Mutations in the N-terminal WD40 domain of coatomer protein complex subunit α (COPA) cause a type I interferonopathy, typically characterized by alveolar hemorrhage, arthritis, and nephritis. We described 3 heterozygous mutations in the C-terminal domain (CTD) of COPA (p.C1013S, p.R1058C, and p.R1142X) in 6 children from 3 unrelated families with a similar syndrome of autoinflammation and autoimmunity. We showed that these CTD COPA mutations disrupt the integrity and the function of coat protein complex I (COPI). In COPAR1142X and COPAR1058C fibroblasts, we demonstrated that COPI dysfunction causes both an anterograde ER-to-Golgi and a retrograde Golgi-to-ER trafficking defect. The disturbed intracellular trafficking resulted in a cGAS/STING-dependent upregulation of the type I IFN signaling in patients and patient-derived cell lines, albeit through a distinct molecular mechanism in comparison with mutations in the WD40 domain of COPA. We showed that CTD COPA mutations induce an activation of ER stress and NF-κB signaling in patient-derived primary cell lines. These results demonstrate the importance of the integrity of the CTD of COPA for COPI function and homeostatic intracellular trafficking, essential to ER homeostasis. CTD COPA mutations result in disease by increased ER stress, disturbed intracellular transport, and increased proinflammatory signaling.
Collapse
Affiliation(s)
- Selket Delafontaine
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Alberto Iannuzzo
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Tarin M. Bigley
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bram Mylemans
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Ruchit Rana
- Division of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Pieter Baatsen
- Electron Microscopy Platform of VIB Bio Imaging Core, KU Leuven, Leuven, Belgium
| | - Maria Cecilia Poli
- Department of Pediatrics, Clínica Alemana de Santiago, Universidad del Desarollo, Santiago, Chile
- Immunology and Rheumatology Unit, Hospital de Niños Dr. Roberto del Rio, Santiago, Chile
| | - Daisy Rymen
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Jansen
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Djalila Mekahli
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology
| | | | | | - Philippe Demaerel
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Alice Lepelley
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, Paris, France
| | - Marie-Louise Frémond
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, Paris, France
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP.Centre - Université Paris Cité, Paris, France
| | - Rik Schrijvers
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, and
| | - Xavier Bossuyt
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katlijn Vints
- Electron Microscopy Platform of VIB Bio Imaging Core, KU Leuven, Leuven, Belgium
| | - Wim Huybrechts
- Center for Human Genetics, Leuven University Hospitals, Leuven, Belgium
| | - Rachida Tacine
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Karen Willekens
- Center for Human Genetics, Leuven University Hospitals, Leuven, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, Leuven University Hospitals, Leuven, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Marco Baggio
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lisa Ehlers
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sebastian Munck
- VIB Bio Imaging Core and VIB–KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Arnout Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Carla M. Davis
- Division of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Jérôme Delon
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Yamamoto S, Kanca O, Wangler MF, Bellen HJ. Integrating non-mammalian model organisms in the diagnosis of rare genetic diseases in humans. Nat Rev Genet 2024; 25:46-60. [PMID: 37491400 DOI: 10.1038/s41576-023-00633-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Next-generation sequencing technology has rapidly accelerated the discovery of genetic variants of interest in individuals with rare diseases. However, showing that these variants are causative of the disease in question is complex and may require functional studies. Use of non-mammalian model organisms - mainly fruitflies (Drosophila melanogaster), nematode worms (Caenorhabditis elegans) and zebrafish (Danio rerio) - enables the rapid and cost-effective assessment of the effects of gene variants, which can then be validated in mammalian model organisms such as mice and in human cells. By probing mechanisms of gene action and identifying interacting genes and proteins in vivo, recent studies in these non-mammalian model organisms have facilitated the diagnosis of numerous genetic diseases and have enabled the screening and identification of therapeutic options for patients. Studies in non-mammalian model organisms have also shown that the biological processes underlying rare diseases can provide insight into more common mechanisms of disease and the biological functions of genes. Here, we discuss the opportunities afforded by non-mammalian model organisms, focusing on flies, worms and fish, and provide examples of their use in the diagnosis of rare genetic diseases.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Dey D, Qing E, He Y, Chen Y, Jennings B, Cohn W, Singh S, Gakhar L, Schnicker NJ, Pierce BG, Whitelegge JP, Doray B, Orban J, Gallagher T, Hasan SS. A single C-terminal residue controls SARS-CoV-2 spike trafficking and incorporation into VLPs. Nat Commun 2023; 14:8358. [PMID: 38102143 PMCID: PMC10724246 DOI: 10.1038/s41467-023-44076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The spike (S) protein of SARS-CoV-2 is delivered to the virion assembly site in the ER-Golgi Intermediate Compartment (ERGIC) from both the ER and cis-Golgi in infected cells. However, the relevance and modulatory mechanism of this bidirectional trafficking are unclear. Here, using structure-function analyses, we show that S incorporation into virus-like particles (VLP) and VLP fusogenicity are determined by coatomer-dependent S delivery from the cis-Golgi and restricted by S-coatomer dissociation. Although S mimicry of the host coatomer-binding dibasic motif ensures retrograde trafficking to the ERGIC, avoidance of the host-like C-terminal acidic residue is critical for S-coatomer dissociation and therefore incorporation into virions or export for cell-cell fusion. Because this C-terminal residue is the key determinant of SARS-CoV-2 assembly and fusogenicity, our work provides a framework for the export of S protein encoded in genetic vaccines for surface display and immune activation.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Yanan He
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Yihong Chen
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Benjamin Jennings
- Department of Internal Medicine, Hematology Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lokesh Gakhar
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- PAQ Therapeutics, Burlington, MA, 01803, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Balraj Doray
- Department of Internal Medicine, Hematology Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John Orban
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD, 20850, USA.
| |
Collapse
|
6
|
Dey D, Hasan SS. Strategies for rapid production of crystallization quality coatomer WD40 domains. Protein Expr Purif 2023; 212:106358. [PMID: 37625737 PMCID: PMC10529451 DOI: 10.1016/j.pep.2023.106358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The vesicular secretion of soluble cargo proteins from the endoplasmic reticulum (ER) is accompanied by the export of ER-resident membrane proteins that are co-packaged in secretory vesicles. The cytosolic coatomer protein complex I (COPI) utilizes the N-terminal WD40 domains of α-COPI and β'-COPI subunits to bind these membrane protein "clients" for ER retrieval. These "αWD40" and "β'WD40" domains are structural homologs that demonstrate distinct selectivity for client proteins. However, elucidation of the atomic-level principles of coatomer-client interactions has been challenging due to the tendency of αWD40 domain to undergo aggregation during expression and purification. Here we describe a rapid recombinant production strategy from E. coli, which substantially enhances the quality of the purified αWD40 domain. The αWD40 purification and crystallization are completed within one day, which minimizes aggregation losses and yields a 1.9 Å resolution crystal structure. We demonstrate the versatility of this strategy by applying it to purify the β'WD40 domain, which yields crystal structures in the 1.2-1.3 Å resolution range. As an alternate recombinant production system, we develop a cost-effective strategy for αWD40 production in human Expi293 cells. Finally, we suggest a roadmap to simplify these protocols further, which is of significance for the production of WD40 mutants prone to rapid aggregation. The WD40 production strategies presented here are likely to have broad applications because the WD40 domain represents one of the largest families of biomolecular interaction modules in the eukaryotic proteome and is critical for trafficking of host as well as viral proteins such as the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, 21201, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD, 20850, USA.
| |
Collapse
|
7
|
Marom R, Zhang B, Washington ME, Song IW, Burrage LC, Rossi VC, Berrier AS, Lindsey A, Lesinski J, Nonet ML, Chen J, Baldridge D, Silverman GA, Sutton VR, Rosenfeld JA, Tran AA, Hicks MJ, Murdock DR, Dai H, Weis M, Jhangiani SN, Muzny DM, Gibbs RA, Caswell R, Pottinger C, Cilliers D, Stals K, Eyre D, Krakow D, Schedl T, Pak SC, Lee BH. Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling. PLoS Genet 2023; 19:e1011005. [PMID: 37934770 PMCID: PMC10656020 DOI: 10.1371/journal.pgen.1011005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/17/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Bo Zhang
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Megan E. Washington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Vittoria C. Rossi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Ava S. Berrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anika Lindsey
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jacob Lesinski
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael L. Nonet
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jian Chen
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Gary A. Silverman
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alyssa A. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - M. John Hicks
- Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David R. Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Carrie Pottinger
- All Wales Medical Genomics Service, Wrexham Maelor Hospital, Wrexham, UK
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | | | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Deborah Krakow
- Human Genetics, Obstetrics & Gynecology, Orthopedic Surgery, University of California, Los Angeles, California, United States of America
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Stephen C. Pak
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Brendan H. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| |
Collapse
|
8
|
Shiri A, Jafari Khamirani H, Kamal N, Manoochehri J, Dianatpour M, Tabei SMB, Dastgheib SA. Novel insight into the phenotype of microcephaly 19 in the patient with missense COPB2 mutation. Eur J Med Genet 2023; 66:104846. [PMID: 37734708 DOI: 10.1016/j.ejmg.2023.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
COPB2 gene encodes the Coatomer Protein Complex Subunit Beta-2 that plays a crucial role in the cellular vesicle transport system and it is essential for brain development during embryogenesis. Mutations in COPB2 lead to an extremely rare genetic disease named Microcephaly type 19 with autosomal recessive inheritance. This study describes a missense pathogenic homozygous variant (NM_004766.3:c.760 C > T, p.Arg254Cys) in the COPB2 gene, which was identified by Whole-Exome sequencing and confirmed by Sanger sequencing. The proband of the present study is an eight-and-a-half-year-old Iranian female who was born to consanguineous parents. She manifests global developmental delay, intellectual disability, microcephaly, seizures, spasticity, strabismus, and failure to thrive symptoms. Moreover, she is unable to stand, walk, or speak. Here we report the second homozygous mutation (NM_004766.3:c.760 C > T, p.Arg254Cys) in the COPB2 gene in the second family in the world with MCPH19. The responsible variant (NM_004766.3:c.760 C > T, p.Arg254Cys) for the observed symptoms in the proband was identical to the identified variant in the previously reported Caucasian/Native American family. Sharing this extremely rare pathogenic variant in two families with different origins is an extraordinary event that could aid us to determine the phenotype of this disease more precisely. Eventually, we provide a case-based review of the clinical features and compared our findings to the previously reported family for a better understanding of the clinical presentation of Microcephaly type 19 disease.
Collapse
Affiliation(s)
- Amirmasoud Shiri
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Neda Kamal
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Manoochehri
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
9
|
Lee CS, Jung SY, Yee RSZ, Agha NH, Hong J, Chang T, Babcock LW, Fleischman JD, Clayton B, Hanna AD, Ward CS, Lanza D, Hurley AE, Zhang P, Wehrens XHT, Lagor WR, Rodney GG, Hamilton SL. Speg interactions that regulate the stability of excitation-contraction coupling protein complexes in triads and dyads. Commun Biol 2023; 6:942. [PMID: 37709832 PMCID: PMC10502019 DOI: 10.1038/s42003-023-05330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
Here we show that striated muscle preferentially expressed protein kinase α (Spegα) maintains cardiac function in hearts with Spegβ deficiency. Speg is required for stability of excitation-contraction coupling (ECC) complexes and interacts with esterase D (Esd), Cardiomyopathy-Associated Protein 5 (Cmya5), and Fibronectin Type III and SPRY Domain Containing 2 (Fsd2) in cardiac and skeletal muscle. Mice with a sequence encoding a V5/HA tag inserted into the first exon of the Speg gene (HA-Speg mice) display a >90% decrease in Spegβ but Spegα is expressed at ~50% of normal levels. Mice deficient in both Spegα and Speg β (Speg KO mice) develop a severe dilated cardiomyopathy and muscle weakness and atrophy, but HA-Speg mice display mild muscle weakness with no cardiac involvement. Spegα in HA-Speg mice suppresses Ca2+ leak, proteolytic cleavage of Jph2, and disruption of transverse tubules. Despite it's low levels, HA-Spegβ immunoprecipitation identified Esd, Cmya5 and Fsd2 as Spegβ binding partners that localize to triads and dyads to stabilize ECC complexes. This study suggests that Spegα and Spegβ display functional redundancy, identifies Esd, Cmya5 and Fsd2 as components of both cardiac dyads and skeletal muscle triads and lays the groundwork for the identification of new therapeutic targets for centronuclear myopathy.
Collapse
Affiliation(s)
- Chang Seok Lee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Rachel Sue Zhen Yee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Nadia H Agha
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jin Hong
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ting Chang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Lyle W Babcock
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jorie D Fleischman
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Benjamin Clayton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Amy D Hanna
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Christopher S Ward
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ayrea E Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Pumin Zhang
- The First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Xander H T Wehrens
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - George G Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Susan L Hamilton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA.
| |
Collapse
|
10
|
Golgipathies reveal the critical role of the sorting machinery in brain and skeletal development. Nat Commun 2022; 13:7397. [PMID: 36456556 PMCID: PMC9715697 DOI: 10.1038/s41467-022-35101-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
|
11
|
Frighi V, Smith M, Andrews TM, Clifton L, Collins GS, Fuller A, Roast J, Holt TA. Incidence of fractures in people with intellectual disabilities over the life course: a retrospective matched cohort study. EClinicalMedicine 2022; 52:101656. [PMID: 36313144 PMCID: PMC9596306 DOI: 10.1016/j.eclinm.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Current osteoporosis guidelines do not identify individuals with intellectual disabilities (ID) as at risk of fracture, potentially missing opportunities for prevention. We aimed to assess the incidence of fractures in people with ID over the life course. METHODS Descriptive analysis of open cohort study using anonymised electronic health records from the UK Clinical Practice Research Datalink, linked to the Hospital Episode Statistics database (Jan 1, 1998-Dec 31, 2017). All individuals with ID were matched on age and sex to five individuals without ID. We calculated the incidence rate (95% CI) per 10000 person-years (py) and incidence rate ratio (IRR, 95% CI) to compare fractures between individuals with and without ID (age 1-17 and ≥18 years) for any fracture, and in those aged 18-49 and ≥ 50 years for major osteoporotic fracture (vertebra, shoulder, wrist, hip), and for hip fracture. FINDINGS 43176 individuals with ID (15470 children aged 1-17 years; 27706 adults aged ≥ 18 years) were identified and included (40.4% females) along with 215733 matched control individuals. The median age at study entry was 24 (10th-90th centiles 3-54) years. Over a median (10th-90th centile) follow-up of 7.1 (0.9-17.6) and 6.5 (0.8-17.6) years, there were 5941 and 24363 incident fractures in the ID and non ID groups respectively. Incidence of any fracture was 143.5 (131.8-156.3) vs 120.7 (115.4-126.4)/10000 py (children), 174.2 (166.4-182.4)/10000 py vs 118.2 (115.3-121.2)/10000 py (adults) in females. In males it was 192.5 (182.4-203.2) vs 228.5 (223.0-234.1)/10000 py (children), 155.6 (149.3-162.1)/10000 py vs 128.4 (125.9-131.0)/10000 py (adults). IRR for major osteoporotic fracture was 1.81 (1.50-2.18) age 18-49 years, 1.69 (1.53-1.87) age ≥ 50 years in women. In men it was 1.56 (1.36-1.79) age 18-49 years, 2.45 (2.13-2.81) age ≥ 50 years. IRR for hip fracture was 7.79 (4.14-14.65) age 18-49 years, 2.28 (1.91-2.71) age ≥ 50 years in women. In men it was 6.04 (4.18-8.73) age 18-49 years, 3.91 (3.17-4.82) age ≥ 50 years. Comparable rates of major osteoporotic fracture and of hip fracture occurred approximately 15 and 20 years earlier respectively in women and 20 and 30 years earlier respectively in men with ID than without ID. Fracture distribution differed profoundly, hip fracture 9.9% vs 5.0% of any fracture in adults with ID vs without ID. INTERPRETATION The incidence, type, and distribution of fractures in people with intellectual disabilities suggest early onset osteoporosis. Prevention and management strategies are urgently required, particularly to reduce the incidence of hip fracture. FUNDING National Institute for Health and Care Research.
Collapse
Affiliation(s)
- Valeria Frighi
- Department of Psychiatry, University of Oxford, OX3 7JX, Oxford, UK
- Oxford Health NHS Foundation Trust, OX3 7JX, Oxford, UK
- Corresponding author at: University Dept. of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK.
| | - Margaret Smith
- Nuffield Department of Primary Care Health Sciences, University of Oxford, OX2 6GG, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, OX3 9DU, Oxford, UK
| | - Tim M. Andrews
- Department of Psychiatry, University of Oxford, OX3 7JX, Oxford, UK
- Oxford Health NHS Foundation Trust, OX3 7JX, Oxford, UK
| | - Lei Clifton
- Nuffield Department of Population Health, University of Oxford, OX3 7LF, Oxford UK
| | - Gary S. Collins
- Centre for Statistics in Medicine, University of Oxford, OX3 7LD, Oxford, UK
| | - Alice Fuller
- Nuffield Department of Primary Care Health Sciences, University of Oxford, OX2 6GG, Oxford, UK
| | | | - Tim A. Holt
- Department of Psychiatry, University of Oxford, OX3 7JX, Oxford, UK
- Nuffield Department of Primary Care Health Sciences, University of Oxford, OX2 6GG, Oxford, UK
| |
Collapse
|
12
|
Characterization of Butyrate-Resistant Colorectal Cancer Cell Lines and the Cytotoxicity of Anticancer Drugs against These Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6565300. [PMID: 35909471 PMCID: PMC9325644 DOI: 10.1155/2022/6565300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. The gut microbiota plays a critical role in homeostasis and carcinogenesis. Butyrate, a short-chain fatty acid produced by the gut microbiota, plays a role in intestinal homeostasis and acts as an anticancer agent by inhibiting growth and inducing apoptosis. However, microbiota studies have revealed an abnormally high abundance of butyrate-producing bacteria in patients with CRC and indicated that it leads to chemoresistance. We characterized butyrate resistance in HCT-116 and PMF-K014 CRC cells after treatment with a maximum butyrate concentration of 3.2 mM. The 50% inhibitory concentration of butyrate was increased in butyrate-resistant (BR) cells compared with that in parental (PT) cells. The mechanism of butyrate resistance was initially investigated by determining the expression of butyrate influx- and drug efflux-related genes. We found the increased expression of influx- and efflux-related genes in BR cells compared with that in PT cells. Proteomic data showed both identical and different proteins in PT and BR cells. Further analysis revealed the crossresistance of HCT-116 cells to metformin and oxaliplatin and that of PMF-K014 cells to 5-fluorouracil. Our findings suggest that the acquisition of butyrate resistance induces the development of chemoresistance in CRC cells, which may play an important role in CRC development, treatment, and metastasis.
Collapse
|
13
|
Small CM, Healey HM, Currey MC, Beck EA, Catchen J, Lin ASP, Cresko WA, Bassham S. Leafy and weedy seadragon genomes connect genic and repetitive DNA features to the extravagant biology of syngnathid fishes. Proc Natl Acad Sci U S A 2022; 119:e2119602119. [PMID: 35733255 PMCID: PMC9245644 DOI: 10.1073/pnas.2119602119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Seadragons are a remarkable lineage of teleost fishes in the family Syngnathidae, renowned for having evolved male pregnancy. Comprising three known species, seadragons are widely recognized and admired for their fantastical body forms and coloration, and their specific habitat requirements have made them flagship representatives for marine conservation and natural history interests. Until recently, a gap has been the lack of significant genomic resources for seadragons. We have produced gene-annotated, chromosome-scale genome models for the leafy and weedy seadragon to advance investigations of evolutionary innovation and elaboration of morphological traits in seadragons as well as their pipefish and seahorse relatives. We identified several interesting features specific to seadragon genomes, including divergent noncoding regions near a developmental gene important for integumentary outgrowth, a high genome-wide density of repetitive DNA, and recent expansions of transposable elements and a vesicular trafficking gene family. Surprisingly, comparative analyses leveraging the seadragon genomes and additional syngnathid and outgroup genomes revealed striking, syngnathid-specific losses in the family of fibroblast growth factors (FGFs), which likely involve reorganization of highly conserved gene regulatory networks in ways that have not previously been documented in natural populations. The resources presented here serve as important tools for future evolutionary studies of developmental processes in syngnathids and hold value for conservation of the extravagant seadragons and their relatives.
Collapse
Affiliation(s)
- Clayton M. Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Hope M. Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Mark C. Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Emily A. Beck
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Angela S. P. Lin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - William A. Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| |
Collapse
|
14
|
Ritter AL, Gold J, Hayashi H, Ackermann AM, Hanke S, Skraban C, Cuddapah S, Bhoj E, Li D, Kuroda Y, Wen J, Takeda R, Bibb A, El Chehadeh S, Piton A, Ohl J, Kukolich MK, Nagasaki K, Kato K, Ogi T, Bhatti T, Russo P, Krock B, Murrell JR, Sullivan JA, Shashi V, Stong N, Hakonarson H, Sawano K, Torti E, Willaert R, Si Y, Wilcox WR, Wirgenes KV, Thomassen K, Carlotti K, Erwin A, Lazier J, Marquardt T, He M, Edmondson AC, Izumi K. Expanding the phenotypic spectrum of ARCN1-related syndrome. Genet Med 2022; 24:1227-1237. [PMID: 35300924 PMCID: PMC9923403 DOI: 10.1016/j.gim.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/18/2023] Open
Abstract
PURPOSE This study aimed to describe the phenotypic and molecular characteristics of ARCN1-related syndrome. METHODS Patients with ARCN1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. RESULTS In total, we identified 14 cases of ARCN1-related syndrome, (9 pediatrics, and 5 fetal cases from 3 families). The clinical features these newly identified cases were compared to 6 previously reported cases for a total of 20 cases. Intrauterine growth restriction, micrognathia, and short stature were present in all patients. Other common features included prematurity (11/15, 73.3%), developmental delay (10/14, 71.4%), genitourinary malformations in males (6/8, 75%), and microcephaly (12/15, 80%). Novel features of ARCN1-related syndrome included transient liver dysfunction and specific glycosylation abnormalities during illness, giant cell hepatitis, hepatoblastoma, cataracts, and lethal skeletal manifestations. Developmental delay was seen in 73% of patients, but only 3 patients had intellectual disability, which is less common than previously reported. CONCLUSION ARCN1-related syndrome presents with a wide clinical spectrum ranging from a severe embryonic lethal syndrome to a mild syndrome with intrauterine growth restriction, micrognathia, and short stature without intellectual disability. Patients with ARCN1-related syndrome should be monitored for liver dysfunction during illness, cataracts, and hepatoblastoma. Additional research to further define the phenotypic spectrum and possible genotype-phenotype correlations are required.
Collapse
Affiliation(s)
- Alyssa L Ritter
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jessica Gold
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hiroshi Hayashi
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Amanda M Ackermann
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Stephanie Hanke
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Cara Skraban
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sanmati Cuddapah
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth Bhoj
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Yukiko Kuroda
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jessica Wen
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ryojun Takeda
- Division of Genetics, Nagano Children's Hospital, Nagano, Japan
| | - Audrey Bibb
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Salima El Chehadeh
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Laboratoire de Génétique Médicale, UMR_S1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg et INSERM, Strasbourg, France
| | - Amélie Piton
- Department of Translational Medicine and Neurogenetics, Institut Génétique Biologie Moléculaire Cellulaire, IGBMC - CNRS UMR 7104 - Inserm U 1258, Illkirch, France; Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jeanine Ohl
- Service d'assistance Médicale à la Procréation, Centre médico-chirurgical et obstétrical (CMCO), Schiltigheim, France
| | - Mary K Kukolich
- Department of Genetics, Cook Children's Medical Center, Cook Children's Health Care System, Fort Worth, TX
| | - Keisuke Nagasaki
- Department of Pediatrics, Niigata University Medical & Dental Hospital, Niigata, Japan
| | - Kohji Kato
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tricia Bhatti
- Division of Anatomic Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Pierre Russo
- Division of Anatomic Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Bryan Krock
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jill R Murrell
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jennifer A Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Duke University School of Medicine, Durham, NC
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Duke University School of Medicine, Durham, NC
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, NY
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kentaro Sawano
- Department of Pediatrics, Niigata University Medical & Dental Hospital, Niigata, Japan
| | | | | | | | - William Ross Wilcox
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Katrine Verena Wirgenes
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristian Thomassen
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Angelika Erwin
- Genomic Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Joanna Lazier
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Miao He
- Metabolic and Advanced Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA.
| |
Collapse
|
15
|
Feng Y, Sun C, Zhang L, Wan H, Zhou H, Chen Y, Zhu L, Xia G, Mi Y. Upregulation of COPB2 Promotes Prostate Cancer Proliferation and Invasion Through the MAPK/TGF-β Signaling Pathway. Front Oncol 2022; 12:865317. [PMID: 35600351 PMCID: PMC9120942 DOI: 10.3389/fonc.2022.865317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/11/2022] [Indexed: 12/29/2022] Open
Abstract
There is increasing evidence that coatomer protein complex subunit beta 2 (COPB2) plays an important role in various cancer types. This study explored the role and the downstream mediators of COPB2 in prostate cancer (PCa). The expression of COPB2 was determined by the Cancer Genome Atlas database and enzyme-linked immunosorbent assay. COPB2 expression was upregulated in PCa tissues and correlated with Gleason score, biochemical recurrence, and poor prognosis. The functional roles of COPB2 in PCa were verified through a series of experiments. Knocking down COPB2 expression inhibited the growth and clonogenesis of PCa cells, promoted cell apoptosis, and inhibited the ability of scratch repair, invasion of PCa cells, and tumor growth in Nude mice. To analyze downstream signaling pathways, ingenuity pathway analysis, GSEA, and whole-genome expression spectrum GeneChip analysis were used. Western blot revealed that COPB2 expression promoted the proliferation and invasion of PCa cells by regulating the MAPK/TGF-β signaling pathway. The interacting protein (nuclear protein 1, NUPR1) was identified via Co-IP, real-time PCR, Western blot, and TCGA database in sampled tissues. The expressions of the interaction proteins NUPR1 and COPB2 were negatively regulated by each other. COPB2 could be a new biomarker for PCa diagnosis and monitoring and to provide a theoretical basis for identifying effective drug intervention targets through in-depth mechanistic studies.
Collapse
Affiliation(s)
- Yanyan Feng
- Wuxi Medical College, Jiangnan University, Wuxi, China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lifeng Zhang
- Department of Urology, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Hongyuan Wan
- Wuxi Medical College, Jiangnan University, Wuxi, China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hangsheng Zhou
- Wuxi Medical College, Jiangnan University, Wuxi, China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yongquan Chen
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Guowei Xia
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Ramadesikan S, Lee J, Aguilar RC. The Future of Genetic Disease Studies: Assembling an Updated Multidisciplinary Toolbox. Front Cell Dev Biol 2022; 10:886448. [PMID: 35573700 PMCID: PMC9096115 DOI: 10.3389/fcell.2022.886448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
|
17
|
Kague E, Karasik D. Functional Validation of Osteoporosis Genetic Findings Using Small Fish Models. Genes (Basel) 2022; 13:279. [PMID: 35205324 PMCID: PMC8872034 DOI: 10.3390/genes13020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
The advancement of human genomics has revolutionized our understanding of the genetic architecture of many skeletal diseases, including osteoporosis. However, interpreting results from human association studies remains a challenge, since index variants often reside in non-coding regions of the genome and do not possess an obvious regulatory function. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary, such as the one offered by animal models. These models enable us to identify causal mechanisms, clarify the underlying biology, and apply interventions. Over the past several decades, small teleost fishes, mostly zebrafish and medaka, have emerged as powerful systems for modeling the genetics of human diseases. Due to their amenability to genetic intervention and the highly conserved genetic and physiological features, fish have become indispensable for skeletal genomic studies. The goal of this review is to summarize the evidence supporting the utility of Zebrafish (Danio rerio) for accelerating our understanding of human skeletal genomics and outlining the remaining gaps in knowledge. We provide an overview of zebrafish skeletal morphophysiology and gene homology, shedding light on the advantages of human skeletal genomic exploration and validation. Knowledge of the biology underlying osteoporosis through animal models will lead to the translation into new, better and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK;
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
18
|
Hellicar J, Stevenson NL, Stephens DJ, Lowe M. Supply chain logistics - the role of the Golgi complex in extracellular matrix production and maintenance. J Cell Sci 2022; 135:273996. [PMID: 35023559 PMCID: PMC8767278 DOI: 10.1242/jcs.258879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The biomechanical and biochemical properties of connective tissues are determined by the composition and quality of their extracellular matrix. This, in turn, is highly dependent on the function and organisation of the secretory pathway. The Golgi complex plays a vital role in directing matrix output by co-ordinating the post-translational modification and proteolytic processing of matrix components prior to their secretion. These modifications have broad impacts on the secretion and subsequent assembly of matrix components, as well as their function in the extracellular environment. In this Review, we highlight the role of the Golgi in the formation of an adaptable, healthy matrix, with a focus on proteoglycan and procollagen secretion as example cargoes. We then discuss the impact of Golgi dysfunction on connective tissue in the context of human disease and ageing.
Collapse
Affiliation(s)
- John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|