1
|
Dexter F, Epstein RH, Loftus RW. Quantifying and Interpreting Inequality in Surgical Site Infections per Quarter Among Anesthetizing Locations and Specialties. Cureus 2023; 15:e36878. [PMID: 37123760 PMCID: PMC10147407 DOI: 10.7759/cureus.36878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
Background Earlier studies have shown that prevention of surgical site infection can achieve net cost savings when targeted to operating rooms with the most surgical site infections. Methodology This retrospective cohort study included all 231,057 anesthetics between May 2017 and June 2022 at a large teaching hospital. The anesthetics were administered in operating rooms, procedure rooms, radiology, and other sites. The 8,941 postoperative infections were identified from International Classification of Diseases diagnosis codes relevant to surgical site infections documented during all follow-up encounters over 90 days postoperatively. To quantify the inequality in the counts of infections among anesthetizing locations, the Gini index was used, with the Gini index being proportional to the sum of the absolute pairwise differences among anesthetizing locations in the counts of infections. Results The Gini index for infections among the 112 anesthetizing locations at the hospital was 0.64 (99% confidence interval = 0.56 to 0.71). The value of 0.64 is so large that, for comparison, it exceeds nearly all countries' Gini index for income inequality. The 50% of locations with the fewest infections accounted for 5% of infections. The 10% of locations with the most infections accounted for 40% of infections and 15% of anesthetics. Among the 57 operating room locations, there was no association between counts of cases and infections (Spearman correlation coefficient r = 0.01). Among the non-operating room locations (e.g., interventional radiology), there was a significant association (Spearman r = 0.79). Conclusions Targeting specific anesthetizing locations is important for the multiple interventions to reduce surgical site infections that represent fixed costs irrespective of the number of patients (e.g., specialized ventilatory systems and nightly ultraviolet-C disinfection).
Collapse
Affiliation(s)
| | - Richard H Epstein
- Anesthesiology, University of Miami Miller School of Medicine, Miami, USA
| | | |
Collapse
|
2
|
Myers W, Ajewole S, Xu S, Yorio P, Hornbeck A, Zhuang Z. Laboratory assessment of bacterial contamination of a sterile environment when using respirators not traditionally used in a sterile field environment. Infect Control Hosp Epidemiol 2022; 43:1867-1872. [PMID: 35701856 PMCID: PMC10081045 DOI: 10.1017/ice.2022.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE During infectious disease outbreaks or pandemics, an increased demand for surgical N95s that create shortages and necessitate the use of alternative National Institute for Occupational Safety and Health (NIOSH)-approved respirators that do not meet the Food and Drug Administration (FDA) additional requirements. The objective of this research was to quantify the level of bacterial contamination resulting from wearing NIOSH-approved respirators lacking the additional protections afforded by surgical N95s. METHODS Participants performed simulated healthcare tasks while wearing 5 different respirators approved by the NIOSH. Sterile field contamination resulting from use of a surgical mask cleared by the FDA served as a baseline for comparison with the NIOSH-approved respirators. RESULTS The bacterial contamination produced by participants wearing the N95 filtering facepiece respirators (FFRs) without an exhalation valve, the powered air-purifying respirators (PAPRs) with an assigned protection factor of 25 or 1,000 was not significantly different compared to the contamination resulting from wearing the surgical mask. The bacterial contamination resulting from wearing the N95 FFR with an exhalation valve and elastomeric half-mask respirator (EHMR) with an exhalation valve was found to be statistically significantly higher than the bacterial contamination resulting from wearing the surgical mask. CONCLUSIONS Overall, NIOSH-approved respirators without exhalation valves maintain a sterile field as well as a surgical mask. These findings inform respiratory guidance on the selection of respirators where sterile fields are needed during shortages of surgical N95 FFRs.
Collapse
Affiliation(s)
- Warren Myers
- Industrial and Management Systems Engineering, Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia
| | - Segun Ajewole
- Industrial and Management Systems Engineering, Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia
| | - Susan Xu
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, Pennsylvania
| | - Patrick Yorio
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, Pennsylvania
| | - Adam Hornbeck
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, Pennsylvania
| | - Ziqing Zhuang
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Wong KY, Tan H, Nyakuma BB, Kamar HM, Tey WY, Hashim H, Chiong MC, Wong SL, Wahab RA, Mong GR, Ho WS, Othman MHD, Kuan G. Effects of medical staff's turning movement on dispersion of airborne particles under large air supply diffuser during operative surgeries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82492-82511. [PMID: 35751730 DOI: 10.1007/s11356-022-21579-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The present study examines the effect of medical staff's turning movements on particle concentration in the surgical zone and settlement on the patient under single large diffuser (SLD) ventilation. A computational domain representing the operating room (OR) was constructed using computer-aided design (CAD) software. The airflow and particle models were validated against the published data before conducting the case studies. The airflow in the OR was simulated using an RNG k-ε turbulence model, while the dispersion of the particles was simulated using a discrete phase model based on the Lagrangian approach. A user-defined function (UDF) code was written and compiled in the simulation software to describe the medical staff member's turning movements. In this study, three cases were examined: baseline, SLD 1, and SLD 2, with the air supply areas of 4.3 m2, 5.7 m2, and 15.9 m2, respectively. Results show that SLD ventilations in an OR can reduce the number of dispersed particles in the surgical zone. The particles that settled on the patient were reduced by 41% and 39% when using the SLD 1 and SLD 2 ventilations, respectively. The use of the larger air supply area of SLD 2 ventilation in the present study does not significantly reduce the particles that settle on a patient. Likewise, the use of SLD 2 ventilation may increase operating and maintenance costs.
Collapse
Affiliation(s)
- Keng Yinn Wong
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
- Process Systems Engineering Centre, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Huiyi Tan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Bemgba Bevan Nyakuma
- Department of Chemistry, Faculty of Sciences, Benue State University, Makurdi, Benue State, Nigeria
| | - Haslinda Mohamed Kamar
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Wah Yen Tey
- Faculty of Engineering, Technology and Built Environment, USCI University, Kuala Lumpur, Malaysia
| | - Haslenda Hashim
- Process Systems Engineering Centre, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Meng Choung Chiong
- Faculty of Engineering, Technology and Built Environment, USCI University, Kuala Lumpur, Malaysia
| | - Syie Luing Wong
- Dpto. Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Sciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Guo Ren Mong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wai Shin Ho
- Process Systems Engineering Centre, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Garry Kuan
- School of Health Science, Universiti Sains Malaysia, Penang, Kelantan, Malaysia
- Department of Life Sciences, Brunel University, Uxbridge, London, UK
| |
Collapse
|
4
|
Bolten A, Kringos DS, Spijkerman IJB, Sperna Weiland NH. The carbon footprint of the operating room related to infection prevention measures: a scoping review. J Hosp Infect 2022; 128:64-73. [PMID: 35850380 DOI: 10.1016/j.jhin.2022.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Infection prevention measures are widely used in operating rooms (ORs). However, the extent to which they are at odds with ambitions to reduce the health sector's carbon footprint remains unclear. AIM To synthesize the evidence base for the carbon footprint of commonly used infection prevention measures in the OR, namely medical devices and instruments, surgical attire and air treatment systems. METHODS A scoping review of the international scientific literature was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The search was performed in PubMed and Google Scholar. Articles published between 2010 and June 2021 on infection prevention measures, their impact on the health sector's carbon footprint, and risk for surgical site infections (SSIs) were included. FINDINGS Although hospitals strive to reduce their carbon footprint, many infection prevention measures result in increased emissions. Evidence suggests that the use of disposable items instead of reusable items generally increases the carbon footprint, depending on sources of electricity. Controversy exists regarding the correlation between air treatment systems, contamination and the incidence of SSIs. The literature indicates that new air treatment systems consume more energy and do not necessarily reduce SSIs compared with conventional systems. CONCLUSION Infection prevention measures in ORs can be at odds with sustainability. The use of new air treatment systems and disposable items generally leads to significant greenhouse gas emissions, and does not necessarily reduce the incidence of SSIs. Alternative infection prevention measures with less environmental impact are available. Implementation could be facilitated by embracing environmental impact as an additional dimension of quality of care, which should change current risk-based approaches for the prevention of SSIs.
Collapse
Affiliation(s)
- A Bolten
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - D S Kringos
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Quality of Care, Amsterdam, the Netherlands
| | - I J B Spijkerman
- Department of Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - N H Sperna Weiland
- Amsterdam Public Health Research Institute, Quality of Care, Amsterdam, the Netherlands; Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Centre for Sustainable Healthcare, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Tan H, Wong KY, Nyakuma BB, Kamar HM, Chong WT, Wong SL, Kang HS. Systematic study on the relationship between particulate matter and microbial counts in hospital operating rooms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6710-6721. [PMID: 34458973 PMCID: PMC8403507 DOI: 10.1007/s11356-021-16171-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/22/2021] [Indexed: 06/04/2023]
Abstract
In this study, a systematic procedure for establishing the relationship between particulate matter (PM) and microbial counts in four operating rooms (ORs) was developed. The ORs are located in a private hospital on the western coast of Peninsular Malaysia. The objective of developing the systematic procedure is to ensure that the correlation between the PMs and microbial counts are valid. Each of the procedures is conducted based on the ISO, IEST, and NEBB standards. The procedures involved verifying the operating parameters are air change rate, room differential pressure, relative humidity, and air temperature. Upon verifying that the OR parameters are in the recommended operating range, the measurements of the PMs and sampling of the microbes were conducted. The TSI 9510-02 particle counter was used to measure three different sizes of PMs: PM 0.5, PM 5, and PM 10. The MAS-100ECO air sampler was used to quantify the microbial counts. The present study confirms that PM 0.5 does not have an apparent positive correlation with the microbial count. However, the evident correlation of 7% and 15% were identified for both PM 5 and PM 10, respectively. Therefore, it is suggested that frequent monitoring of both PM 5 and PM 10 should be practised in an OR before each surgical procedure. This correlation approach could provide an instantaneous estimation of the microbial counts present in the OR.
Collapse
Affiliation(s)
- Huiyi Tan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Keng Yinn Wong
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
- Process Systems Engineering Centre (PROSPECT), Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Bemgba Bevan Nyakuma
- Department of Chemistry, Faculty of Sciences, Benue State University, Makurdi, Benue State, P. M. B 102119, Nigeria
| | - Haslinda Mohamed Kamar
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Wen Tong Chong
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Syie Luing Wong
- Dpto. Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, Madrid, Spain
| | - Hooi Siang Kang
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
6
|
Ereth MH, Fine J, Stamatatos F, Mathew B, Hess D, Simpser E. Healthcare-associated infection impact with bioaerosol treatment and COVID-19 mitigation measures. J Hosp Infect 2021; 116:69-77. [PMID: 34302883 PMCID: PMC8295046 DOI: 10.1016/j.jhin.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND The real-world impact of breathing zone air purification and coronavirus disease 2019 (COVID-19) mitigation measures on healthcare-associated infections is not well documented. Engineering solutions to treat airborne transmission of disease may yield results in controlled test chambers or single rooms, but have not been reported on hospital-wide applications, and the impact of COVID-19 mitigation measures on healthcare-associated infection rates is unknown. AIM To determine the impact of hospital-wide bioaerosol treatment and COVID-19 mitigation measures on clinical outcomes. METHODS The impact of the step-wise addition of air disinfection technology and COVID-19 mitigation measures to standard multi-modal infection control on particle counts, viral and bacterial bioburden, and healthcare-associated infection rates was investigated in a 124-bed hospital (>100,000 patient-days over 30 months). FINDINGS AND CONCLUSION The addition of air disinfection technology and COVID-19 mitigation measures reduced airborne ultrafine particles, altered hospital bioburden, and reduced healthcare-associated infections from 11.9 to 6.6 (per 1000 patient-days) and from 6.6 to 1.0 (per 1000 patient-days), respectively (P<0.0001, R2=0.86). No single technology, tool or procedure will eliminate healthcare-associated infections, but the addition of a ubiquitous facility-wide engineering solution at limited expense and with no alteration to patient, visitor or staff traffic or workflow patterns reduced infections by 45%. A similar impact was documented with the addition of comprehensive, restrictive, and labour- and material-intensive COVID-19 mitigation measures. To the authors' knowledge, this is the first direct comparison between traditional infection control, an engineering solution and COVID-19 mitigation measures.
Collapse
Affiliation(s)
- M H Ereth
- Mayo Clinic College of Medicine, Rochester, MN, USA.
| | - J Fine
- St. Mary's Hospital for Children, Bayside, NY, USA
| | | | - B Mathew
- St. Mary's Hospital for Children, Bayside, NY, USA
| | - D Hess
- SecureAire, Inc, Dunedin, FL, USA
| | - E Simpser
- St. Mary's Hospital for Children, Bayside, NY, USA
| |
Collapse
|
7
|
Dexter F, Epstein RH, Loftus RW. Quantifying and interpreting inequality of surgical site infections among operating rooms. Can J Anaesth 2021; 68:812-824. [PMID: 33547628 DOI: 10.1007/s12630-021-01931-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/27/2023] Open
Abstract
PURPOSE The incidence of surgical site infection differs among operating rooms (ORs). However, cost effectiveness of interventions targeting ORs depends on infection counts. The purpose of this study was to quantify the inequality of infection counts among ORs. METHODS We performed a single-centre historical cohort study of elective surgical cases spanning a 160-week period from May 2017 to May 2020, identifying cases of infection within 90 days using International Classification of Diseases, Tenth Revision, Clinical Modification diagnosis codes. We used the Gini index to measure inequality of infections among ORs. As a reference, the Gini index for inequality of household disposable income in the US in 2017 was 0.39, and 0.31 for Canada. RESULTS There were 3,148 (3.67%) infections among the 85,744 cases studied. The 20% of 57 ORs with the most and least infections accounted for 44% (99% confidence interval [CI], 36 to 52) and 5% (99% CI, 2 to 8), respectively. The Gini index was 0.40 (99% CI, 0.31 to 0.50), which is comparable to income inequality in the US. There were more infections in ORs with more minutes of cases (Spearman correlation ρ = 0.68; P < 0.001), but generally not in ORs with more total cases (ρ = 0.11; P = 0.43). Moderately long (3.3 to 4.8 hr) cases had a large effect, having greater incidences of infection, while not being so long as to have just one case per day per OR. There was substantially greater inequality in infection counts among the 557 observed combinations of OR specialty (Gini index 0.85; 99% CI, 0.81 to 0.88). CONCLUSIONS Inequality of infections among ORs is substantial and caused by both inequality in the incidence of infections and inequality in the total minutes of cases. Inequality in infections among OR and specialty combinations is due principally to inequality in total minutes of cases.
Collapse
Affiliation(s)
- Franklin Dexter
- Division of Management Consulting, Department of Anesthesia, University of Iowa, 200 Hawkins Drive, 6-JCP, Iowa City, IA, 52242, USA.
| | | | - Randy W Loftus
- Department of Anesthesia, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Operating room air delivery design to protect patient and surgical site results in particles released at surgical table having greater concentration along walls of the room than at the instrument tray. Am J Infect Control 2021; 49:593-596. [PMID: 33039512 PMCID: PMC7544698 DOI: 10.1016/j.ajic.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/04/2022]
Abstract
Background During the coronavirus disease 2019 (COVID-19) pandemic, recommendations have included that personnel not involved in procedures releasing airborne contaminants reduce their exposure by moving >2 m away. We tested whether air particle concentrations in operating rooms (ORs) are greater in the periphery, downstream from the supply airflow. Methods We analyzed data from 15 mock surgical procedures performed in 3 ORs. Two ORs were modern, one with a single large diffuser system above the surgical table, and the other using a multiple diffuser array design. An air particle counting unit was located on the instrument table, another adjacent to an air return grille. Results Concentrations of air particles were greater at return grille than instrument table for the single large diffuser at 26 air exchanges per hour, and the multiple diffuser array at both 26 and 20 air exchanges per hour (all P ≤ .0044), including during electrocautery (all P ≤ .0072). The ratios of concentrations, return grille versus instrument table, were greater during electrocautery for 0.5 to 1.0-micron particles and 1.0 to 5.0-micron particles (both P < .0001). Conclusions Modern OR airflow systems are so effective at protecting the surgical field and team from airborne particles emitted during surgery that concentrations of particles released at the OR table are greater at the OR walls than near the center of the room.
Collapse
|
9
|
Shirozu K, Setoguchi H, Araki K, Ando T, Yamaura K. Impact of air-conditioner outlet layout on the upward airflow induced by forced air warming in operating rooms. Am J Infect Control 2021; 49:44-49. [PMID: 32603852 DOI: 10.1016/j.ajic.2020.06.202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Previously, we found that an upward air current in the head area, induced by forced air warming (FAW), was completely counteracted by downward laminar airflow. However, this study did not include any consideration of the air-conditioner outlet layout (ACOL); hence, its impact remains unclear. METHODS This study was performed in 2 operating rooms (ORs)-ISO classes 5 and 6, which are denoted as OR-5 and OR-6, respectively. Both ORs have distinct ACOLs. The cleanliness, or the number or ratio of shifting artificial particles was evaluated. RESULTS During the first 5 minutes after particles generation, significantly more particles shifted into the surgical field in OR-5 when compared to OR-6 (13,587 [4,341-15,913] and 106 [41-338] particles/cubic foot, P < .0001). Notably, FAW did not increase the number of shifting particles in OR-6. The laminar airflow system fully counteracted the upward airflow caused by FAW in OR-6, where the ACOL covered the operating bed. However, this did not occur in OR-5, where the ACOL did not fully cover the operating bed. CONCLUSIONS Regardless of cleanliness ability of OR, an ACOL that fully covers the operating bed can prevent upward airflow in the head area and reduce the number of artificial particles shifting into the surgical field, which are typically caused by FAW.
Collapse
|
10
|
Ereth MH, Hess DH, Driscoll A, Hernandez M, Stamatatos F. Particle control reduces fine and ultrafine particles greater than HEPA filtration in live operating rooms and kills biologic warfare surrogate. Am J Infect Control 2020; 48:777-780. [PMID: 31911069 DOI: 10.1016/j.ajic.2019.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Controlling indoor air quality and the airborne transmission of infectious agents in hospitals is critical. The most hazardous particles and pathogens are not easily eliminated by traditionally passive air cleansing. METHODS We studied the effect of a novel particle control technology on airborne particulate matter in 2 live real-world operating room settings and on pathogen survival in a microbiology laboratory. RESULTS Particle control technology reduced operating room particle and pathogen loads by 94.4% in a community hospital operating room, and by 95% in an academic medical center operating room. The addition of particle control technology to a collector loaded with a biologic warfare surrogate resulted in a 95% kill rate of an anthrax surrogate (Bacillus subtilis) within 3 hours. DISCUSSION Deployment of this emerging technology could significantly reduce indoor air contamination and associated infections in operating rooms, hospital isolation rooms, and intensive care settings, as well as reduce inflammatory responses to airborne particles. CONCLUSIONS The particle control technology studied may protect patients from hospital-acquired infections, reduce inflammatory pulmonary disease, and mitigate exposure to biologic weapons.
Collapse
Affiliation(s)
- Mark H Ereth
- Department of Anesthesiology, Mayo Clinic College of Medicine and Science, Rochester, MN.
| | | | | | - Mark Hernandez
- Department of Environmental Engineering, University of Colorado Boulder, Boulder, CO
| | | |
Collapse
|