1
|
Gagnon H, Pokhrel A, Bush K, Cordoviz M, Ewashko T, Galetta F, Leal J. Limited reduction in Clostridioides difficile and Methicillin-Resistant Staphylococcus aureus with the use of an aerosolized hydrogen peroxide disinfection system in tertiary health care facilities in Alberta, Canada. Am J Infect Control 2024; 52:410-418. [PMID: 37806387 DOI: 10.1016/j.ajic.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Nonmanual room disinfection systems may reduce the transmission of infections. A variety of systems have emerged; however, a paucity of evidence exists to make an evidence-informed decision for the implementation of a specific system. Alberta Health Services assessed one of these systems. METHODS A quasi-experimental prepost design assessed an aerosolized hydrogen peroxide disinfection system on 6 units at 3 acute care facilities in Alberta. To assess clinical effectiveness an interrupted time-series analysis with Poisson distribution compared changes in hospital-acquired Clostridioides difficile infection (HA-CDI) and hospital-acquired Methicillin-resistant Staphylococcus aureus (HA-MRSA) between preintervention, intervention, and postintervention periods. To assess operational feasibility cleaning turnaround time, time to operate, and utilization were considered. A participatory research framework was used to understand the benefits and challenges of operationalization. RESULTS Incidence rate ratio (IRR) of HA-CDI decreased by 25.7% on FMC-A and 6.9% on RAH-B. Following withdrawal, the IRR of HA-CDI continued to decrease. IRR of HA-MRSA decreased by 25.0% on RAH-B. Following withdrawal, the IRR of HA-MRSA continued to decrease. None of the results were statistically significant. The average time to operate was 3.2 hours. Utilization was between 1.7% and 25.6%. Most staff reported benefits and challenges. DISCUSSION None of the changes observed in HA-CDI and HA-MRSA after the introduction of the aerosolized hydrogen peroxide system were statistically significant. While most respondents reported multiple benefits and challenges in using the system, the core challenge was delays in inpatient admissions due to the time operate the system. CONCLUSION Successful implementation of a nonmanual room disinfection system as an addition to standard cleaning and disinfection requires significant investment and must consider a variety of factors.
Collapse
Affiliation(s)
- Heather Gagnon
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada
| | - Arun Pokhrel
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada; Emergency Medical Services, Alberta Health Services, Alberta, Canada
| | - Kathryn Bush
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada
| | - Melody Cordoviz
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada
| | - Tanya Ewashko
- Health Evidence and Innovation, Alberta Health Services, Alberta, Canada
| | - Frank Galetta
- Linen and Environmental Services, Alberta Health Services, Alberta, Canada
| | - Jenine Leal
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada; Department of Community Health Services, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada; O'Brien Institute for Public Health, University of Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Lundquist NA, Kifelew LG, Elmas S, Jia Z, Speck PG, Chalker JM. Inactivation of human coronaviruses using an automated room disinfection device. Sci Rep 2023; 13:20048. [PMID: 37973822 PMCID: PMC10654563 DOI: 10.1038/s41598-023-47082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
The emergence of more virulent and epidemic strains of viruses, especially in the context of COVID-19, makes it more important than ever to improve methods of decontamination. The objective of this study was to evaluate the potential of on-demand production of chlorine species to inactivate human coronaviruses. The commercial prototype disinfection unit was provided by Unipolar Water Technologies. The Unipolar device generates active chlorine species using an electrochemical reaction and dispenses the disinfectant vapour onto surfaces with an aspirator. The minimum effective concentration and exposure time of disinfectant were evaluated on human hepatoma (Huh7) cells using 50% tissue culture infectious dose (TCID50) assay and human coronavirus 229E (HCoV-229E), a surrogate for pathogenic human coronaviruses. We showed that chlorine species generated in the Unipolar device inactivate HCoV-229E on glass surfaces at ≥ 400 parts per million active chlorine concentration with a 5 min exposure time. Here, inactivation refers to the inability of the virus to infect the Huh7 cells. Importantly, no toxic effect was observed on Huh7 cells for any of the active chlorine concentrations and contact times tested.
Collapse
Affiliation(s)
- Nicholas A Lundquist
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Legesse G Kifelew
- Molecular Biosciences, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Sait Elmas
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Zhongfan Jia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Peter G Speck
- Molecular Biosciences, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
3
|
Rutala WA, Donskey CJ, Weber DJ. Disinfection and sterilization: New technologies. Am J Infect Control 2023; 51:A13-A21. [PMID: 37890943 DOI: 10.1016/j.ajic.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Adherence to professional guidelines and/or manufacturer's instructions for use regarding proper disinfection and sterilization of medical devices is crucial to preventing cross transmission of pathogens between patients. Emerging pathogens (e.g., Candida auris) and complex medical devices provide new challenges. METHODS A search for published English articles on new disinfection and sterilization technologies was conducted by Google, Google scholar and PubMed. RESULTS Several new disinfection methods or products (e.g., electrostatic spraying, new sporicides, colorized disinfectants, "no touch" room decontamination, continuous room decontamination) and sterilization technologies (e.g., new sterilization technology for endoscopes) were identified. CONCLUSIONS These technologies should reduce patient risk.
Collapse
Affiliation(s)
- William A Rutala
- Statewide Program for Infection Control and Epidemiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC; Division of Infectious Diseases, UNC School of Medicine, Chapel Hill, NC.
| | - Curtis J Donskey
- Geriatric Research, Education and Clinical Care, Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - David J Weber
- Statewide Program for Infection Control and Epidemiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC; Division of Infectious Diseases, UNC School of Medicine, Chapel Hill, NC; Infection Prevention, University of North Carolina Medical Center, Chapel Hill, NC
| |
Collapse
|
4
|
Weber DJ, Rutala WA, Anderson DJ, Sickbert-Bennett EE. ..úNo touch..Ñ methods for health care room disinfection: Focus on clinical trials. Am J Infect Control 2023; 51:A134-A143. [PMID: 37890944 DOI: 10.1016/j.ajic.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Hospital patient room surfaces are frequently contaminated with multidrug-resistant organisms. Since studies have demonstrated that inadequate terminal room disinfection commonly occurs, ..úno touch..Ñ methods of terminal room disinfection have been developed such as ultraviolet light (UV) devices and hydrogen peroxide (HP) systems. METHODS This paper reviews published clinical trials of ..úno touch..Ñ methods and ..úself-disinfecting..Ñ surfaces. RESULTS Multiple papers were identified including clinical trials of UV room disinfection devices (N.ß=.ß20), HP room disinfection systems (N.ß=.ß8), handheld UV devices (N.ß=.ß1), and copper-impregnated or coated surfaces (N.ß=.ß5). Most but not all clinical trials of UV devices and HP systems for terminal disinfection demonstrated a reduction of colonization/infection in patients subsequently housed in the room. Copper-coated surfaces were the only ..úself-disinfecting..Ñ technology evaluated by clinical trials. Results of these clinical trials were mixed. DISCUSSION Almost all clinical trials reviewed used a ..úweak..Ñ design (eg, before-after) and failed to assess potential confounders (eg, compliance with hand hygiene and environmental cleaning). CONCLUSIONS The evidence is strong enough to recommend the use of a ..úno-touch..Ñ method as an adjunct for outbreak control, mitigation strategy for high-consequence pathogens (eg, Candida auris or Ebola), or when there are an excessive endemic rates of multidrug-resistant organisms.
Collapse
Affiliation(s)
- David J Weber
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC.
| | - William A Rutala
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Deverick J Anderson
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University School of Medicine, Durham, NC
| | - Emily E Sickbert-Bennett
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC
| |
Collapse
|
5
|
Truitt CL, Runyan DA, Stern JJ, Tobin C, Goldwater W, Madsen R. Evaluation of an aerosolized hydrogen peroxide disinfection system for the reduction of Clostridioides difficile hospital infection rates over a 10 year period. Am J Infect Control 2022; 50:409-413. [PMID: 35307211 DOI: 10.1016/j.ajic.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Clostridioides difficile infections (CDI) cause significant morbidity and mortality in healthcare facilities worldwide. We examined the use of an aerosolized hydrogen peroxide (aHP) disinfection system for reduction of CDI rates. METHODS We conducted a retrospective analysis of CDI rates at an acute care facility over a 10-year period. The first 5-year period investigated the before and after implementation of an aHP system followed by another 5-year period of continued use on CDI rates. RESULTS The before and after period showed a reduction in CDI rates from 4.6 per 10,000 patient days down to 2.7 per 10,000 patient days after implementation (P < .001). The second study period for the continued aHP use exhibited a consistent decrease in CDI rates to 1.4 per 10,000 patient days at the end of the study. CONCLUSIONS The addition of a touchless aHP whole room disinfection system as part of terminal cleaning resulted in a significant reduction in CDI rates that have been sustained year after year.
Collapse
|
6
|
Automated room decontamination: report of a Healthcare Infection Society Working Party. J Hosp Infect 2022; 124:97-120. [DOI: 10.1016/j.jhin.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 01/24/2023]
|
7
|
Milani ES, Hasani A, Varschochi M, Sadeghi J, Memar MY, Hasani A. Biocide resistance in Acinetobacter baumannii: appraising the mechanisms. J Hosp Infect 2021; 117:135-146. [PMID: 34560167 DOI: 10.1016/j.jhin.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
A global upsurge in antibiotic-resistant Acinetobacter baumannii requires supervised selection of biocides and disinfectants to avert nosocomial infections by reducing its spread. Moreover, inadequate and improper biocides have been reported as a contributing factor in antimicrobial resistance. Regardless of the manner of administration, a biocidal concentration that does not kill the target bacteria creates a stress response, propagating the resistance mechanisms. This is an essential aspect of the disinfection programme and the overall bio-contamination management plan. Knowing the mechanisms of action of biocides and resistance modalities may open new avenues to discover novel agents. This review describes the mechanisms of action of some biocides, resistance mechanisms, and approaches to study susceptibility/resistance to these agents.
Collapse
Affiliation(s)
- E S Milani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Hasani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unit, Sina Educational, Research and Treatment Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - M Varschochi
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - J Sadeghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Y Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Dancer SJ, King MF. Systematic review on use, cost and clinical efficacy of automated decontamination devices. Antimicrob Resist Infect Control 2021; 10:34. [PMID: 33579386 PMCID: PMC7881692 DOI: 10.1186/s13756-021-00894-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/21/2021] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND More evidence is emerging on the role of surface decontamination for reducing hospital-acquired infection (HAI). Timely and adequate removal of environmental pathogens leads to measurable clinical benefit in both routine and outbreak situations. OBJECTIVES This systematic review aimed to evaluate published studies describing the effect of automated technologies delivering hydrogen peroxide (H202) or ultra-violet (UV) light on HAI rates. METHODS A systematic review was performed using relevant search terms. Databases were scanned from January 2005 to March 2020 for studies reporting clinical outcome after use of automated devices on healthcare surfaces. Information collected included device type, overall findings; hospital and ward data; study location, length and size; antimicrobial consumption; domestic monitoring; and infection control interventions. Study sponsorship and duplicate publications were also noted. RESULTS While there are clear benefits from non-touch devices in vitro, we found insufficient objective assessment of patient outcome due to the before-and-after nature of 36 of 43 (84%) studies. Of 43 studies, 20 (47%) used hydrogen peroxide (14 for outbreaks) and 23 (53%) used UV technology (none for outbreaks). The most popular pathogen targeted, either alone or in combination with others, was Clostridium difficile (27 of 43 studies: 63%), followed by methicillin-resistant Staphylococcus aureus (MRSA) (16 of 43: 37%). Many owed funding and/or personnel to industry sponsorship (28 of 43: 65%) and most were confounded by concurrent infection control, antimicrobial stewardship and/or cleaning audit initiatives. Few contained data on device costs and rarely on comparable costs (1 of 43: 2%). There were expected relationships between the country hosting the study and location of device companies. None mentioned the potential for environmental damage, including effects on microbial survivors. CONCLUSION There were mixed results for patient benefit from this review of automated devices using H202 or UV for surface decontamination. Most non-outbreak studies lacked an appropriate control group and were potentially compromised by industry sponsorship. Concern over HAI encourages delivery of powerful disinfectants for eliminating pathogens without appreciating toxicity or cost benefit. Routine use of these devices requires justification from standardized and controlled studies to understand how best to manage contaminated healthcare environments.
Collapse
Affiliation(s)
- Stephanie J Dancer
- Department of Microbiology, Hairmyres Hospital, NHS, Lanarkshire, G75 8RG, Scotland, UK.
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, UK.
| | | |
Collapse
|
9
|
Chen M, Qi J, Du Y, Cheng Z, Cai T, Li C. Rapid and accurate evaluation of vaporized hydrogen peroxide on the efficiency of disinfection, using a sensitive dual-channel laser scanning cytometer. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2020.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Wawrzyk A, Rahnama M, Rybitwa D, Wieczorek K, Michalczewski G, Podsiadły E, Łobacz M. Decontamination of microbiologically contaminated abiotic porous surfaces in an oral surgery clinic using vaporised hydrogen peroxide (VHP). JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:639-653. [PMID: 33312590 PMCID: PMC7721821 DOI: 10.1007/s40201-020-00490-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/08/2020] [Indexed: 05/31/2023]
Abstract
PURPOSE The aims of the study were to identify microorganisms, including those in the VBNC state, inhabiting porous surfaces in oral surgery offices and to assess the biocidal effectiveness and impact of 300 ppm vaporised hydrogen peroxide (VHP) for 20 min on decontaminated materials. METHODS From the surfaces of textured armrests of dental chairs, pinewood doors and window frames and cotton medical aprons, 30 swabs were taken with moistened sponges. The identification of isolated microorganisms was performed using molecular methods with MALDI-TOF MS, DNA Sanger sequencer and Illumina MiSeq. To evaluate the impact of VHP decontamination (independent variable) on the number of microorganisms (response variable) ANOVA and LSD tests were used. After application of 10 processes of VHP decontamination, changes in the properties of the materials were assessed using FTIR spectroscopy, SEM microscopy and XPS spectrometry. RESULTS The concentration of microorganisms was 101-104 CFU/100 cm2 on the tested surfaces and 102 CFU/m3 in the air. Twenty species of bacteria, one yeast and 16 filamentous fungi were identified, with the predominance of Bacillus, Staphylococcus, Alternaria, Aspergillus and Penicillium. Moreover, Janthinobacterium, Acremonium, Aureobasidium, Coprinellus and Cosmospora in the VBNC state were metagenomically detected. VHP decontamination resulted in a reduction in the majority of tested microbial strains by a minimum of 3 log, and all tested mixed cultures inhabiting porous surfaces were above 98% and in the air, 100%. VHP decontamination did not affect the structural and morphological properties of cotton fibres, wood or stainless steel. CONCLUSIONS VHP decontamination at a concentration of 300 ppm for 20 min can be used for the holistic disinfection of air, surfaces and equipment in oral surgery offices.
Collapse
Affiliation(s)
- Anna Wawrzyk
- Sanitary-Epidemiological Station, Prądnicka 76, 31-202 Kraków, Poland
| | - Mansur Rahnama
- The Chair and Department of Oral Surgery, Medical University of Lublin, Karmelicka 7, 20-081 Lublin, Poland
| | - Dorota Rybitwa
- Medical Laboratory ‘Labmed’, 11-Listopada 3e/2, 32-600 Oświęcim, Poland
| | - Katarzyna Wieczorek
- The Chair and Department of Oral Surgery, Medical University of Lublin, Karmelicka 7, 20-081 Lublin, Poland
| | - Grzegorz Michalczewski
- The Chair and Department of Oral Surgery, Medical University of Lublin, Karmelicka 7, 20-081 Lublin, Poland
| | - Edyta Podsiadły
- Department of Microbiology, Faculty of Medicine, University of Rzeszów, Kopisto 2a, 35-959 Rzeszów, Poland
| | - Michał Łobacz
- The Chair and Department of Oral Surgery, Medical University of Lublin, Karmelicka 7, 20-081 Lublin, Poland
| |
Collapse
|
11
|
Amodio E, Kuster SP, Garzoni C, Zinkernagel AS, Sax H, Wolfensberger A. Disinfecting noncritical medical equipment-Effectiveness of hydrogen peroxide dry mist as an adjunctive method. Am J Infect Control 2020; 48:897-902. [PMID: 32464292 DOI: 10.1016/j.ajic.2020.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Manual disinfection of medical devices is prone to failure. Disinfection by aerosolized hydrogen peroxide might be a promising adjunctive method. We aimed to assess effectiveness of dry mist of hydrogen peroxide (HPDM) on noncritical medical equipment. METHODS One cycle of HPDM was applied on a convenience sample of 16 different types of "ready to use" noncritical medical devices in a closed, but nonsealed room. Of every object, 2 adjacent areas with assumed similar bacterial burden were swabbed before and after HPDM deployment, respectively. After culturing, colony forming units (CFU) were counted, and bacterial burden per cm2 calculated. RESULTS Of 160 objects included in the study, 36 (23%) showed a CFU-count of zero both before and after HPDM use. A decrease from a median of 0.14 CFU/cm2 (range: 0.00-125.00/cm2) to a median of 0.00 CFU/cm2 (range: 0.00-4.00/cm2) (P < .001) was observed. The bacterial burden was reduced by more than 90% in 45% (95% CI: 37-53) of objects. No pathogenic bacteria were identified. DISCUSSION HPDM reduced bacterial burden on noncritical medical items. Since cleanliness of the included "ready to use" objects was high and no pathogens were found before nebulization, the HPDM device did not increase patient safety in this setting. CONCLUSION HPDM nebulization can be a useful nonmanual adjunctive disinfection method in high-risk settings.
Collapse
Affiliation(s)
- Enrica Amodio
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefan P Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Garzoni
- Division of Internal Medicine and Infectious Diseases, Clinica Moncucco, Lugano, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hugo Sax
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aline Wolfensberger
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Gilbert GL, Hor S, Wyer M, Sadsad R, Badcock CA, Iedema R. Sustained fall in inpatient MRSA prevalence after a video-reflexive ethnography project; an observational study. Infect Dis Health 2020; 25:140-150. [PMID: 32089464 DOI: 10.1016/j.idh.2020.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Maintaining optimal infection prevention and control (IPC) in a busy, clinical environment is challenging. Video-reflexive ethnography (VRE) is a collaborative, interventionist approach to practice improvement. We hypothesised that giving clinicians opportunities to view and reflect on video footage of everyday ward activities would raise awareness of, and suggest strategies to reduce, pathogen transmission risks. We undertook a VRE project, between March and September 2013, in two tertiary hospital surgical wards, with persistently high methicillin resistant Staphylococcus aureus (MRSA) endemicity, despite previous IPC interventions. METHODS This study was a retrospective/prospective observational study, using interrupted time-series analyses, to assess the effects of the VRE project on hand hygiene compliance, inpatient MRSA infections (newly infected patients, per 1000 occupied bed days) and inpatient MRSA colonisation prevalence, measured by serial point prevalence surveys. Follow-up continued until June 2016. RESULTS The VRE project was associated with changes in IPC behaviour and outcomes. Hand hygiene compliance increased (from 62% to 75%; p < 0.0001) and MRSA colonisation prevalence decreased significantly, in both wards (baseline 42%; average post-VRE 12%; p=<0.0001), MRSA infection rate decreased in one ward. Interpretation of results was complicated by a potential confounding effect of unplanned environmental hydrogen peroxide decontamination (HPD). Improved hand hygiene compliance was a predicted outcome of VRE, but also a potential contributor to reduced MRSA transmission. CONCLUSION Separate contributions of VRE (the intervention), HPD and hand hygiene compliance were uncertain, but their combined effect was significantly reduced MRSA endemicity, which previously had been resistant to attempted IPC interventions.
Collapse
Affiliation(s)
- Gwendolyn L Gilbert
- Centre for Infectious Diseases and Microbiology, ICPMR, Westmead Hospital, Cnr Darcy and Hawkesbury Rds, Westmead, 2145, NSW, Australia.
| | - Suyin Hor
- University of Technology Sydney, 15 Broadway, Ultimo, 2007, NSW, Australia.
| | - Mary Wyer
- University of Technology Sydney, 15 Broadway, Ultimo, 2007, NSW, Australia.
| | - Rosemarie Sadsad
- Centre for Infectious Diseases and Microbiology, ICPMR, Westmead Hospital, Cnr Darcy and Hawkesbury Rds, Westmead, 2145, NSW, Australia; Sydney Informatics Hub, University of Sydney, 32 Queen St, Chippendale, 2008, NSW, Australia.
| | - Caro-Anne Badcock
- Shimsco Consulting, Pty, Ltd, Largs North, 5016, South Australia, Australia.
| | - Rick Iedema
- University of Technology Sydney, 15 Broadway, Ultimo, 2007, NSW, Australia.
| |
Collapse
|
13
|
Otter J, Yezli S, Barbut F, Perl T. An overview of automated room disinfection systems: When to use them and how to choose them. DECONTAMINATION IN HOSPITALS AND HEALTHCARE 2020. [PMCID: PMC7153347 DOI: 10.1016/b978-0-08-102565-9.00015-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conventional disinfection methods are limited by reliance on the operator to ensure appropriate selection, formulation, distribution, and contact time of the agent. Automated room disinfection (ARD) systems remove or reduce reliance on operators and so they have the potential to improve the efficacy of terminal disinfection. The most commonly used systems are hydrogen peroxide vapor (H2O2 vapor), aerosolized hydrogen peroxide (aHP), and ultraviolet (UV) light. These systems have important differences in their active agent, delivery mechanism, efficacy, process time, and ease of use. The choice of ARD system should be influenced by the intended application, the evidence base for effectiveness, practicalities of implementation, and cost considerations.
Collapse
Affiliation(s)
- J.A. Otter
- NIHR Health Protection Research Unit (HPRU) in HCAIs and AMR at Imperial College London, and Imperial College Healthcare NHS Trust, Infection Prevention and Control, London, United Kingdom
| | - S. Yezli
- Global Centre for Mass Gatherings Medicine, WHO Collaborating Centre for Mass Gatherings Medicine, Ministry of Health-Public Health Directorate, Riyadh, Kingdom of Saudi Arabia
| | - F. Barbut
- National Reference Laboratory for C. difficile, Infection Control Unit, Hôpital Saint Antoine, Paris, France,INSERM S-1139, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - T.M. Perl
- Infectious Diseases and Geographic Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
14
|
Ko JH, Kim SH, Lee NY, Kim YJ, Cho SY, Kang CI, Chung DR, Peck KR. Effects of environmental disinfection on the isolation of vancomycin-resistant Enterococcus after a hospital-associated outbreak of Middle East respiratory syndrome. Am J Infect Control 2019; 47:1516-1518. [PMID: 31307795 PMCID: PMC7115339 DOI: 10.1016/j.ajic.2019.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023]
Abstract
Environmental disinfection with sodium hypochlorite and hydrogen peroxide vapor was performed after a hospital-associated outbreak of Middle East respiratory syndrome. Although only 11% of total beds were disinfected, the isolation and vancomycin-resistance rates of Enterococcus spp significantly decreased for 2 months, whereas other multidrug-resistant organisms did not.
Collapse
|
15
|
Fuchs BB, Tharmalingam N, Mylonakis E. Vulnerability of long-term care facility residents to Clostridium difficile infection due to microbiome disruptions. Future Microbiol 2018; 13:1537-1547. [PMID: 30311778 DOI: 10.2217/fmb-2018-0157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging presents a significant risk factor for Clostridium difficile infection (CDI). A disproportionate number of CDIs affect individuals in long-term care facilities compared with the general population, likely due to the vulnerable nature of the residents and shared environment. Review of the literature cites a number of underlying medical conditions such as the use of antibiotics, proton pump inhibitors, chemotherapy, renal disease and feeding tubes as risk factors. These conditions alter the intestinal environment through direct bacterial killing, changes to pH that influence bacterial stabilities or growth, or influence nutrient availability that direct population profiles. In this review, we examine some of the contributing risk factors for elderly associated CDI and the toll they take on the microbiome.
Collapse
Affiliation(s)
- Beth Burgwyn Fuchs
- Rhode Island Hospital, Alpert Medical School & Brown University, Providence, Rhode Island 02903
| | - Nagendran Tharmalingam
- Rhode Island Hospital, Alpert Medical School & Brown University, Providence, Rhode Island 02903
| | - Eleftherios Mylonakis
- Rhode Island Hospital, Alpert Medical School & Brown University, Providence, Rhode Island 02903
| |
Collapse
|
16
|
Hygienemaßnahmen zur Prävention der Infektion durch Enterokokken mit speziellen Antibiotikaresistenzen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:1310-1361. [DOI: 10.1007/s00103-018-2811-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Rubin ZA, Martin EM, Allyn P. Primary Prevention of Clostridium difficile-Associated Diarrhea: Current Controversies and Future Tools. Curr Infect Dis Rep 2018; 20:32. [PMID: 29959605 DOI: 10.1007/s11908-018-0639-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Clostridium difficile infection (CDI) is a major cause of morbidity and mortality in hospitalized patients and rates in most places have not decreased significantly despite broad efforts by both hospitals and public health entities. This review aims to provide readers with a better understanding of the limitations of current prevention strategies. We also review potential future tools that may be available for the primary prevention of CDI in the next decade. RECENT FINDINGS Research over the last decade has expanded our appreciation of the role of asymptomatic shedding in the healthcare setting and in the community. This review demonstrates that poor quality data underlies even well-established guidance from national authorities on basic topics such as contact precautions, avoidance of alcohol-based hand hygiene products, CDI testing, supplemental cleaning modalities, and the use of bleach solutions. Additionally, we review research on novel preventative interventions such as identification of asymptomatic carriers, supplemental environmental cleaning technologies, vaccines, and the manipulation of the intestinal microbiome. While there is preliminary data that supports further research in all of these areas, the research is not yet robust enough on which to base local or national policy recommendations, though late-phase human clinical trials of CDI vaccine trials are ongoing. Over the last decade, researchers have begun to reassess the traditional infection prevention model for CDI. Data suggesting a greater role for asymptomatic shedders has increased our understanding of current vertical prevention techniques and is forcing researchers to look more at new processes and technologies to decrease disease incidence.
Collapse
Affiliation(s)
- Zachary A Rubin
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, 924 Westwood Blvd, Suite 900, Los Angeles, CA, 90095, USA.
- UCLA Clinical Epidemiology & Infection Prevention, 924 Westwood Blvd, Suite 900, Los Angeles, CA, 90095, USA.
| | - Elise M Martin
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, 924 Westwood Blvd, Suite 900, Los Angeles, CA, 90095, USA
- UCLA Clinical Epidemiology & Infection Prevention, 924 Westwood Blvd, Suite 900, Los Angeles, CA, 90095, USA
- UCLA Antibiotic Stewardship Program, Los Angeles, CA, USA
| | - Paul Allyn
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, 924 Westwood Blvd, Suite 900, Los Angeles, CA, 90095, USA
| |
Collapse
|
18
|
McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey KW, Gould CV, Kelly C, Loo V, Shaklee Sammons J, Sandora TJ, Wilcox MH. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 2018; 66:e1-e48. [PMID: 29462280 PMCID: PMC6018983 DOI: 10.1093/cid/cix1085] [Citation(s) in RCA: 1286] [Impact Index Per Article: 214.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A panel of experts was convened by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) to update the 2010 clinical practice guideline on Clostridium difficile infection (CDI) in adults. The update, which has incorporated recommendations for children (following the adult recommendations for epidemiology, diagnosis, and treatment), includes significant changes in the management of this infection and reflects the evolving controversy over best methods for diagnosis. Clostridium difficile remains the most important cause of healthcare-associated diarrhea and has become the most commonly identified cause of healthcare-associated infection in adults in the United States. Moreover, C. difficile has established itself as an important community pathogen. Although the prevalence of the epidemic and virulent ribotype 027 strain has declined markedly along with overall CDI rates in parts of Europe, it remains one of the most commonly identified strains in the United States where it causes a sizable minority of CDIs, especially healthcare-associated CDIs. This guideline updates recommendations regarding epidemiology, diagnosis, treatment, infection prevention, and environmental management.
Collapse
Affiliation(s)
| | | | - Stuart Johnson
- Edward Hines Jr Veterans Administration Hospital, Hines
- Loyola University Medical Center, Maywood, Illinois
| | | | - Karen C Carroll
- Johns Hopkins University School of Medicine, Baltimore, Maryl
| | | | - Erik R Dubberke
- Washington University School of Medicine, St Louis, Missouri
| | | | - Carolyn V Gould
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ciaran Kelly
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Vivian Loo
- McGill University Health Centre, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
19
|
Rock C, Small BA, Thom KA. Innovative Methods of Hospital Disinfection in Prevention of Healthcare-Associated Infections. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018. [DOI: 10.1007/s40506-018-0153-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Advances in prevention and treatment of vancomycin-resistant Enterococcus infection. Curr Opin Infect Dis 2018; 29:577-582. [PMID: 27584589 DOI: 10.1097/qco.0000000000000311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW This article reviews data, particularly from the last 2 years, addressing the prevention and treatment of vancomycin-resistant Enterococcus (VRE). We focus on infection control, particularly active screening, use of contact precautions as well as pharmacologic options for therapy. This is timely given the evolving priorities in efforts towards the prevention and treatment of multidrug-resistant organisms globally. RECENT FINDINGS Key findings include new data regarding the impact of contact precautions on the incidence of VRE colonization and bloodstream infection, new laboratory screening methods, and novel decolonization strategies and treatments. SUMMARY Additional and specific measures beyond standard precautions for infection prevention of VRE remain controversial. Horizontal measures such as chlorhexidine bathing appear beneficial, as are nontouch environmental cleaning methods. Treatment options for invasive disease have improved considerably in the last decade. Decolonization strategies require further research. Overall, the threat of VRE seems exaggerated.
Collapse
|
21
|
'No touch' technologies for environmental decontamination: focus on ultraviolet devices and hydrogen peroxide systems. Curr Opin Infect Dis 2018; 29:424-31. [PMID: 27257798 DOI: 10.1097/qco.0000000000000284] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW This article reviews 'no touch' methods for disinfection of the contaminated surface environment of hospitalized patients' rooms. The focus is on studies that assessed the effectiveness of ultraviolet (UV) light devices, hydrogen peroxide systems, and self-disinfecting surfaces to reduce healthcare-associated infections (HAIs). RECENT FINDINGS The contaminated surface environment in hospitals plays an important role in the transmission of several key nosocomial pathogens including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., Clostridium difficile, Acinetobacter spp., and norovirus. Multiple clinical trials have now demonstrated the effectiveness of UV light devices and hydrogen peroxide systems to reduce HAIs. A limited number of studies have suggested that 'self-disinfecting' surfaces may also decrease HAIs. SUMMARY Many studies have demonstrated that terminal cleaning and disinfection with germicides is often inadequate and leaves environmental surfaces contaminated with important nosocomial pathogens. 'No touch' methods of room decontamination (i.e., UV devices and hydrogen peroxide systems) have been demonstrated to reduce key nosocomial pathogens on inoculated test surfaces and on environmental surfaces in actual patient rooms. Further UV devices and hydrogen peroxide systems have been demonstrated to reduce HAI. A validated 'no touch' device or system should be used for terminal room disinfection following discharge of patients on contact precautions. The use of a 'self-disinfecting' surface to reduce HAI has not been convincingly demonstrated.
Collapse
|
22
|
No-Touch Disinfection Methods to Decrease Multidrug-Resistant Organism Infections: A Systematic Review and Meta-analysis. Infect Control Hosp Epidemiol 2017; 39:20-31. [PMID: 29144223 DOI: 10.1017/ice.2017.226] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recent studies have shown that using no-touch disinfection technologies (ie, ultraviolet light [UVL] or hydrogen peroxide vapor [HPV] systems) can limit the transmission of nosocomial pathogens and prevent healthcare-associated infections (HAIs). To investigate these findings further, we performed a systematic literature review and meta-analysis on the impact of no-touch disinfection methods to decrease HAIs. METHODS We searched PubMed, CINAHL, CDSR, DARE and EMBASE through April 2017 for studies evaluating no-touch disinfection technology and the nosocomial infection rates for Clostridium difficile, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and other multidrug-resistant organisms (MDROs). We employed random-effect models to obtain pooled risk ratio (pRR) estimates. Heterogeneity was evaluated with I2 estimation and the Cochran Q statistic. Pooled risk ratios for C. difficile, MRSA, VRE, and MDRO were assessed separately. RESULTS In total, 20 studies were included in the final review: 13 studies using UVL systems and 7 studies using HPV systems. When the results of the UVL studies were pooled, statistically significant reduction ins C. difficile infection (CDI) (pRR, 0.64; 95% confidence interval [CI], 0.49-0.84) and VRE infection rates (pRR, 0.42; 95% CI, 0.28-0.65) were observed. No differences were found in rates of MRSA or gram-negative multidrug-resistant pathogens. CONCLUSIONS Ultraviolet light no-touch disinfection technology may be effective in preventing CDI and VRE infection. Infect Control Hosp Epidemiol 2018;39:20-31.
Collapse
|
23
|
Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clin Microbiol Rev 2017; 30:827-860. [PMID: 28592405 DOI: 10.1128/cmr.00112-16] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial skin infections represent some of the most common infectious diseases globally. Prevention and treatment of skin infections can involve application of a topical antimicrobial, which may be an antibiotic (such as mupirocin or fusidic acid) or an antiseptic (such as chlorhexidine or alcohol). However, there is limited evidence to support the widespread prophylactic or therapeutic use of topical agents. Challenges involved in the use of topical antimicrobials include increasing rates of bacterial resistance, local hypersensitivity reactions (particularly to older agents, such as bacitracin), and concerns about the indiscriminate use of antiseptics potentially coselecting for antibiotic resistance. We review the evidence for the major clinical uses of topical antibiotics and antiseptics. In addition, we review the mechanisms of action of common topical agents and define the clinical and molecular epidemiology of antimicrobial resistance in these agents. Moreover, we review the potential use of newer and emerging agents, such as retapamulin and ebselen, and discuss the role of antiseptic agents in preventing bacterial skin infections. A comprehensive understanding of the clinical efficacy and drivers of resistance to topical agents will inform the optimal use of these agents to preserve their activity in the future.
Collapse
|
24
|
Abstract
C. difficile infections (CDI) have been a challenging disease to treat, much less to prevent, for decades. Efforts for primary prevention have mainly focused on improving infection control practices, but CDI outbreaks continue to plague healthcare facilities. Areas covered: A literature search from 1970-December 2016 found 13 facility-level and 2 patient-level strategies that were evidence-based. The aim of this manuscript is to assess the current state of the literature on primary prevention of CDI and offer insights into which strategies may be more effective. Expert commentary: The strongest evidence for primary prevention is based on multi-faceted infection control bundles, while there is promising moderate evidence involving facility-wide use of specific probiotics. Moderate-level evidence was found for patient-level use of specific probiotics and low level evidence for vaccines. Future suggestions include use of consistent outcome metrics, measurements of implementation compliance and program sustainability.
Collapse
Affiliation(s)
- Lynne V McFarland
- a Medicinal Chemistry , University of Washington, Puget Sound VA HCS , Seattle , WA , USA
| |
Collapse
|
25
|
Edwards AN, Karim ST, Pascual RA, Jowhar LM, Anderson SE, McBride SM. Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells. Front Microbiol 2016; 7:1698. [PMID: 27833595 PMCID: PMC5080291 DOI: 10.3389/fmicb.2016.01698] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is a Gram-positive, sporogenic and anaerobic bacterium that causes a potentially fatal colitis. C. difficile enters the body as dormant spores that germinate in the colon to form vegetative cells that secrete toxins and cause the symptoms of infection. During transit through the intestine, some vegetative cells transform into spores, which are more resistant to killing by environmental insults than the vegetative cells. Understanding the inherent resistance properties of the vegetative and spore forms of C. difficile is imperative for the development of methods to target and destroy the bacterium. The objective of this study was to define the chemical and environmental resistance properties of C. difficile vegetative cells and spores. We examined vegetative cell and spore tolerances of three C. difficile strains, including 630Δerm, a 012 ribotype and a derivative of a past epidemic strain; R20291, a 027 ribotype and current epidemic strain; and 5325, a clinical isolate that is a 078 ribotype. All isolates were tested for tolerance to ethanol, oxygen, hydrogen peroxide, butanol, chloroform, heat and sodium hypochlorite (household bleach). Our results indicate that 630Δerm vegetative cells (630 spo0A) are more resistant to oxidative stress than those of R20291 (R20291 spo0A) and 5325 (5325 spo0A). In addition, 5325 spo0A vegetative cells exhibited greater resistance to organic solvents. In contrast, 630Δerm spores were more sensitive than R20291 or 5325 spores to butanol. Spores from all three strains exhibited high levels of resistance to ethanol, hydrogen peroxide, chloroform and heat, although R20291 spores were more resistant to temperatures in the range of 60-75°C. Finally, household bleach served as the only chemical reagent tested that consistently reduced C. difficile vegetative cells and spores of all tested strains. These findings establish conditions that result in vegetative cell and spore elimination and illustrate the resistance of C. difficile to common decontamination methods. These results further demonstrate that the vegetative cells and spores of various C. difficile strains have different resistance properties that may impact decontamination of surfaces and hands.
Collapse
Affiliation(s)
- Adrianne N Edwards
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Samiha T Karim
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Ricardo A Pascual
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Lina M Jowhar
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Sarah E Anderson
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Shonna M McBride
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| |
Collapse
|