1
|
Andalib E, Faghani M, Zia Ziabari SM, Shenagari M, Salehiniya H, Keivanlou MH, Rafat Z. The Effectiveness of the Anteroom (Vestibule) Area on Hospital Infection Control and Health Staff Safety: A Systematic Review. Front Public Health 2022; 10:828845. [PMID: 35558527 PMCID: PMC9086672 DOI: 10.3389/fpubh.2022.828845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/22/2022] [Indexed: 01/22/2023] Open
Abstract
The emergence of SARS-CoV2 in 2019 showed again that the world's healthcare system is not fully equipped and well-designed for preventing the transmission of nosocomial respiratory infections. One of the great tools for preventing the spread of infectious organisms in hospitals is the anteroom. Several articles have investigated the role of the anteroom in disease control but the lack of a comprehensive study in this field prompted us to provide more in-depth information to fill this gap. Also, this study aimed to assess the necessity to construct an anteroom area for hospital staff members at the entrance of each ward of the hospital, and specify the equipment and facilities which make the anteroom more efficient. Articles were identified through searches of Scopus, Web of Sciences, PubMed, and Embase for studies published in English until May 2020 reporting data on the effect of the anteroom (vestibule) area in controlling hospital infections. Data from eligible articles were extracted and presented according to PRISMA's evidence-based data evaluation search strategy. Also, details around the review aims and methods were registered with the PROSPERO. From the database, 209 articles were identified, of which 25 studies met the study criteria. Most studies demonstrated that an anteroom significantly enhances practical system efficiency. The results showed that the equipment such as ventilation system, high-efficiency particulate absorption filter, hand dispensers, alcohol-based disinfection, sink, mirror, transparent panel, UVC disinfection, and zone for PPE change, and parameters like temperature, door type, pressure, and size of the anteroom are factors that are effective on the safety of the hospital environment. Studies demonstrated that providing an anteroom for changing clothing and storing equipment may be useful in reducing the transmission of airborne infections in hospitals. Since the transmission route of SARS-CoV2 is common with other respiratory infectious agents, it can be concluded that a well-designed anteroom could potentially decrease the risk of SARS-CoV2 transmission during hospitalization as well.
Collapse
Affiliation(s)
- Elham Andalib
- Department of Design, Faculty of Fine Art, Music and Design, University of Bergen, Bergen, Norway.,Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoumeh Faghani
- Department of Anatomy, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyyed Mahdi Zia Ziabari
- Department of Emergency Medicine, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Department of Medical Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamid Salehiniya
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Zahra Rafat
- Department of Medical Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Data-Driven Models for Estimating Dust Loading Levels of ERV HEPA Filters. SUSTAINABILITY 2021. [DOI: 10.3390/su132413643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With increasing global concerns regarding indoor air quality (IAQ) and air pollution, concerns about regularly replacing ventilation devices, particularly high-efficiency particulate air (HEPA) filters, have increased. However, users cannot easily determine when to replace filters. This paper proposes models to estimate the dust loading levels of HEPA filters for an energy-recovery ventilation system that performs air purification. The models utilize filter pressure drops, the revolutions per minute (RPM) of supply fans, and rated airflow modes as variables for regression equations. The obtained results demonstrated that the filter dust loading level could be estimated once the filter pressure drops and RPM, and voltage for the rated airflow were input in the models, with a root mean square error of 5.1–12.9%. Despite current methods using fewer experimental datasets than the proposed models, our findings indicate that these models could be efficiently used in the development of filter replacement alarms to help users decide when to replace their filters.
Collapse
|
3
|
Mosalaei S, Amiri H, Rafiee A, Abbasi A, Baghani AN, Hoseini M. Assessment of fungal bioaerosols and particulate matter characteristics in indoor and outdoor air of veterinary clinics. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1773-1780. [PMID: 34900306 PMCID: PMC8617105 DOI: 10.1007/s40201-021-00732-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/23/2021] [Indexed: 06/08/2023]
Abstract
Veterinary staff are frequently exposed to various occupational hazards. The present study was aimed to investigate the air characteristics of veterinary clinics in terms of fungal bioaerosols and particulate matters. Air samples were taken every six days from the operating room, examination room and outdoor air of three veterinary clinics in Shiraz, southwest Iran. The concentrations of fungal bio-aerosols ranged from 8.05 CFU/m 3 in the outdoor air of clinic B to 47.21 CFU/m 3 in the operating room of clinic A. The predominant fungal genera identified in the studied clinics were Penicillium and Aspergillus niger, respectively. The concentrations of PM2.5 ranged from 41.88 μg/m 3 in the operating room of clinic C to 60.31 μg/m 3 in the outdoor air of the same clinic. The corresponding values for PM10 ranged from 114.40 μg/m 3 in the operating room of clinic C to 256.70 μg/m 3 in the outdoor air of the same clinic. The results of this study showed a positive correlation between the concentration of fungal bioaerosols and relative humidity (p < 0.05; r = 0.622). Besides, a negative correlation was found between the concentration of fungal bioaerosols and temperature (p < 0.05; r = 0.369). To better assess the individual exposure of veterinarians and staff in veterinary clinics, tests including nasopharyngeal sampling are recommended.
Collapse
Affiliation(s)
- Shamim Mosalaei
- Department of environmental health, School of health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB Canada
| | - Alireza Abbasi
- Department of environmental health, School of health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Norouzian Baghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Li X, Wu Z, Dang C, Zhang M, Zhao B, Cheng Z, Chen L, Zhong Z, Ye Y, Xia Y. A metagenomic-based method to study hospital air dust resistome. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 406:126854. [PMID: 32908446 PMCID: PMC7467109 DOI: 10.1016/j.cej.2020.126854] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 05/05/2023]
Abstract
As a symbol of the defense mechanisms that bacteria have evolved over time, the genes that make bacteria resist antibiotics are overwhelmingly present in the environment. Currently, bacterial antibiotic resistance genes (ARGs) in the air are a serious concern. Previous studies have identified bacterial communities and summarized putative routes of transmissions for some dominant hospital-associated pathogens from hospital indoor samples. However, little is known about the possible indoor air ARG transportation. In this study, we mainly surveyed air-conditioner air dust samples under different airflow conditions and analyzed these samples using a metagenomic-based method. The results show air dust samples exhibited a complex resistome, and the average concentration is 0.00042 copies/16S rRNA gene, which is comparable to some other environments. The hospital air-conditioners can form resistome over time and accumulate pathogens. In addition, our results indicate that the Outpatient hall is one of the main ARG transmission sources, which can distribute ARGs to other departments (explains >80% resistome). We believe that the management should focus on ARG carrier genera such as Staphylococcus, Micrococcus, Streptococcus, and Enterococcus in this hospital and our novel evidence-based network strategy proves that plasmid-mediated ARG transfer can occur frequently. Overall, these results provide insights into the characteristics of air dust resistome and possible route for how ARGs are spread in air.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziqi Wu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenfeng Zhong
- Shenzhen Hospital of Peking University, 1120 Lianhua Rd, Futian, Shenzhen, Guangdong 518036, China
| | - Yuhui Ye
- Shenzhen Hospital of Peking University, 1120 Lianhua Rd, Futian, Shenzhen, Guangdong 518036, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Stawicki SP, Wolfe S, Brisendine C, Eid S, Zangari M, Ford F, Snyder B, Moyer W, Levicoff L, Burfeind WR. The impact of comprehensive air purification on patient duration of stay, discharge outcomes, and health care economics: A retrospective cohort study. Surgery 2020; 168:968-974. [PMID: 32888714 DOI: 10.1016/j.surg.2020.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Infectious airborne and surface pathogens constitute a substantial and poorly explored source of patient subclinical illness and infections. With that in mind, a system of advanced air purification technology was designed to destroy the DNA and RNA of all bacteria, fungi, and viruses. This study compares the effects of advanced air purification technology versus high efficiency particulate air filtration with respect to certain metrics of health care economics and resource utilization at a large, community-based, urban hospital. Our hypothesis was that the use of the advanced air purification technology would decrease health care durations of stay, lead to fewer nonhome discharges, and decrease hospital charges. METHODS After the installation of advanced air purification technology, 3 resultant air purification "zones" were established: zone C, a control floor with high efficiency particulate air filtration; zone B, a mixed high efficiency particulate air and advanced air purification technology floor; and zone A, a comprehensive advanced air purification technology remediation. This study included nonbariatric surgical patients admitted to any zone between December 2017 and December 2018, with reported case mix index on discharge. We analyzed hospital duration of stays, discharge destination, and hospital charges with adjustment for severity of illness using the case mix index. The likelihood of mortality, health care-associated infection, and readmission for each study zone was examined using logistic regression adjusting for case mix index, age, sex, and source of admission. RESULTS The study included 1,002 patients across the 3 zones, with mean age of 55.8 years (53.7% female), average case mix index of 1.98, and mortality of 1.7%. Compared with zone C, patients in zones A and B demonstrated decreased hospital stays, a greater percentage of home discharges (86.5-87.8% vs 64.7%), and less hospital charges. In addition, logistic regression modeling performed on 999 study patients showed that the likelihood of mortality, hospital-acquired infections, and readmissions did not differ among the 3 zones. A trend toward a lesser incidence of hospital-acquired infections was noted in zones A and B (0.40% and 0.48%, respectively) when compared with zone C (0.63%). CONCLUSION Patients in the advanced air purification technology zones demonstrated statistically significant improvements in durations of stay, discharge to home, and costs after adjusting for case mix index. In addition, a trend toward fewer hospital-acquired infections in advanced air purification technology zones was noted. These findings suggest that environmental factors may affect key clinical and economic outcomes, supporting further research in this important and largely unexplored area.
Collapse
Affiliation(s)
- Stanislaw P Stawicki
- Department of Research and Innovation, St. Luke's University Health Network, Bethlehem, PA.
| | - Samantha Wolfe
- Department of Research and Innovation, St. Luke's University Health Network, Bethlehem, PA
| | - Chad Brisendine
- Department of Research and Innovation, St. Luke's University Health Network, Bethlehem, PA
| | - Sherrine Eid
- Department of Research and Innovation, St. Luke's University Health Network, Bethlehem, PA
| | - Matthew Zangari
- Department of Research and Innovation, St. Luke's University Health Network, Bethlehem, PA
| | - Frank Ford
- Department of Research and Innovation, St. Luke's University Health Network, Bethlehem, PA
| | - Beverly Snyder
- Department of Research and Innovation, St. Luke's University Health Network, Bethlehem, PA
| | - William Moyer
- Department of Research and Innovation, St. Luke's University Health Network, Bethlehem, PA
| | - Lee Levicoff
- Department of Research and Innovation, St. Luke's University Health Network, Bethlehem, PA
| | - William R Burfeind
- Department of Research and Innovation, St. Luke's University Health Network, Bethlehem, PA
| |
Collapse
|
6
|
Sabherwal S, Chaku D, Mathur U, Sangwan VS, Majumdar A, Gandhi A, Dubey S, Sood I. Are high-efficiency particulate air (HEPA) filters and laminar air flow necessary in operating rooms to control acute post-operative endophthalmitis? Indian J Ophthalmol 2020; 68:1120-1125. [PMID: 32461444 PMCID: PMC7508147 DOI: 10.4103/ijo.ijo_1493_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose To compare the five-year incidence of acute post-operative endophthalmitis following cataract surgery, between centers with and without laminar air flow and high-efficiency particulate air (HEPA) filters in operating rooms. Methods Retrospective analysis of medical records of patients operated in a single network of a tertiary and four secondary hospitals across north India. Cases of endophthalmitis were identified from the records between January 2013 and June 2018. Protocols and consumables were standardized across all hospitals. The only infrastructural difference being the presence of laminar air flow and high energy particulate air filters in operating rooms of the tertiary center. The type of surgery, along with the demographic and socio-economic details, were captured and analyzed, using z-test for proportions and logistic regression. Results Out of 88,297 cataract surgeries conducted, 36 cases of endophthalmitis were reported. The incidence of endophthalmitis across the network was estimated to be 0.041%, (95% CI: 0.027 to 0.054). There was no statistically significant difference between the incidence of POE at the tertiary (0.042%) and secondary centers (0.039%). Certain risk factors for high endophthalmitis incidence were identified, namely patients undergoing small incision cataract surgery and belonging to lower socio-economic status. However, for both factors the difference was not statistically significant. Conclusion The five-year incidence of acute post-operative endophthalmitis in our network was found comparable to the best reported in literature. Incidence at secondary centers, without laminar air flow and high energy particulate air filters was found comparable to that in the tertiary center having these facilities.
Collapse
Affiliation(s)
- Shalinder Sabherwal
- Department of Community Ophthalmology and Public Health Research, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Deepali Chaku
- Department of Community Ophthalmology and Public Health Research, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Umang Mathur
- Executive Medical Director and Head Cornea and Anterior Segment Services, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Virender S Sangwan
- Director of Innovations and Technology, Head Glaucoma Services and Head Quality Resource Center, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Atanu Majumdar
- Bio-Statistician, Head Glaucoma Services and Head Quality Resource Center, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Arpan Gandhi
- Head Lab Services, Head Glaucoma Services and Head Quality Resource Center, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Suneeta Dubey
- Medical Superintendent, Head Glaucoma Services and Head Quality Resource Center, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Ishaana Sood
- Department of Community Ophthalmology and Public Health Research, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| |
Collapse
|
7
|
Bouchara JP, Le Govic Y, Kabbara S, Cimon B, Zouhair R, Hamze M, Papon N, Nevez G. Advances in understanding and managing Scedosporium respiratory infections in patients with cystic fibrosis. Expert Rev Respir Med 2019; 14:259-273. [PMID: 31868041 DOI: 10.1080/17476348.2020.1705787] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Considered for a long time to be exclusively responsible for chronic localized infections, fungi of the genus Scedosporium have recently received a renewed interest because of their recognition as common colonizing agents of the respiratory tract of patients with cystic fibrosis, and of the description of severe disseminated infections in patients undergoing lung transplantation. Recently, several studies have been carried out on these opportunistic pathogens, which led to some advances in the understanding of their pathogenic mechanisms and in the biological diagnosis of the airway colonization/respiratory infections caused by these fungi.Areas covered: From a bibliographic search on the Pubmed database, we summarize the current knowledge about the taxonomy of Scedosporium species, the epidemiology of these fungi and their pathogenic mechanisms, and present the improvements in the detection of the airway colonization and diagnosis of Scedosporium respiratory infections, the difficulties in their therapeutic management, and the antifungal drugs in development.Expert opinion: As described in this review, many advances have been made regarding the taxonomy and ecology of Scedosporium species or the molecular determinants of their pathogenicity, but also in the management of Scedosporium infections, particularly by improving the biological diagnostic and publishing evidence for the efficacy of combined therapy.
Collapse
Affiliation(s)
- Jean-Philippe Bouchara
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Yohann Le Govic
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Samar Kabbara
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Bernard Cimon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Rachid Zouhair
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Gilles Nevez
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, Brest, France
| |
Collapse
|
8
|
Fungal Assessment of Indoor Air Quality in Wards and Operating Theatres in an Organ Transplantation Hospital. HEALTH SCOPE 2018. [DOI: 10.5812/jhealthscope.60208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Ecology of Scedosporium Species: Present Knowledge and Future Research. Mycopathologia 2017; 183:185-200. [DOI: 10.1007/s11046-017-0200-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
|
10
|
Duchaine C. Assessing microbial decontamination of indoor air with particular focus on human pathogenic viruses. Am J Infect Control 2016; 44:S121-6. [PMID: 27590696 PMCID: PMC7115274 DOI: 10.1016/j.ajic.2016.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 11/21/2022]
Abstract
Transmission of bacterial, fungal, and viral pathogens is of primary importance in public and occupational health and infection control. Although several standardized protocols have been proposed to target microbes on fomites through surface decontamination, use of microbicidal agents, and cleaning processes, only limited guidance is available on microbial decontamination of indoor air to reduce the risk of pathogen transmission between individuals. This article reviews the salient aspects of airborne transmission of infectious agents, exposure assessment, in vitro assessment of microbicidal agents, and processes for air decontamination for infection prevention and control. Laboratory-scale testing (eg, rotating chambers, wind tunnels) and promising field-scale methodologies to decontaminate indoor air are also presented. The potential of bacteriophages as potential surrogates for the study of airborne human pathogenic viruses is also discussed.
Collapse
Affiliation(s)
- Caroline Duchaine
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, QC, Canada.
| |
Collapse
|
11
|
Oliveira M, Pereira C, Bessa C, Araujo R, Saraiva L. Chronological aging in conidia of pathogenic Aspergillus: Comparison between species. J Microbiol Methods 2015; 118:57-63. [PMID: 26341609 DOI: 10.1016/j.mimet.2015.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 11/28/2022]
Abstract
Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus and Aspergillus niger are common airborne fungi, and the most frequent causative agents of human fungal infections. However, the resistance and lifetime persistence of these fungi in the atmosphere, and the mechanism of aging of Aspergillus conidia are unknown.With this work, we intended to study the processes underlying conidial aging of these four relevant and pathogenic Aspergillus species. Chronological aging was therefore evaluated in A. fumigatus, A. flavus, A. terreus and A. niger conidia exposed to environmental and human body temperatures. The results showed that the aging process in Aspergillus conidia involves apoptosis,with metacaspase activation, DNA fragmentation, and reactive oxygen species production, associated with secondary necrosis. Distinct results were observed for the selected pathogenic species. At environmental conditions, A. niger was the species with the highest resistance to aging, indicating a higher adaption to environmental conditions, whereas A. flavus followed by A. terreus were the most sensitive species. At higher temperatures (37 °C), A. fumigatus presented the longest lifespan, in accordance with its good adaptation to the human body temperature. Altogether,with this work new insights regarding conidia aging are provided, which may be useful when designing treatments for aspergillosis.
Collapse
Affiliation(s)
- Manuela Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Clara Pereira
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Cláudia Bessa
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ricardo Araujo
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Lucília Saraiva
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
12
|
D'Amato G, Holgate ST, Pawankar R, Ledford DK, Cecchi L, Al-Ahmad M, Al-Enezi F, Al-Muhsen S, Ansotegui I, Baena-Cagnani CE, Baker DJ, Bayram H, Bergmann KC, Boulet LP, Buters JTM, D'Amato M, Dorsano S, Douwes J, Finlay SE, Garrasi D, Gómez M, Haahtela T, Halwani R, Hassani Y, Mahboub B, Marks G, Michelozzi P, Montagni M, Nunes C, Oh JJW, Popov TA, Portnoy J, Ridolo E, Rosário N, Rottem M, Sánchez-Borges M, Sibanda E, Sienra-Monge JJ, Vitale C, Annesi-Maesano I. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ J 2015; 8:25. [PMID: 26207160 PMCID: PMC4499913 DOI: 10.1186/s40413-015-0073-0] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/29/2015] [Indexed: 01/08/2023] Open
Abstract
The prevalence of allergic airway diseases such as asthma and rhinitis has increased dramatically to epidemic proportions worldwide. Besides air pollution from industry derived emissions and motor vehicles, the rising trend can only be explained by gross changes in the environments where we live. The world economy has been transformed over the last 25 years with developing countries being at the core of these changes. Around the planet, in both developed and developing countries, environments are undergoing profound changes. Many of these changes are considered to have negative effects on respiratory health and to enhance the frequency and severity of respiratory diseases such as asthma in the general population. Increased concentrations of greenhouse gases, and especially carbon dioxide (CO2), in the atmosphere have already warmed the planet substantially, causing more severe and prolonged heat waves, variability in temperature, increased air pollution, forest fires, droughts, and floods – all of which can put the respiratory health of the public at risk. These changes in climate and air quality have a measurable impact not only on the morbidity but also the mortality of patients with asthma and other respiratory diseases. The massive increase in emissions of air pollutants due to economic and industrial growth in the last century has made air quality an environmental problem of the first order in a large number of regions of the world. A body of evidence suggests that major changes to our world are occurring and involve the atmosphere and its associated climate. These changes, including global warming induced by human activity, have an impact on the biosphere, biodiversity, and the human environment. Mitigating this huge health impact and reversing the effects of these changes are major challenges. This statement of the World Allergy Organization (WAO) raises the importance of this health hazard and highlights the facts on climate-related health impacts, including: deaths and acute morbidity due to heat waves and extreme meteorological events; increased frequency of acute cardio-respiratory events due to higher concentrations of ground level ozone; changes in the frequency of respiratory diseases due to trans-boundary particle pollution; altered spatial and temporal distribution of allergens (pollens, molds, and mites); and some infectious disease vectors. According to this report, these impacts will not only affect those with current asthma but also increase the incidence and prevalence of allergic respiratory conditions and of asthma. The effects of climate change on respiratory allergy are still not well defined, and more studies addressing this topic are needed. Global warming is expected to affect the start, duration, and intensity of the pollen season on the one hand, and the rate of asthma exacerbations due to air pollution, respiratory infections, and/or cold air inhalation, and other conditions on the other hand.
Collapse
Affiliation(s)
- Gennaro D'Amato
- Department of Respiratory Diseases, Division of Pneumology and Allergology, High Specialty Hospital "A. Cardarelli" Napoli, Italy, University of Naples Medical School, Via Rione Sirignano, 10, 80121 Napoli, Italy
| | - Stephen T Holgate
- Southampton General Hospital, Clinical and Experimental Sciences, University of Southampton, Hampshire, UK
| | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Dennis K Ledford
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lorenzo Cecchi
- Interdepartmental Centre of Bioclimatology, University of Florence Allergy and Clinical Immunology Section, Azienda Sanitaria di Prato, Italy
| | - Mona Al-Ahmad
- Department of Allergy, Al-Rashid Center, Ministry of Health, Khobar, Kuwait
| | - Fatma Al-Enezi
- Al-Rashid Allergy and Respiratory Center, Khobar, Kuwait
| | - Saleh Al-Muhsen
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ignacio Ansotegui
- Department of Allergy and Immunology, Hospital Quirón Bizkaia, Erandio, Spain
| | - Carlos E Baena-Cagnani
- Centre for Research in Respiratory Medicine, Faculty of Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - David J Baker
- Emeritus Consultant Anaesthesiologist, SAMU de Paris, Hôpital Necker - Enfants Malades, Paris, France
| | - Hasan Bayram
- Department of Chest Diseases, Respiratory Research Laboratory, Allergy Division, School of Medicine, University of Gaziantep, Şehitkamil/Gaziantep, 27310 Turkey
| | | | - Louis-Philippe Boulet
- Quebec Heart and Lung Institute, Laval University, 2725 chemin Sainte-Foy, Quebec City, G1V 4G5 Canada
| | - Jeroen T M Buters
- ZAUM - Center of Allergy and Environment, Helmholtz Zentrum München/Technische Universität München, Munich, Germany
| | - Maria D'Amato
- University of Naples, Institute of Respiratory Diseases, Naples, Italy
| | - Sofia Dorsano
- World Allergy Organization, Milwaukee, Wisconsin United States
| | - Jeroen Douwes
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Sarah Elise Finlay
- Consultant in Emergency Medicine, Chelsea and Westminster Hospital, London, UK
| | - Donata Garrasi
- Development Assistance Committee, Organisation of Economic Cooperation and Development, Paris, France
| | | | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Rabih Halwani
- Prince Naif Center for Immunology Research, College of Medicine, King Saud University, P.O.Box 2925, Postal Code 11461 Riyadh, Saudi Arabia
| | - Youssouf Hassani
- Epidemiology of Respiratory and Allergic Disease Department, UMR-S, Institute Pierre Louis of Epidemiology and Public Health, INSERM Medical School Saint-Antoine, UPMC Sorbonne Universités, Paris, France
| | - Basam Mahboub
- University of Sharjah, and, Rashid Hospital DHA, Abu Dhabi, United Arab Emirates
| | - Guy Marks
- South Western Sydney Clinical School, UNSW, Australia and Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Paola Michelozzi
- Dipartimento Epidemiologia Regione Lazio, UOC Epidemiologia Ambientale, Roma, Italy
| | - Marcello Montagni
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43100 Parma, Italy
| | - Carlos Nunes
- Center of Allergy of Algarve, Hospital Particular do Algarve, Particular do Algarve, Brasil
| | - Jay Jae-Won Oh
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Korea
| | - Todor A Popov
- Clinic of Allergy and Asthma, Medical University in Sofia, Sofia, Bulgaria
| | - Jay Portnoy
- Children's Mercy Hospitals & Clinics, Kansas City, Missouri USA
| | - Erminia Ridolo
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43100 Parma, Italy
| | - Nelson Rosário
- Division of Pediatric Respiratory Medicine, Hospital de Clínicas, Federal University of Parana, Rua Tte. João Gomes da Silva 226, 80810-100 Curitiba, PR Brazil
| | - Menachem Rottem
- Allergy Asthma and Immunology, Emek Medical Center, Afula, and the Rappaport Faculty of Medicine Technion, Israel Institute of Technology, Haifa, Israel
| | | | - Elopy Sibanda
- Asthma, Allergy and Immune Dysfunction Clinic, Harare, Zimbabwe
| | - Juan José Sienra-Monge
- Allergy and Immunology Department, Hospital Infantil de México Federico Gómez, SSA, México City, Mexico
| | - Carolina Vitale
- University of Naples, Institute of Respiratory Diseases, Naples, Italy
| | - Isabella Annesi-Maesano
- Epidemiology of Respiratory and Allergic Disease Department (EPAR), Institute Pierre Louis of Epidemiology and Public Health, UMR-S 1136, INSERM, Paris, France ; UPMC, Sorbonne Universités, Medical School Saint-Antoine, 803-804-806, 8 etage/Floor 27, Rue Chaligny, CEDEX 12, 75571 Paris, France
| |
Collapse
|
13
|
Nevalainen A, Täubel M, Hyvärinen A. Indoor fungi: companions and contaminants. INDOOR AIR 2015; 25:125-56. [PMID: 25601374 DOI: 10.1111/ina.12182] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/20/2014] [Indexed: 05/21/2023]
Abstract
This review discusses the role of fungi and fungal products in indoor environments, especially as agents of human exposure. Fungi are present everywhere, and knowledge for indoor environments is extensive on their occurrence and ecology, concentrations, and determinants. Problems of dampness and mold have dominated the discussion on indoor fungi. However, the role of fungi in human health is still not well understood. In this review, we take a look back to integrate what cultivation-based research has taught us alongside more recent work with cultivation-independent techniques. We attempt to summarize what is known today and to point out where more data is needed for risk assessment associated with indoor fungal exposures. New data have demonstrated qualitative and quantitative richness of fungal material inside and outside buildings. Research on mycotoxins shows that just as microbes are everywhere in our indoor environments, so too are their metabolic products. Assessment of fungal exposures is notoriously challenging due to the numerous factors that contribute to the variation of fungal concentrations in indoor environments. We also may have to acknowledge and incorporate into our understanding the complexity of interactions between multiple biological agents in assessing their effects on human health and well-being.
Collapse
Affiliation(s)
- A Nevalainen
- Institute for Health and Welfare, Kuopio, Finland
| | | | | |
Collapse
|
14
|
Monteiro-da-Silva F, Araujo R, Sampaio-Maia B. Interindividual variability and intraindividual stability of oral fungal microbiota over time. Med Mycol 2014; 52:498-505. [DOI: 10.1093/mmy/myu027] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
|
15
|
|
16
|
Aguiar L, Mendes A, Pereira C, Neves P, Mendes D, Teixeira JP. Biological air contamination in elderly care centers: geria project. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:944-958. [PMID: 25072726 DOI: 10.1080/15287394.2014.911135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Indoor air quality (IAQ) affects health particularly in susceptible individuals such as the elderly. It has been estimated that the older population spends approximately 19-20 h/d indoors, and the majority of the elderly spend all of their time indoors in elderly care centers (ECC). Older individuals may be particularly at risk of exposure to detrimental effects from pollutants, even at low concentrations, due to common and multiple underlying chronic diseases that increase susceptibility. This study, aimed to assess the impact of indoor biological agents in 22 ECC located in Porto, was conducted during summer and winter from November 2011 to August 2013 at a total of 141 areas within dining rooms, drawing rooms, medical offices, and bedrooms (including the bedridden). Air sampling was carried out with a microbiological air sampler (Merck MAS-100) and using tryptic soy agar for bacteria and malt extract agar for fungi. The results obtained were compared with the recently revised Portuguese standards. In winter, mean fungi concentration exceeded reference values, while bacteria concentrations were within the new standards in both seasons. The main fungi species found indoors were Cladosporium (73%) in summer and Penicillium (67%) in winter. Aspergillus fumigatus, Aspergillus niger, and Aspergillus flavus, known potential pathogenic/toxigenic species, were also identified. Although the overall rate and mean values of bacteria and fungi found in ECC indoor air met Portuguese legislation, some concern is raised by the presence of pathogenic microorganisms. Simple measures, like opening windows and doors to promote air exchange and renewal, may improve effectiveness in enhancing IAQ.
Collapse
Affiliation(s)
- Lívia Aguiar
- a Environmental Health Department , Portuguese National Health Institute Doutor Ricardo Jorge , Porto , Portugal
| | | | | | | | | | | |
Collapse
|
17
|
Méheust D, Le Cann P, Reboux G, Millon L, Gangneux JP. Indoor fungal contamination: health risks and measurement methods in hospitals, homes and workplaces. Crit Rev Microbiol 2013; 40:248-60. [PMID: 23586944 DOI: 10.3109/1040841x.2013.777687] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Indoor fungal contamination has been associated with a wide range of adverse health effects, including infectious diseases, toxic effects and allergies. The diversity of fungi contributes to the complex role that they play in indoor environments and human diseases. Molds have a major impact on public health, and can cause different consequences in hospitals, homes and workplaces. This review presents the methods used to assess fungal contamination in these various environments, and discusses advantages and disadvantages for each method in consideration with different health risks. Air, dust and surface sampling strategies are compared, as well as the limits of various methods are used to detect and quantify fungal particles and fungal compounds. In addition to conventional microscopic and culture approaches, more recent chemical, immunoassay and polymerase chain reaction (PCR)-based methods are described. This article also identifies common needs for future multidisciplinary research and development projects in this field, with specific interests on viable fungi and fungal fragment detections. The determination of fungal load and the detection of species in environmental samples greatly depend on the strategy of sampling and analysis. Quantitative PCR was found useful to identify associations between specific fungi and common diseases. The next-generation sequencing methods may afford new perspectives in this area.
Collapse
|
18
|
Frączek K, Górny RL, Ropek D. Bioaerosols of subterraneotherapy chambers at salt mine health resort. AEROBIOLOGIA 2013; 29:481-493. [PMID: 24098066 PMCID: PMC3787802 DOI: 10.1007/s10453-013-9298-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 03/05/2013] [Indexed: 05/24/2023]
Abstract
Nowadays, an inhalation of naturally generated aerosols has again become a widely practiced method of balneological treatment of various respiratory diseases. The aim of this study was to characterize the microbial aerosol of subterraneotherapy chambers at the Bochnia Salt Mine Health Resort in southern Poland. The measurements were carried out using a 6-stage Andersen impactor over a period of 1 year in both indoor (i.e., two subterranean chambers, where curative treatments took place) and outdoor air. The maximum bacterial aerosol concentrations in the chambers reached 11,688 cfu/m3. In such interiors, a high-performance method of microbial contaminant reduction need be introduced, especially when large groups of young patients are medically cured. Respecting fungal aerosol, its average indoor concentration (88 cfu/m3) was significantly lower than outdoor level (538 cfu/m3). It confirms that ventilation system provides efficient barrier against this type of biologically active propagules. Among identified micro-organisms, the most prevalent indoors were Gram-positive cocci, which constituted up to 80 % of airborne microflora. As highly adapted to the diverse environments of its human host (skin, respiratory tract), they can be easily released in high quantities into the air. The number of people introduced into such subterranean chambers should be in some way limited. The analysis of microclimate parameters revealed that temperature and relative humidity influenced significantly the level of bacterial aerosol only. Hence, a constant control of these parameters should be scrupulously superintended at this type of subterranean premises.
Collapse
Affiliation(s)
- Krzysztof Frączek
- Department of Microbiology, University of Agriculture, 24/28 Mickiewicza Avenue, 30-059 Kraków, Poland
| | - Rafał L. Górny
- Biohazard Laboratory, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, 16 Czerniakowska Street, 00-701 Warsaw, Poland
| | - Dariusz Ropek
- Department of Agricultural Environment Protection, University of Agriculture, 21 Mickiewicza Avenue, 31-120 Kraków, Poland
| |
Collapse
|
19
|
Monteiro-da-Silva F, Sampaio-Maia B, Pereira MDL, Araujo R. Characterization of the oral fungal microbiota in smokers and non-smokers. Eur J Oral Sci 2013; 121:132-5. [PMID: 23489903 DOI: 10.1111/eos.12030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2013] [Indexed: 12/01/2022]
Abstract
This study aimed to assess the effect of smoking on the biodiversity of the oral fungal microbiota of healthy young subjects, using an improved culture method that assesses both total and pathogenic viable fungi. Forty individuals (20 smokers and 20 non-smokers) were selected. All individuals presented fungal growth (100% for molds and 92.5% for yeasts), a prevalence higher than previously reported. The most commonly occurring molds were Penicillium sp., Aspergillus sp., and Cladosporium sp. Smokers presented significantly higher levels of yeasts and pathogenic molds than did non-smokers. No differences in fungal prevalence and diversity were observed in smokers and non-smokers following a 30-wk observation period. In conclusion, tobacco smoking may alter the oral mycobiota and facilitate colonization of the oral cavity with yeasts and pathogenic molds. The effect of chronic fungal colonization on the oral health of tobacco smokers cannot be neglected.
Collapse
|
20
|
Monitoring the occurrence of indoor fungi in a hospital. Rev Iberoam Micol 2012; 29:227-34. [DOI: 10.1016/j.riam.2012.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 04/11/2012] [Accepted: 04/17/2012] [Indexed: 11/24/2022] Open
|
21
|
Araujo R, Amorim A, Gusmão L. Genetic diversity ofAspergillus fumigatusin indoor hospital environments. Med Mycol 2010; 48:832-8. [DOI: 10.3109/13693780903575360] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Sublett JL, Seltzer J, Burkhead R, Williams PB, Wedner HJ, Phipatanakul W. Air filters and air cleaners: rostrum by the American Academy of Allergy, Asthma & Immunology Indoor Allergen Committee. J Allergy Clin Immunol 2009; 125:32-8. [PMID: 19910039 DOI: 10.1016/j.jaci.2009.08.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 08/11/2009] [Accepted: 08/21/2009] [Indexed: 11/20/2022]
Abstract
The allergist is generally recognized as possessing the greatest expertise in relating airborne contaminants to respiratory health, both atopic and nonatopic. Consequently, allergists are most often asked for their professional opinions regarding the appropriate use of air-cleaning equipment. This rostrum serves as a resource for the allergist and other health care professionals seeking a better understanding of air filtration.
Collapse
Affiliation(s)
- James L Sublett
- Department of Pediatrics, Section of Allergy and Immunology, University of Louisville School of Medicine, 9800 Shelbyville Rd, Louisville, KY 40223, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Hütter G, Ganepola S, Thiel E, Blau IW. Correlation between the incidence of nosocomial aspergillosis and room reconstruction of a haematological ward. J Infect Prev 2009. [DOI: 10.1177/1757177409350235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) represents ~ a major cause of morbidity and mortality in patients I with impaired function of the immune system such as in patients with acute myeloid leukaemia (AML). We investigated the in uence of the patients’ room occu- pancy and the sanitary facilities with regard to the inci- dence of IPA after reconstruction of a haematological ward. This is a retrospective cohort-control study in patients with newly diagnosed AML. Thirty ve patients were treated before and 28 patients in the time after the reconstruction works. The median time of neutropenia was 18.5 days vs. 19.5 days. Twelve patients before and 11 patients after the reconstruction developed IPA (p = 0.794). The incidence of IPA did not decrease after a reduction in the patients’ occupancy and improvement of the sanitary equipment. This study emphasises the presumed importance of optimal physical barriers, e.g. air ltration and/or antimycotic prophylaxis in high-risk patients.
Collapse
Affiliation(s)
- G. Hütter
- Medical Department Hematology, Oncology, Charité Campus Benjamin Franklin, Hindenburgdamm 30, D-12203 Berlin, Germany,
| | - S. Ganepola
- Medical Department Hematology, Oncology, Charité Campus Benjamin Franklin, Hindenburgdamm 30, D-12203 Berlin, Germany
| | - E. Thiel
- Medical Department Hematology, Oncology, Charité Campus Benjamin Franklin, Hindenburgdamm 30, D-12203 Berlin, Germany
| | - IW Blau
- Medical Department Hematology, Oncology, Charité Campus Benjamin Franklin, Hindenburgdamm 30, D-12203 Berlin, Germany
| |
Collapse
|
24
|
Araujo R, Carneiro A, Costa-Oliveira S, Pina-Vaz C, Rodrigues AG, Guimaraes JE. Fungal infections after haematology unit renovation: evidence of clinical, environmental and economical impact. Eur J Haematol 2008; 80:436-43. [DOI: 10.1111/j.1600-0609.2008.01034.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|