1
|
Qiao S, Hou Y, Rong Q, Han B, Liu P. Tregs are involved in VEGFA/ VASH1-related angiogenesis pathway in ovarian cancer. Transl Oncol 2023; 32:101665. [PMID: 37018867 PMCID: PMC10106963 DOI: 10.1016/j.tranon.2023.101665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
Vasohibin1 (VASH1) is a kind of vasopressor, produced by negative feedback from vascular endothelial growth factor A (VEGFA). Anti-angiogenic therapy targeting VEGFA is currently the first-line treatment for advanced ovarian cancer (OC), but there are still many adverse effects. Regulatory T cells (Tregs) are the main lymphocytes mediating immune escape function in the tumor microenvironment (TME) and have been reported to influence the function of VEGFA. However, whether Tregs are associated with VASH1 and angiogenesis in TME in OC is unclear. We aimed to explore the relationship between angiogenesis and immunosuppression in the TME of OC. We validated the relationship between VEGFA, VASH1, and angiogenesis in ovarian cancer and their prognostic implications. The infiltration level of Tregs and its marker forkhead box protein 3 (FOXP3) were explored in relation to angiogenesis-related molecules. The results showed that VEGFA and VASH1 were associated with clinicopathological stage, microvessel density and poor prognosis of ovarian cancer. Both VEGFA and VASH1 expression were associated with angiogenic pathways and there was a positive correlation between VEGFA and VASH1 expression. Tregs correlated with angiogenesis-related molecules and indicated that high FOXP3 expression is harmful to the prognosis. Gene set enrichment analysis (GSEA) predicted that angiogenesis, IL6/JAK/STAT3 signaling, PI3K/AKT/mTOR signaling, TGF-β signaling, and TNF-α signaling via NF-κB may be common pathways for VEGFA, VASH1, and Tregs to be involved in the development of OC. These findings suggest that Tregs may be involved in the regulation of tumor angiogenesis through VEGFA and VASH1, providing new ideas for synergistic anti-angiogenic therapy and immunotherapy in OC.
Collapse
Affiliation(s)
- Sijing Qiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China
| | - Yue Hou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China
| | - Qing Rong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China
| | - Bing Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China.
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Shen Y, Wang H, Xu X, Chen C, Zhu S, Cheng L, Fang J, Liu K, Xu X. Metabolomics study of treatment response to conbercept of patients with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Front Pharmacol 2022; 13:991879. [PMID: 36199690 PMCID: PMC9527301 DOI: 10.3389/fphar.2022.991879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Neovascular age-related macular degeneration (nAMD) and polypoidal choroidal vasculopathy (PCV) are major causes of blindness in aged people. 30% of the patients show unsatisfactory response to anti-vascular endothelial growth factor (anti-VEGF) drugs. This study aims to investigate the relationship between serum metabolome and treatment response to anti-VEGF therapy. Methods: A prospective longitudinal study was conducted between March 2017 and April 2019 in 13 clinical sites in China. The discovery group were enrolled from Shanghai General Hospital. The validation group consisted of patients from the other 12 sites. Participants received at least one intravitreal injection of 0.5 mg anti-VEGF drug, conbercept, and were divided into two groups - responders and non-responders. Serum samples of both groups were processed for UHPLC-MS/MS analysis. We constructed principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) models to investigate the metabolic differences between two groups using SIMCA-P. Area under curve (AUC) was calculated to screen the biomarkers to predict treatment response. Metabolites sub-classes and enriched pathways were obtained using MetaboAnalyst5.0. Results: 219 eyes from 219 patients (nAMD = 126; PCV = 93) were enrolled. A total of 248 metabolites were detected. PCA and PLS-DA models of the discovery group demonstrated that the metabolic profiles of responders and non-responders clearly differed. Eighty-five differential metabolites were identified, including sub-classes of diacylglycerophosphocholines, lysophosphatidylcholine (LPC), fatty acids, phosphocholine, etc. Responders and non-responders differed most significantly in metabolism of LPC (p = 7.16 × 10^-19) and diacylglycerophosphocholine (p = 6.96 × 10^-17). LPC 18:0 exhibited the highest AUC, which is 0.896 with 95% confidence internal between 0.833 and 0.949, to discriminate responders. The predictive accuracy of LPC 18:0 was 72.4% in the validation group. Conclusions: This study suggests that differential metabolites may be useful for guiding treatment options for nAMD and PCV. Metabolism of LPC and diacylglycerophosphocholine were found to affect response to conbercept treatment. LPC 18:0 was a potential biomarker to discriminate responders from non-responders.
Collapse
Affiliation(s)
- Yinchen Shen
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Hanying Wang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiaoyin Xu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chong Chen
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shaopin Zhu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Lu Cheng
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
- *Correspondence: Kun Liu, ; Junwei Fang,
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
- *Correspondence: Kun Liu, ; Junwei Fang,
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
3
|
Wei Y, Hsu JC, Chen W, Chew EY, Ding Y. Identification and inference for subgroups with differential treatment efficacy from randomized controlled trials with survival outcomes through multiple testing. Stat Med 2021; 40:6523-6540. [PMID: 34542190 DOI: 10.1002/sim.9196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/08/2022]
Abstract
With the uptake of targeted therapies, instead of the "one-fits-all" approach, modern randomized controlled trials (RCTs) often aim to develop treatments that target a subgroup of patients. Motivated by analyzing the Age-Related Eye Disease Study (AREDS) data, a large RCT to study the efficacy of nutritional supplements in delaying the progression of an eye disease, age-related macular degeneration (AMD), we develop a simultaneous inference procedure to identify and infer subgroups with differential treatment efficacy in RCTs with time-to-event outcomes. Specifically, we formulate the multiple testing problem through contrasts and construct their simultaneous confidence intervals, which appropriately control both within- and across-marker multiplicity. Realistic simulations are conducted using real genotype data to evaluate the method performance under various scenarios. The method is then applied to AREDS to assess the efficacy of antioxidants and zinc combination in delaying AMD progression. Multiple gene regions including ESRRB-VASH1 on chromosome 14 have been identified with subgroups showing differential efficacy. We further validate our findings in an independent subsequent RCT, AREDS2, by discovering consistent differential treatment responses in the targeted and non-targeted subgroups identified from AREDS. This multiple-testing-based simultaneous inference approach provides a step forward to confidently identify and infer subgroups in modern drug development.
Collapse
Affiliation(s)
- Yue Wei
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason C Hsu
- Department of Statistics, The Ohio State University, Columbus, Ohio, USA
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily Y Chew
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Hu XN, Ni Y, Luan J, Ding YZ. A review on vasohibin and ocular neovascularization. Int J Ophthalmol 2020; 13:1004-1008. [PMID: 32566515 DOI: 10.18240/ijo.2020.06.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Ischemic and neovascular disease is one of the most difficult ocular diseases to deal with nowadays. Redundancy, poor visual acuity and decreased life quality are bothering patients and ophthalmologists for decades. After vascular endothelial growth factor (VEGF) was found to be a primary factor in promoting retinal angiogenesis, intravitreal injection of anti-VEGF drugs has been the first-line treatment. Whereas, some patients are refractory to this therapy and problems of economic burden, local complications and adverse effects promote researches into other possible targets. The vasohibin (VASH) family is a newly-investigated factor in modulating ocular angiogenesis. The family includes VASH1 and VASH2, which show opposite effects of inhibiting and accelerating angiogenesis respectively. Positive results have been reported in cellular and animal experiments. With further researches, it can be a promising future target of treating ocular neovascular diseases.
Collapse
Affiliation(s)
- Xiao-Nan Hu
- Department of Ophthalmology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu Province, China.,Medical School of Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Yan Ni
- Department of Ophthalmology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Jie Luan
- Department of Ophthalmology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Yu-Zhi Ding
- Department of Ophthalmology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
5
|
Endogenous Antiangiogenic Factors in Chronic Kidney Disease: Potential Biomarkers of Progression. Int J Mol Sci 2018; 19:ijms19071859. [PMID: 29937525 PMCID: PMC6073618 DOI: 10.3390/ijms19071859] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) is a major global health problem. Unless intensive intervention is initiated, some patients can rapidly progress to end-stage kidney disease. However, it is often difficult to predict renal outcomes using conventional laboratory tests in individuals with CKD. Therefore, many researchers have been searching for novel biomarkers to predict the progression of CKD. Angiogenesis is involved in physiological and pathological processes in the kidney and is regulated by the balance between a proangiogenic factor, vascular endothelial growth factor (VEGF)-A, and various endogenous antiangiogenic factors. In recent reports using genetically engineered mice, the roles of these antiangiogenic factors in the pathogenesis of kidney disease have become increasingly clear. In addition, recent clinical studies have demonstrated associations between circulating levels of antiangiogenic factors and renal dysfunction in CKD patients. In this review, we summarize recent advances in the study of representative endogenous antiangiogenic factors, including soluble fms-related tyrosine kinase 1, soluble endoglin, pigment epithelium-derived factor, VEGF-A165b, endostatin, and vasohibin-1, in associations with kidney diseases and discuss their predictive potentials as biomarkers of progression of CKD.
Collapse
|
6
|
Du H, Zhao J, Hai L, Wu J, Yi H, Shi Y. The roles of vasohibin and its family members: Beyond angiogenesis modulators. Cancer Biol Ther 2017; 18:827-832. [PMID: 28886304 PMCID: PMC5710674 DOI: 10.1080/15384047.2017.1373217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vasohibin-1 is an intrinsic angiogenesis inhibitor, and is expressed in endothelial cells via induction by pro-angiogenesis factors. It is known to inhibit several processes of angiogenesis, with different mechanisms from extrinsic angiogenesis inhibitors. Vasohibin-2 is mainly expressed by mononuclear cells which have been mobilized from bone marrow. It not only promotes angiogenesis, but also modulates the releases of FGF-2 and VEGF, which are the two major inducers for vasohibin1. Hypoxic environment induces the expression of hypoxia-inducible Factor 1α with a result of VEGF release nearly in all tumor cell lines and tissues. However, it has been observed that hypoxia reduces the inducible effects of VEGF on vasohibin, which indicates that a complicated mechanism exists in the angiogenesis. Vasohibin and its family members play important roles in both the physiological and pathological procedures, in contrary but complementary patterns. Furthermore, human aortic smooth muscle cells and fibroblast have also been detected to express vasohibin on a moderate to weak scale range. Recently, the results of an increasing number of studies in vivo have shown that vasohibin can also be detected in several cancers, and is associated with micro-vessel densities, histology grades, invasions, poor clinical features, metastasis, and dissemination in abdominal cavities, as well as EMT. In more recent reports, it has been confirmed that, along with being angiogenesis regulators, a variety of other roles have been associated with this family. The focus of this study was the upstream regulatory mechanisms of vasohibin expressions, and their role in regard to the downstream target proteins of vasohibin, especially in carcinoma. Vasohibin is considered to be an original angiogenesis inhibitor, and has a much broader significance in pathological processes. It can be taken as an independent prognostic factor, as well as a potential strategy for cancer therapy programs.
Collapse
Affiliation(s)
- Hua Du
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Jing Zhao
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Ling Hai
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Jing Wu
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Hua Yi
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Yonghong Shi
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| |
Collapse
|
7
|
Zhang B, Wu Z, Xie W, Tian D, Chen F, Qin C, Du Z, Tang G, Gao Q, Qiu X, Wu C, Tian J, Hu H. The expression of vasohibin-1 and its prognostic significance in bladder cancer. Exp Ther Med 2017; 14:3477-3484. [PMID: 29042936 PMCID: PMC5639433 DOI: 10.3892/etm.2017.4969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/19/2017] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis is important in the development of solid tumors. Vasohibin-1 (VASH-1) is an endothelium-derived protein that acts as an inhibitor of angiogenesis in many different types of cancer. However, the expression of VASH-1 and its clinical value in bladder cancer remain unknown. The current study analyzed the expression of VASH-1, as well as the expression of the angiogenesis-related factors vascular endothelial growth factor-A, hypoxia inducible factor-1α and cluster of differentiation 34 in bladder cancer tissues from 50 patients using immunohistochemistry. The associations between the expression of these factors and the clinicopathological characteristics of the patients were assessed. The current study demonstrated that VASH-1 is primarily expressed in the cytoplasm of bladder cancer cells and in a fraction of vascular endothelial cells. Furthermore, the expression of VASH-1 was positively associated with the tumor stage (P<0.01), pathological grade (P<0.01) and distant metastasis (P<0.05) but not with patient age or sex (P>0.05). Spearman rank correlation tests indicated that levels of those four factors were positively correlated with each other. Kaplan-Meier analysis indicated that high expression of these four factors was significantly associated with lower 5-year overall survival and progression-free survival rates. Collectively, the results of the current study suggest that VASH-1 is clinically significant in bladder cancer and its high expression may predict the progression and prognosis of patients with bladder cancer. The present study also implies that VASH-1 may be a novel target for vascular targeting therapy.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Department of Ultrasound, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhouliang Wu
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Wanqin Xie
- Key Laboratory of Genetics and Birth Health of Hunan, The Family Planning Research Institute of Hunan, Changsha, Hunan 410126, P.R. China
| | - Dawei Tian
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Feiran Chen
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Chuan Qin
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhiyong Du
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Gang Tang
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Qiongqiong Gao
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300211, P.R. China
| | - Xiaoyu Qiu
- College of Management and Economics, Tianjin University, Tianjin 300211, P.R. China
| | - Changli Wu
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jing Tian
- Department of Ultrasound, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Hailong Hu
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
8
|
Takahashi Y, Saga Y, Koyanagi T, Takei Y, Machida S, Taneichi A, Mizukami H, Sato Y, Matsubara S, Fujiwara H. The angiogenesis regulator vasohibin-1 inhibits ovarian cancer growth and peritoneal dissemination and prolongs host survival. Int J Oncol 2015; 47:2057-63. [PMID: 26460696 PMCID: PMC4665704 DOI: 10.3892/ijo.2015.3193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/18/2015] [Indexed: 12/25/2022] Open
Abstract
Vasohibin-1 (VASH1) is expressed in vascular endothelial cells stimulated by several angiogenic growth factors and displays autocrine activity to regulate angiogenesis via a negative feedback mechanism. In this study, we investigated the effect of VASH1 on ovarian cancer progression using VASH1-expressing ovarian cancer cells in vitro and in vivo. The growth ability of ovarian cancer cells engineered to express the VASH1 gene remained unchanged in vitro. However, we showed that VASH1 secretion by tumor cells inhibited the growth of human umbilical vein endothelial cells. Further, animal experiments showed that VASH1 expression inhibited tumor angiogenesis and growth. In a murine model of peritoneal dissemination of ovarian cancer cells, VASH1 inhibited peritoneal dissemination and ascites, resulting in significantly prolonged survival in mice. This indicates that VASH1 exerts an antitumor effect on ovarian cancer by inhibiting angiogenesis in the tumor environment. These findings suggest that a novel therapy based on VASH1 could be a useful therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Yoshifumi Takahashi
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yasushi Saga
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Takahiro Koyanagi
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yuji Takei
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Sizuo Machida
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Akiyo Taneichi
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroyuki Fujiwara
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
9
|
Sato Y. Novel Link between Inhibition of Angiogenesis and Tolerance to Vascular Stress. J Atheroscler Thromb 2015; 22:327-34. [PMID: 25739825 DOI: 10.5551/jat.28902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The functional integrity of the vascular endothelium is an essential component required for the maintenance of vascular health, thus counteracting the onset of vascular diseases, including atherosclerosis and vascular complications of diabetes. In light of this important role, the vascular endothelium is expected to have a self-defense system. One candidate factor of such a system is vasohibin-1 (VASH1), a protein that is preferentially expressed in vascular endothelial cells (ECs). The unique features of VASH1 are its anti-angiogenic activity and ability to promote the stress tolerance and survival of ECs. This review summarizes current knowledge regarding VASH1 in terms of its roles in maintaining vascular integrity and protecting the vasculature against various forms of stress.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University
| |
Collapse
|
10
|
Role of the vasohibin family in the regulation of fetoplacental vascularization and syncytiotrophoblast formation. PLoS One 2014; 9:e104728. [PMID: 25184477 PMCID: PMC4153575 DOI: 10.1371/journal.pone.0104728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/11/2014] [Indexed: 01/08/2023] Open
Abstract
Vasohibin-1 (VASH1) and vasohibin-2 (VASH2), the 2 members of the vasohibin family, have been identified as novel regulators of angiogenesis. VASH1 ceases angiogenesis, whereas VASH2 stimulates sprouting. Here we characterized their functional role in the placenta. Immunohistochemical analysis of human placental tissue clarified their distinctive localization; VASH1 in endothelial cells and VASH2 in trophoblasts. We then used a mouse model to explore their function. Wild-type, Vash1(−/−), and Vash2(−/−) mice on a C57BL6 background were used in their first pregnancy. As expected, the fetal vascular area was increased in the Vash1(−/−) mice, whereas it was decreased in the Vash2(−/−) mice relative to wild-type. In addition, we noticed that the Vash2(−/−) mice at 18.5dpc displayed thinner villi of the labyrinth and larger maternal lacunae. Careful observation by an electron microscopy revealed that the syncytiotrophoblast formation was defective in the Vash2(−/−) mice. To test the possible involvement of VASH2 in the syncytiotrophoblast formation, we examined the fusion of BeWo cells, a human trophoblastoid choriocarcinoma cell line. The forskolin treatment induced the fusion of BeWo cells, and the knockdown of VASH2 expression significantly inhibited this cell fusion. Conversely, the overexpression of VASH2 by the infection with adenovirus vector encoding human VASH2 gene significantly increased the fusion of BeWo cells. Glial cell missing-1 and endogenous retrovirus envelope glycoprotein Syncytin 1 and Syncytin 2 are known to be involved in the fusion of trophoblasts. However, VASH2 did not alter their expression in BeWo cells. These results indicate that VASH1 and VASH2 showed distinctive localization and opposing function on the fetoplacental vascularization. Moreover, our study shows for the first time that VASH2 expressed in trophoblasts is involved in the regulation of cell fusion for syncytiotrophoblast formation.
Collapse
|
11
|
Abstract
Angiogenesis, a formation of neovessels, is regulated by the local balance between angiogenesis stimulators and inhibitors. A number of such endogenous regulators of angiogenesis have been found in the body. Recently, vasohibin-1 (VASH1) was isolated as a negative feedback regulator of angiogenesis produced by endothelial cells (ECs) and subsequently vasohibin-2 (VASH2) as a homologue of VASH1. It was then explored that VASH1 is expressed in ECs to terminate angiogenesis, whereas VASH2 is expressed in cells other than ECs to promote angiogenesis in the mouse model of angiogenesis. This review will focus on the vasohibin family members, which are novel regulators of angiogenesis.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, Japan.
| |
Collapse
|
12
|
Reduction of laser-induced choroidal neovascularization by intravitreal vasohibin-1 in monkey eyes. Retina 2012; 32:1204-13. [PMID: 22366904 DOI: 10.1097/iae.0b013e318233ad0b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE To determine whether intravitreal vasohibin-1 will reduce the grade of the choroidal neovascularization in monkey eyes. METHODS Choroidal neovascularizations were induced in 12 monkey eyes by laser photocoagulation. Three monkeys were evaluated for the safety of the vasohibin-1 injections, 6 monkeys for the effects of a single injection, and 3 monkeys for repeated injections of vasohibin-1. Ophthalmoscopy, fluorescein angiography, focal electroretinograms, and optical coherence tomography were used for the evaluations. The level of vascular endothelial growth factor in the aqueous was determined by enzyme-linked immunosorbent assay. Immunohistochemistry was performed. RESULTS An intravitreal injection of 10 μg of vasohibin-1 induced mild intraocular inflammation. Eyes with an intravitreal injection of 0.1 μg and 1.0 μg of vasohibin-1 had significant less fluorescein leakage from the choroidal neovascularizations and larger amplitude focal electroretinograms than that of vehicle-injected eyes. Similar results were obtained by repeated injections of 0.1 μg of vasohibin-1. Immunohistochemistry showed that vasohibin-1 was expressed mainly in the endothelial cells within the choroidal neovascularizations. The vascular endothelial growth factor level was not significantly altered by intravitreal vasohibin-1. CONCLUSION The reduction of the laser-induced choroidal neovascularizations and preservation of macular function in monkey by intravitreal vasohibin-1 suggest that it should be considered for suppressing choroidal neovascularizations in humans.
Collapse
|
13
|
Takahashi Y, Koyanagi T, Suzuki Y, Saga Y, Kanomata N, Moriya T, Suzuki M, Sato Y. Vasohibin-2 Expressed in Human Serous Ovarian Adenocarcinoma Accelerates Tumor Growth by Promoting Angiogenesis. Mol Cancer Res 2012; 10:1135-46. [DOI: 10.1158/1541-7786.mcr-12-0098-t] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Sato Y. The vasohibin family: Novel regulators of angiogenesis. Vascul Pharmacol 2012; 56:262-6. [PMID: 22286022 DOI: 10.1016/j.vph.2012.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/05/2012] [Accepted: 01/15/2012] [Indexed: 11/25/2022]
Abstract
Angiogenesis is thought to be regulated by the local balance between angiogenesis stimulators and angiogenesis inhibitors. A number of endogenous regulators of angiogenesis have been found in the body. We recently isolated vasohibin-1 (VASH1) as a negative feedback regulator of angiogenesis produced by endothelial cells, and VASH2 as a homologue of VASH1 thereafter. We found that VASH1 was expressed in endothelial cells to terminate angiogenesis, whereas VASH2 promoted angiogenesis, in the mouse model of angiogenesis. This mini-review will focus on the vasohibin family in relation to the regulation of angiogenesis.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, Japan.
| |
Collapse
|
15
|
Ishikawa Y, Nagai N, Onami H, Kumasaka N, Wakusawa R, Sonoda H, Sato Y, Abe T. Vasohibin-1 and retinal pigment epithelium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:305-10. [PMID: 22183347 DOI: 10.1007/978-1-4614-0631-0_40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yumi Ishikawa
- Division of Clinical Cell Therapy, United Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 1-1 Seiryoumachi Aobaku Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Boosani CS, Sudhakar YA. Proteolytically Derived Endogenous Angioinhibitors Originating from the Extracellular Matrix. Pharmaceuticals (Basel) 2011; 4:1551-1577. [PMID: 22267953 PMCID: PMC3260939 DOI: 10.3390/ph4121551] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, a neovascularization process induced from the existing parent blood vessels, is a prerequisite for many physiological and pathological conditions. Under physiological conditions it is regulated by a balance between endogenous angioinhibitors and angioactivators, and an imbalance between them would lead to pathological conditions such as cancer, age-related macular degeneration (AMD), diabetic retinopathy, cardiovascular diseases, etc. Several proteolytically generated endogenous molecules have been identified which exhibit angioinhibition and/or antitumor activities. These angioinhibitors interact with endothelial and tumor cells by binding to distinct integrins and initiate many of their intracellular signaling mechanisms regulating the cell survival and or apoptotic pathways. The present review will focus on the extracellular matrix derived angioinhibitors, and their mechanisms of actions that point to the clinical significance and therapeutic implications.
Collapse
Affiliation(s)
- Chandra Shekhar Boosani
- Cell Signaling, Retinal and Tumor Angiogenesis Laboratory, Department of Genetics, Boys Town National Research Hospital, Omaha, NE 68131, USA; E-Mail:
| | - Yakkanti A. Sudhakar
- Cell Signaling, Retinal and Tumor Angiogenesis Laboratory, Department of Genetics, Boys Town National Research Hospital, Omaha, NE 68131, USA; E-Mail:
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-402-498-6681; Fax: +1-402-498-6331
| |
Collapse
|
17
|
Upregulation of vasohibin-1 expression with angiogenesis and poor prognosis of hepatocellular carcinoma after curative surgery. Med Oncol 2011; 29:2727-36. [DOI: 10.1007/s12032-011-0106-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 10/31/2011] [Indexed: 12/12/2022]
|
18
|
Abstract
Vasohibin-1 (VASH1) is a VEGF-inducible gene of endothelial cells (ECs) that acts as a negative feedback regulator of angiogenesis. To further characterize the function of VASH1, we transfected human VASH1 gene into the mouse EC line MS1, established stable VASH1 expressing clones, and determined gene alteration by cDNA microarray analysis. Among the various angiogenesis-related genes, vascular endothelial growth factor type 1 receptor (VEGFR-1) and its alternative spliced form, soluble VEGFR1 (sVEGFR-1), were found to be the most significantly down-regulated genes. Transient overexpression of VASH1 in human umbilical vein endothelial cells confirmed the down-regulation of VEGFR-1 and sVEGFR-1. sVEGFR-1 is a decoy receptor for VEGF and inhibits angiogenesis. Interestingly, when sVEGFR-1 was overexpressed in ECs, it inhibited the expression of VASH1 in turn. These results suggest that VASH1 and sVEGFR-1, two angiogenesis inhibitors, mutually balance their expressions in ECs.
Collapse
|
19
|
|
20
|
Wang X, Zhu H, Yang X, Bi Y, Cui S. Vasohibin attenuates bleomycin induced pulmonary fibrosis via inhibition of angiogenesis in mice. Pathology 2010; 42:457-62. [PMID: 20632823 DOI: 10.3109/00313025.2010.493864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Much evidence suggests that vascular remodelling in the lung plays a crucial role in the development of pulmonary fibrosis. Therefore, anti-angiogenesis therapy may be a promising treatment for pulmonary fibrosis. Recently, a new inhibitor called vasohibin has been discovered to operate as an intrinsic and highly specific feedback inhibitor in the process of angiogenesis. However, to date, the effect of vasohibin on anti-angiogenesis of pulmonary fibrosis has not been examined. METHODS In this study, we utilised vasohibin to test the potential of pulmonary fibrosis therapy. We examined the role of vasohibin in the pathophysiology of bleomycin-induced pneumopathy in mice by transfection of the vasohibin gene. RESULTS The results demonstrated that transfection of the vasohibin gene could attenuate pulmonary fibrosis via inhibition of angiogenesis, which markedly decreased lymphocyte infiltration, cytokine secretion and fibroblast proliferation. CONCLUSIONS This method may be beneficial for treating lung fibrosis and may provide a novel strategy for clinical application in the future.
Collapse
Affiliation(s)
- Xingsheng Wang
- Respiratory Department of Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
21
|
Suzuki Y, Kobayashi M, Miyashita H, Ohta H, Sonoda H, Sato Y. Isolation of a small vasohibin-binding protein (SVBP) and its role in vasohibin secretion. J Cell Sci 2010; 123:3094-101. [PMID: 20736312 DOI: 10.1242/jcs.067538] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Upon stimulation with angiogenic factors, vascular endothelial cells (ECs) secrete a negative-feedback regulator of angiogenesis, vasohibin-1 (VASH1). Because VASH1 lacks a classical signal sequence, it is not clear how ECs secrete VASH1. We isolated a small vasohibin-binding protein (SVBP) composed of 66 amino acids. The level of Svbp mRNA was relatively high in the bone marrow, spleen and testes of mice. In cultured ECs, Vash1 mRNA was induced by VEGF, and Svbp mRNA was expressed constitutively. The interaction between VASH1 and SVBP was confirmed using the BIAcore system and immunoprecipitation analysis. Immunocytochemical analysis revealed that SVBP colocalized with VASH1 in ECs. In polarized epithelial cells, SVBP accumulated on the apical side, whereas VASH1 was present throughout the cells and partially colocalized with SVBP. Transfection of SVBP enhanced VASH1 secretion, whereas knockdown of endogenous SVBP markedly reduced VASH1 secretion. SVBP increased the solubility of VASH1 protein in detergent solution and inhibited the ubiquitylation of VASH1 protein. Moreover, co-transfection of SVBP significantly augmented the inhibitory effect of VASH1 on EC migration. These results indicate that SVBP acts as a secretory chaperone for VASH1 and contributes to the anti-angiogenic activity of VASH1.
Collapse
Affiliation(s)
- Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Kishlyansky M, Vojnovic J, Roudier E, Gineste C, Decary S, Forn P, Bergeron R, Desplanches D, Birot O. Striated muscle angio-adaptation requires changes in Vasohibin-1 expression pattern. Biochem Biophys Res Commun 2010; 399:359-64. [PMID: 20659423 DOI: 10.1016/j.bbrc.2010.07.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 07/21/2010] [Indexed: 02/02/2023]
Abstract
Vasohibin-1 (VASH-1) was recently identified as a negative feedback regulator of angiogenesis. Here, we analyzed how the expression of the two active anti-angiogenic VASH-1 isoforms p36 and p42 was altered during physiological and pathological muscle angio-adaptation. Our results showed that VASH-1 protein expression was muscle-type specific, with higher levels detected in less vascularized muscles. In rat plantaris and heart muscles, the expression of VASH-1 protein was decreased in response to exercise training, a physiological pro-angiogenic stimulus leading to muscle capillary growth. Interestingly, expression patterns for p36 and p42 were different between plantaris and heart muscles. Next, we analyzed the time-course expression of VASH-1 isoforms in rat soleus muscles subjected to hindlimb unloading, a model that induces muscle capillary regression. Both p36 and p42 isoforms were increased, a signal in favor of some vessel destabilization and regression. Finally, we investigated VASH-1 expression in plantaris muscles from Zucker Diabetic Fatty rats (ZDF) that develop obesity and type-2 diabetes associated with a loss of capillaries in skeletal muscle. VASH-1 expression was higher in sedentary ZDF rats when compared to lean animals, suggesting its potential role during capillary regression. Interestingly, a physiological VASH-1 level was efficiently restored in spontaneously active ZDF animals where muscle capillarization was preserved. In conclusion, our results bring evidence that endogenous VASH-1 isoforms p36 and p42 are key actors of physiological and pathological muscle angio-adaptation.
Collapse
Affiliation(s)
- Marina Kishlyansky
- York University, Faculty of Health, Muscle Health Research Center, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The Vasohibin Family. Pharmaceuticals (Basel) 2010; 3:433-440. [PMID: 27713261 PMCID: PMC4033919 DOI: 10.3390/ph3020433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 01/23/2010] [Accepted: 02/03/2010] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis is regulated by the local balance between angiogenesis stimulators and inhibitors. A number of endogenous angiogenesis inhibitors have been found in the body. The origin of these inhibitors is mostly extrinsic to the vasculature. Recently, however, vascular endothelial cells themselves have been found to produce angiogenesis inhibitors including vasohibin-1. These intrinsic inhibitors are thought to regulate angiogenesis by an auto-regulatory or negative-feedback mechanism. This review will focus on vasohibin-1 produced by vascular endothelial cells and on its homologue, vasohibin-2.
Collapse
|
24
|
Nasu T, Maeshima Y, Kinomura M, Hirokoshi-Kawahara K, Tanabe K, Sugiyama H, Sonoda H, Sato Y, Makino H. Vasohibin-1, a negative feedback regulator of angiogenesis, ameliorates renal alterations in a mouse model of diabetic nephropathy. Diabetes 2009; 58:2365-75. [PMID: 19587360 PMCID: PMC2750227 DOI: 10.2337/db08-1790] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The involvement of proangiogenic factors such as vascular endothelial growth factor as well as the therapeutic efficacy of angiogenesis inhibitors in early diabetic nephropathy has been reported. Vasohibin-1 (VASH-1) is a unique endogenous angiogenesis inhibitor that is induced in endothelial cells by proangiogenic factors. We investigated the therapeutic efficacy of VASH-1 in an early diabetic nephropathy model. RESEARCH DESIGN AND METHODS Streptozotocin- induced type 1 diabetic mice received intravenous injections of adenoviral vectors encoding VASH-1 (AdhVASH-1) or beta-gal (AdLacZ) every other week and were killed after 28 days. RESULTS Treatment with AdhVASH-1 resulted in sustained increase in the protein levels of VASH-1 in the liver and sera, in the absence of any inflammatory alterations. AdhVASH-1 treatment significantly suppressed renal hypertrophy, glomerular hypertrophy, glomerular hyperfiltration, albuminuria, increase of the CD31(+) glomerular endothelial area, F4/80(+) monocyte/macrophage infiltration, the accumulation of type IV collagen, and mesangial matrix compared with AdLacZ-treated diabetic mice. Increase in the renal levels of transforming growth factor-beta1, monocyte chemoattractant protein-1, and receptor for advanced glycation end products in diabetic animals was significantly suppressed by AdhVASH-1 (real-time PCR and immunoblot). VASH-1 significantly suppressed the increase of transforming growth factor-beta, monocyte chemoattractant protein-1, and receptor for advanced glycation end products, induced by high ambient glucose in cultured mouse mesangial cells. Increased phosphorylation of VEGFR2 was suppressed in AdVASH-1-treated diabetic animals and in cultured glomerular endothelial cells. Endogenous mouse VASH-1 was localized to the mesangial and endothelial area in glomeruli of diabetic mice. CONCLUSIONS These results suggest the potential therapeutic efficacy of VASH-1 in treating early diabetic nephropathy potentially mediated via glomerular endothelial and mesangial cells.
Collapse
Affiliation(s)
- Tatsuyo Nasu
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yohei Maeshima
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Corresponding author: Yohei Maeshima,
| | - Masaru Kinomura
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kumiko Hirokoshi-Kawahara
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Tanabe
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Sugiyama
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Chronic Kidney Disease and Peritoneal Dialysis, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hikaru Sonoda
- Discovery Research Laboratories, Shionogi, Osaka, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
25
|
Sato H, Abe T, Wakusawa R, Asai N, Kunikata H, Ohta H, Sonoda H, Sato Y, Nishida K. Vitreous levels of vasohibin-1 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Diabetologia 2009; 52:359-61. [PMID: 19057892 DOI: 10.1007/s00125-008-1229-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 11/04/2008] [Indexed: 11/24/2022]
|
26
|
Transitions of multifocal electroretinography following combined intravitreal bevacizumab and photodynamic therapy for polypoidal choroidal vasculopathy. Doc Ophthalmol 2009; 119:29-36. [DOI: 10.1007/s10633-009-9166-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
|