1
|
Zhang J, Yang H, Li L, Hu S, Liu Y, Li S, Wu L, He T. Genetic evidence supports the causal effects of exposure to ambient air pollution on autoimmune eye diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-14. [PMID: 39757986 DOI: 10.1080/09603123.2025.2449968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Previous observational studies have reported inconsistent associations between air pollution and autoimmune eye diseases (AEDs). The primary objective of this Mendelian randomization (MR) study was to investigate the causal link of air pollution with AEDs risk. The instrumental variables were selected based on genome-wide association study data. Univariable and multivariable MR analyses were conducted to disentangle the causality of air pollutants with AEDs. The estimates of univariable MR analysis revealed a suggestively causal link between NO2 or NOx exposure and diabetic retinopathy (OR=1.29, 95% CI=1.05-1.58, P=0.015; OR=1.33, 95% CI=1.05-1.69, P=0.019, respectively). A suggestive association was observed between PM2.5 exposure and age-related macular degeneration (OR=1.46, 95% CI=1.09-1.97, P=0.013). In addition, multivariable MR indicated that the observed association was remained consistent and robust. Rigorous sensitivity analyses confirmed the robustness and consistency of these findings. Our study firstly provided the genetic evidence linking air pollution, specially NO2, NOx and PM2.5, to AEDs susceptibility.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, The People's Republic of China
| | - Hongxia Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, The People's Republic of China
| | - Lu Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, The People's Republic of China
| | - Shuqiong Hu
- Department of Ophthalmology, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei Province, The People's Republic of China
| | - Yongqing Liu
- Department of Ophthalmology, Hanchuan People's Hospital, Hanchuan, Hubei Province, The People's Republic of China
| | - Suyan Li
- Department of Ophthalmology, Enshi Central Hospital, Enshi, Hubei Province, The People's Republic of China
| | - Li Wu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, The People's Republic of China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, The People's Republic of China
| |
Collapse
|
2
|
Ejaz Z, Masood F, Nadeem A, Ahmed A, Ahmad E, Chaudhry M. Blurred vision: The ophthalmological effect of smog in Pakistan. DIALOGUES IN HEALTH 2024; 5:100199. [PMID: 39669440 PMCID: PMC11635701 DOI: 10.1016/j.dialog.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
This article discusses the growing burden of smog in Pakistan, tracing its origins to vehicular emissions, industrial pollutants, and agricultural practices. It highlights current national initiatives and advocates for enhanced government interventions to mitigate smog's adverse effects on ocular health. It also emphasizes the need for collective action to safeguard ocular health amid rising smog pollution in Pakistan.
Collapse
Affiliation(s)
- Zoya Ejaz
- Department of Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| | - Faizan Masood
- Department of Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| | - Arsalan Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| | - Abdullah Ahmed
- Department of Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| | - Eeman Ahmad
- FMH College of Medicine and Dentistry, Lahore, Pakistan
| | - Mahrukh Chaudhry
- Department of Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| |
Collapse
|
3
|
Han JH, Amri C, Lee H, Hur J. Pathological Mechanisms of Particulate Matter-Mediated Ocular Disorders: A Review. Int J Mol Sci 2024; 25:12107. [PMID: 39596177 PMCID: PMC11594968 DOI: 10.3390/ijms252212107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Air pollution presents a severe risk to public health, with particulate matter (PM) identified as a significant hazardous element. However, despite the eye organ being constantly exposed to air pollution, only recently has the impact of PM on ocular health caught the attention of researchers and healthcare professionals. By compiling pertinent data, this paper aims to enhance our understanding of the underlying pathological mechanisms of PM-mediated ocular disorders and facilitate the development of effective treatment strategies. Recent data support the association between exposure to PM and the development of ocular pathologies such as dry eye syndrome, retinal atherosclerosis, and glaucoma. Based on the results of multiple studies, PM exposure can lead to oxidative stress, inflammation, autophagy, cell death, and, ultimately, the development of ophthalmic diseases. This review aims to consolidate the latest findings on PM-mediated ocular diseases by summarizing the outcomes from epidemiological, in vitro, and in vivo studies on ocular surface and retinal disorders as well as other relevant ophthalmic disorders.
Collapse
Affiliation(s)
- Jung-Hwa Han
- Department of Convergence Medicine, Pusan National University School of Medicine, Busan 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Chaima Amri
- Department of Convergence Medicine, Pusan National University School of Medicine, Busan 50612, Republic of Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Busan 50612, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Busan 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
4
|
Huang HN, Zhu PP, Yang Z, Tao YM, Ma X, Yu HB, Li L, Ou CQ. Joint effects of air pollution and genetic susceptibility on incident primary open-angle glaucoma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173935. [PMID: 38880145 DOI: 10.1016/j.scitotenv.2024.173935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Air pollutants are important exogenous stimulants to eye diseases, but knowledge of associations between long-term exposure to air pollutants and the risk of primary open-angle glaucoma (POAG) is limited. This study aimed to determine whether long-term exposure to air pollutants, genetic susceptibility, and their joint effects lead to an elevated risk of incident POAG. METHODS This is a population-based prospective cohort study from UK Biobank participants with complete measures of air pollution exposure and polygenetic risk scores. Cox proportional hazard models were fitted to assess the individual and joint effects of long-term exposure to air pollutants and genetics on the risk of POAG. In addition, the effect modification of genetic susceptibility was examined on an additive or multiplicative scale. RESULTS Among 434,290 participants with a mean (SD) age of 56.5 (8.1) years, 6651 (1.53 %) were diagnosed with POAG during a median follow-up of 13.7 years. Long-term exposure to air pollutants was associated with an increased risk of POAG. The hazard ratios associated with per interquartile range increase in PM2.5, PM2.5 absorbance, PM10, NO2, and NOX individually ranged from 1.027 (95 % CI: 1.001-1.054) to 1.067 (95 % CI: 1.035-1.099). Compared with individuals residing in low-pollution areas and having low polygenic risk scores, the risk of incident POAG increased by 105.5 % (95 % CI: 78.3 %-136.9 %), 79.7 % (95 % CI: 56.5 %-106.5 %), 103.2 % (95 % CI: 76.9 %-133.4 %), 89.4 % (95 % CI: 63.9 %-118.9 %), and 90.2 % (95 % CI: 64.8 %-119.5 %) among those simultaneously exposed to high air pollutants levels and high genetic risk, respectively. Genetic susceptibility interacted with PM2.5 absorbance and NO2 in an additive manner, while no evidence of multiplicative interaction was found in this study. Stratification analyses revealed stronger effects in Black people and the elderly. CONCLUSION Long-term air pollutant exposure was associated with an increased risk of POAG incidence, particularly in the population with high genetic predisposition.
Collapse
Affiliation(s)
- Hao-Neng Huang
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Pan-Pan Zhu
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhou Yang
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yi-Ming Tao
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaofeng Ma
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hai-Bing Yu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Chun-Quan Ou
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
5
|
Sun Z, Stuart KV, Luben RN, Auld AL, Strouthidis NG, Khaw PT, Jayaram H, Khawaja AP, Foster PJ. Association of Ambient Air Pollution Exposure With Incident Glaucoma: 12-Year Evidence From the UK Biobank Cohort. Invest Ophthalmol Vis Sci 2024; 65:22. [PMID: 39412818 PMCID: PMC11488522 DOI: 10.1167/iovs.65.12.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Purpose Glaucoma is the leading cause of irreversible blindness worldwide. Despite growing concerns about air quality and its impact on ocular health, there remains a knowledge gap regarding the long-term association between air pollution and glaucoma risk. This study investigates the relationship between exposure to ambient air pollution and incidence of glaucoma. Methods In this prospective study, we used land use regression models to estimate levels of various air pollutants, including fine particulate matter (PM2.5), PM2.5 absorbance, PM2.5-10, PM10, nitrogen dioxide (NO2), and nitrogen oxides (NOx). Incidents of glaucoma were ascertained through routinely collected hospital admission records. Multivariate Cox proportional hazards models were used to examine the associations between air pollution exposure and glaucoma incidence, adjusting for potential confounding sociodemographic, physical, and lifestyle factors. Results Data from 481,113 participants were included. Over a median follow-up of 12.8 years, 9224 incident cases of glaucoma were identified. In the maximally adjusted model, per interquartile range increase in PM2.5 was associated with a 3% greater risk of developing glaucoma (hazard ratio [HR] = 1.03, 95% confidence interval [CI] = 1.00 to 1.06, P = 0.048). Participants in the highest quartile had a 10% increased risk of developing glaucoma compared to those in the lowest quartile (HR = 1.10, 95% CI = 1.03 to 1.17, P = 0.005). Conclusions Higher levels of exposure to ambient air pollutants, particularly PM2.5, are associated with an increased risk of developing glaucoma. These results highlight the potential public health impact of ambient air pollution on glaucoma risk and underscore the urgent need for further research into targeted environmental interventions in this domain.
Collapse
Affiliation(s)
- Zihan Sun
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Kelsey V. Stuart
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Robert N. Luben
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Amy L. Auld
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Nicholas G. Strouthidis
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, Sydney, New South Wales, Australia
| | - Peng T. Khaw
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Hari Jayaram
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Paul J. Foster
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - on behalf of the UK Biobank Eye and Vision Consortium
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Ma Y, Shao M, Li S, Lei Y, Cao W, Sun X. The association between airborne particulate matter (PM 2.5) exposure level and primary open-angle glaucoma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116752. [PMID: 39053180 DOI: 10.1016/j.ecoenv.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The eye is vulnerable to the adverse effects of air pollution. Previous experimental study found that fine particulate matter (PM2.5) had a direct toxic effect on intraocular tissues. However, clinical evidence for the impact of air pollutants exposure on functional and structural changes in glaucoma remains scarce. A total of 120 patients with primary open-angle glaucoma (POAG) who met the inclusion criteria were included in this retrospective study. The standardized ophthalmic examination, such as intraocular pressure (IOP), visual field, optical coherence tomography, and comprehensive physical examination, were performed. The air pollution data, including PM2.5 concentration and air quality index (AQI), were collected. PM2.5 and AQI for the day of the medical examination, as well as one month, and three months before the medical examination date, were investigated. In our results, higher average exposure levels for one-month and three-month, were associated with increased IOP (r=0.229, P=0.013; r=0.204, P=0.028, respectively) and decreased visual field mean sensitivity (MS) (r=-0.212, P=0.037; r=-0.305, P=0.002, respectively). PM2.5 concentrations for the day of the medical examination was not significantly associated with ocular parameters. In multiple linear regression analysis adjusted for demographic and clinical factors, higher PM2.5 exposure for one month was associated with elevated IOP (P=0.040, β=0.173, 95 %CI=0.008-0.337). We also found an association between PM2.5 and MS (one-month exposure: β=-0.160, P=0.029; three-month exposure: β=-0.238, P=0.002). The logistic regression analysis found that three-month average PM2.5 exposure level was significantly associated with the disease severity (β=0.043, P=0.025, 95 %CI=1.005-1.084). In conclusion, this study is the first to investigate the relationship between air pollution and detailed ocular parameters of POAG patients in Shanghai over a three-year period, and to explore the effects of different exposure times of PM2.5 on glaucoma. This study found that PM2.5 exposure was correlated with elevated IOP and decreased MS. The one-month PM2.5 exposure level had the most significant effects on IOP. The three-month PM2.5 exposure level was an independent risk factor for POAG severity. Current evidence suggests there may be an association between PM2.5 exposure and POAG.
Collapse
Affiliation(s)
- Yi Ma
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shengjie Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 20031, China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 20031, China
| |
Collapse
|
7
|
Wu N, Shi W, Sun X. Association of Long-Term Exposure to Ambient Air Pollution With the Risk of Acute Primary Angle Closure. Transl Vis Sci Technol 2024; 13:7. [PMID: 38470319 PMCID: PMC10941992 DOI: 10.1167/tvst.13.3.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Purpose The purpose of this study was to investigate the association between long-term exposure to ambient air pollutants and the risk of acute primary angle closure (APAC). Methods Two hundred eighty-one (281) patients with APAC and 730 age- and sex-matched controls hospitalized between January 2017 and December 2019 were enrolled in this retrospective case-control study. Residential exposure to ambient air pollutants, including fine particulate matter (PM2.5), inhalable particulate (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone were estimated by satellite-models or ground measurement. Multivariate regression analyses explored the association between annual air pollutants exposure and the risk of APAC. Results Of the 1011 participants (31.1% were male subjects), the average age was 64.0 years. Long-term exposure to PM2.5, PM10, and SO2 were significantly associated with an increased risk of APAC. The adjusted odds ratios (aORs) for each interquartile range (IQR) increment of PM2.5, PM10, and SO2 were 1.28 (95% confidence interval [CI] = 1.06-1.57), 1.26 (95% CI = 1.06-1.50), and 1.30 (95% CI = 1.04-1.62) separately, after controlling for confounders. Robust associations were observed for a longer lag 2-year exposure. Conclusions Long-term exposure to PM2.5, PM10, and SO2 was associated with an increased risk of APAC in a Chinese population. Our findings provide epidemiological implications on the adverse effects of air pollution on ocular diseases. Translational Relevance Long-term exposure to ambient air pollutants increased the risk of APAC.
Collapse
Affiliation(s)
- Na Wu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Wenming Shi
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Elhusseiny AM, Oke I, Adomfeh J, Chauhan MZ, VanderVeen DK. Association of Neighborhood Environment with the Outcomes of Childhood Glaucoma. Ophthalmol Glaucoma 2023; 6:636-641. [PMID: 37302547 DOI: 10.1016/j.ogla.2023.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE To determine the association between different neighborhood environment factors and the outcomes of childhood glaucoma. DESIGN A retrospective cohort. PARTICIPANTS Childhood glaucoma patients ≤ 18 years of age at the time of diagnosis. METHODS A retrospective chart review of childhood glaucoma patients who presented to Boston Children's Hospital between 2014 and 2019. Data collected included etiology, intraocular pressure (IOP), management, and visual outcomes. Child Opportunity Index (COI) was used as a metric of neighborhood quality. MAIN OUTCOMES MEASURES The association of visual acuity (VA) and IOP with COI scores using linear mixed-effect models, adjusting for individual demographics. RESULTS A total of 221 eyes (149 patients) were included. Of these, 54.36% were male and 56.4% were non-Hispanic Whites. The median age at the time of presentation was 5 months for primary glaucoma and 5 years for secondary glaucoma. The median age at the last follow-up was 6 and 13 years for primary and secondary glaucoma, respectively. A chi-square test revealed that the COI, health and environment, social and economic, and education indexes between primary and secondary glaucoma patients were comparable. For primary glaucoma, the overall COI and a higher education index were associated with a lower final IOP (P < 0.05), and higher education index was associated with a lower number of glaucoma medications at the last follow-up (P < 0.05). For secondary glaucoma, higher overall COI, health and environment, social and economic, and education indices were associated with better final VA (lower logarithms of the minimum angle of resolution VA) (P < 0.001). CONCLUSIONS Neighborhood environment quality is a potentially important variable for predicting outcomes in childhood glaucoma. Lower COI scores were associated with worse outcomes. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Abdelrahman M Elhusseiny
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Isdin Oke
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jean Adomfeh
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Muhammad Z Chauhan
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Deborah K VanderVeen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Cao F, Liu ZR, Ni QY, Zha CK, Zhang SJ, Lu JM, Xu YY, Tao LM, Jiang ZX, Pan HF. Emerging roles of air pollution and meteorological factors in autoimmune eye diseases. ENVIRONMENTAL RESEARCH 2023; 231:116116. [PMID: 37182831 DOI: 10.1016/j.envres.2023.116116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Autoimmune eye diseases (AEDs), a collection of autoimmune inflammatory ocular conditions resulting from the dysregulation of immune system at the ocular level, can target both intraocular and periorbital structures leading to severe visual deficit and blindness globally. The roles of air pollution and meteorological factors in the initiation and progression of AEDs have been increasingly attractive, among which the systemic and local mechanisms are both involved in. Exposure to excessive air pollution and extreme meteorological conditions including PM2.5/PM0.1, environmental tobacco smoke, insufficient sunshine, and high temperature, etc., can disturb Th17/Treg balance, regulate macrophage polarization, activate neutrophils, induce systemic inflammation and oxidative stress, decrease retinal blood flow, promote tissue fibrosis, activate sympathetic nervous system, adversely affect nutrients synthetization, as well as induce heat stress, therefore may together deteriorate AEDs. The crosstalk among inflammation, oxidative stress and dysregulated immune system appeared to be prominent. In the present review, we will concern and summarize the potential mechanisms underlying linkages of air pollution and meteorological factors to ocular autoimmune and inflammatory responses. Moreover, we concentrate on the specific roles of air pollutants and meteorological factors in several major AEDs including uveitis, Graves' ophthalmopathy (GO), ocular allergic disease (OAD), glaucoma, diabetic retinopathy (DR), etc.
Collapse
Affiliation(s)
- Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Zhuo-Ran Liu
- Department of Ophthalmology, Ningbo Hospital, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1155 Binhaier Road, Ningbo, Zhejiang, China
| | - Qin-Yu Ni
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Chen-Kai Zha
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Shu-Jie Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jia-Min Lu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yue-Yang Xu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Li-Ming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China.
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
10
|
Gayraud L, Mortamais M, Schweitzer C, de Hoogh K, Cougnard-Grégoire A, Korobelnik JF, Delyfer MN, Rougier MB, Leffondré K, Helmer C, Vienneau D, Berr C, Delcourt C. Association of long-term exposure to ambient air pollution with retinal neurodegeneration: The prospective alienor study. ENVIRONMENTAL RESEARCH 2023:116364. [PMID: 37301495 DOI: 10.1016/j.envres.2023.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Chronic exposure to air pollution may have adverse effects on neurodegenerative diseases. Glaucoma, the second leading cause of blindness worldwide, is a neurodegenerative disease of the optic nerve, characterized by progressive thinning of the retinal nerve fiber layer (RNFL). We investigated the relationship of air pollution exposure with longitudinal changes of RNFL thickness in the Alienor study, a population-based cohort of residents of Bordeaux, France, aged 75 years or more. Peripapillary RNFL thickness was measured using optical coherence tomography imaging every 2 years from 2009 to 2020. Measurements were acquired and reviewed by specially trained technicians to control quality. Air pollution exposure (particulate matter ≤2.5 μm (PM2.5), black carbon (BC), nitrogen dioxide (NO2)) was estimated at the participants' geocoded residential address using land-use regression models. For each pollutant, the 10-year average of past exposure at first RNFL thickness measurement was estimated. Associations of air pollution exposure with RNFL thickness longitudinal changes were assessed using linear mixed models adjusted for potential confounders, allowing for intra-eye and intra-individual correlation (repeated measurements). The study included 683 participants with at least one RNFL thickness measurement (62% female, mean age 82 years). The average RNFL was 90 μm (SD:14.4) at baseline. Exposure to higher levels of PM2.5 and BC in the previous 10 years was significantly associated with a faster RNFL thinning during the 11-year follow-up (-0.28 μm/year (95% confidence interval (CI) [-0.44;-0.13]) and -0.26 μm/year (95% CI [-0.40;-0.12]) per interquartile range increment; p < 0.001 for both). The size of the effect was similar to one year of age in the fitted model (-0.36 μm/year). No statistically significant associations were found with NO2 in the main models. This study evidenced a strong association of chronic exposure to fine particulate matter with retinal neurodegeneration, at air pollution levels below the current recommended thresholds in Europe.
Collapse
Affiliation(s)
- Laure Gayraud
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR, 1219, F-33000, Bordeaux, France
| | - Marion Mortamais
- Univ. Montpellier, Inserm, Institute for Neurosciences of Montpellier INM, UMR, 1298, 34091, Montpellier, France
| | - Cédric Schweitzer
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR, 1219, F-33000, Bordeaux, France; Centre Hospitalier Universitaire de Bordeaux, Service d'Ophtalmologie, Bordeaux, France
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Audrey Cougnard-Grégoire
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR, 1219, F-33000, Bordeaux, France
| | - Jean-François Korobelnik
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR, 1219, F-33000, Bordeaux, France; Centre Hospitalier Universitaire de Bordeaux, Service d'Ophtalmologie, Bordeaux, France
| | - Marie-Noelle Delyfer
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR, 1219, F-33000, Bordeaux, France; Centre Hospitalier Universitaire de Bordeaux, Service d'Ophtalmologie, Bordeaux, France
| | - Marie-Bénédicte Rougier
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR, 1219, F-33000, Bordeaux, France; Centre Hospitalier Universitaire de Bordeaux, Service d'Ophtalmologie, Bordeaux, France
| | - Karen Leffondré
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR, 1219, F-33000, Bordeaux, France
| | - Catherine Helmer
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR, 1219, F-33000, Bordeaux, France
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Claudine Berr
- Univ. Montpellier, Inserm, Institute for Neurosciences of Montpellier INM, UMR, 1298, 34091, Montpellier, France
| | - Cécile Delcourt
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR, 1219, F-33000, Bordeaux, France.
| |
Collapse
|
11
|
Markeviciute A, Huang-Lung J, Zemaitiene R, Grzybowski A. A Review of Ambient Air Pollution as a Risk Factor for Posterior Segment Ocular Diseases. J Clin Med 2023; 12:jcm12113842. [PMID: 37298038 DOI: 10.3390/jcm12113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE To review the most recent evidence on the association of ambient air pollution with posterior segment ocular diseases. METHODS A search of the most recently published medical literature was performed in PubMed and Google Scholar on 10 December 2022. Articles published between 2018 and December 2022 were included in this rapid review. Studies that evaluated the association between ambient air pollutants (nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), particulate matters (PMs), total hydrocarbons (THC), nonmethane hydrocarbons (NMHC), benzene), and ocular posterior segment diseases (glaucoma, age-related macular degeneration (AMD), and retinal vascular diseases) were included. RESULTS Nineteen research articles met the inclusion criteria. Significant associations were found between PM2.5 and glaucoma, including primary open angle, primary angle closure, and normal tension glaucoma. An increased risk of AMD was linked to increased exposure to PM2.5, NO2, and CO. Single studies suggested that increased exposure to PM2.5 and PM10 is associated with diabetic retinopathy; THC and NMHC increased the risk of retinal vein occlusion; and CO, NO2, and PM10 are linked to an increased risk of central retinal artery occlusion. CONCLUSIONS There is increasing evidence that toxic air pollutants have an impact on posterior segment ocular diseases, hence determining it as a potential modifiable risk factor for visual impairment.
Collapse
Affiliation(s)
- Agne Markeviciute
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Jessie Huang-Lung
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia
| | - Reda Zemaitiene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 61-553 Poznan, Poland
| |
Collapse
|
12
|
Rauchman SH, Locke B, Albert J, De Leon J, Peltier MR, Reiss AB. Toxic External Exposure Leading to Ocular Surface Injury. Vision (Basel) 2023; 7:vision7020032. [PMID: 37092465 PMCID: PMC10123707 DOI: 10.3390/vision7020032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The surface of the eye is directly exposed to the external environment, protected only by a thin tear film, and may therefore be damaged by contact with ambient particulate matter, liquids, aerosols, or vapors. In the workplace or home, the eye is subject to accidental or incidental exposure to cleaning products and pesticides. Organic matter may enter the eye and cause infection. Ocular surface damage can trigger a range of symptoms such as itch, discharge, hyperemia, photophobia, blurred vision, and foreign body sensation. Toxin exposure can be assessed clinically in multiple ways, including via measurement of tear production, slit-lamp examination, corneal staining, and conjunctival staining. At the cellular level, environmental toxins can cause oxidative damage, apoptosis of corneal and conjunctival cells, cell senescence, and impaired motility. Outcomes range from transient and reversible with complete healing to severe and sight-compromising structural changes. Classically, evaluation of tolerance and safety was carried out using live animal testing; however, new in vitro and computer-based, in silico modes are superseding the gold standard Draize test. This review examines how environmental features such as pollutants, temperature, and seasonality affect the ocular surface. Chemical burns to the eye are considered, and approaches to protect the ocular surface are detailed.
Collapse
Affiliation(s)
| | - Brandon Locke
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jacqueline Albert
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Morgan R. Peltier
- Department of Psychiatry and Behavioral Health, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
13
|
Li L, Zhu Y, Han B, Chen R, Man X, Sun X, Kan H, Lei Y. Acute exposure to air pollutants increase the risk of acute glaucoma. BMC Public Health 2022; 22:1782. [PMID: 36127653 PMCID: PMC9487138 DOI: 10.1186/s12889-022-14078-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ambient air pollution is related to the onset and progression of ocular disease. However, the effect of air pollutants on the acute glaucoma remains unclear. Objective To investigate the effect of air pollutants on the incidence of acute glaucoma (acute angle closure glaucoma and glaucomatocyclitic crisis) among adults. Methods We conducted a time-stratified case-crossover study based on the data of glaucoma outpatients from January, 2015 to Dec, 2021 in Shanghai, China. A conditional logistic regression model combined with a polynomial distributed lag model was applied for the statistical analysis. Each case serves as its own referent by comparing exposures on the day of the outpatient visit to the exposures on the other 3–4 control days on the same week, month and year. To fully capture the delayed effect of air pollution, we used a maximum lag of 7 days in main model. Results A total of 14,385 acute glaucoma outpatients were included in this study. We found exposure to PM2.5, PM10, nitrogen dioxide (NO2) and carbon monoxide (CO) significantly increased the odds of outpatient visit for acute glaucoma. Wherein the odds of acute glaucoma related to PM2.5 and NO2 were higher and more sustained, with OR of 1.07 (95%CI: 1.03–1.11) and 1.12 (95% CI: 1.08–1.17) for an IQR increase over lag 0–3 days, than PM10 and CO over lag 0–1 days (OR:1.03; 95% CI: 1.01–1.05; OR: 1.04; 95% CI: 1.01–1.07). Conclusions This case-crossover study provided first-hand evidence that air pollutants, especially PM2.5 and NO2, significantly increased risk of acute glaucoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-14078-9.
Collapse
Affiliation(s)
- Liping Li
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai, 200032, China
| | - Binze Han
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai, 200032, China.,Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China
| | - Xiaofei Man
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai, 200032, China. .,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
14
|
The Adverse Effects of Air Pollution on the Eye: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031186. [PMID: 35162209 PMCID: PMC8834466 DOI: 10.3390/ijerph19031186] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022]
Abstract
Air pollution is inevitably the result of human civilization, industrialization, and globalization. It is composed of a mixture of gases and particles at harmful levels. Particulate matter (PM), nitrogen oxides (NOx), and carbon dioxides (CO2) are mainly generated from vehicle emissions and fuel consumption and are the main materials causing outdoor air pollution. Exposure to polluted outdoor air has been proven to be harmful to human eyes. On the other hand, indoor air pollution from environmental tobacco smoking, heating, cooking, or poor indoor ventilation is also related to several eye diseases, including conjunctivitis, glaucoma, cataracts, and age-related macular degeneration (AMD). In the past 30 years, no updated review has provided an overview of the impact of air pollution on the eye. We reviewed reports on air pollution and eye diseases in the last three decades in the PubMed database, Medline databases, and Google Scholar and discussed the effect of various outdoor and indoor pollutants on human eyes.
Collapse
|
15
|
Li L, Zhou J, Fan W, Niu L, Song M, Qin B, Sun X, Lei Y. Lifetime exposure of ambient PM 2.5 elevates intraocular pressure in young mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112963. [PMID: 34781126 DOI: 10.1016/j.ecoenv.2021.112963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological studies suggest that ambient particulate matter exposure may be a new risk factor of glaucoma, but it lacks solid experimental evidence to establish a causal relationship. In this study, young mice (4 weeks old) were exposed concentrated ambient PM2.5 (CAP) for 9 months, which is throughout most of the life span of a mouse under heavy pollution. CAP was introduced using a versatile aerosol concentration enrichment system which mimics natural PM2.5 exposure. CAP exposure caused a gradual elevation of intraocular pressure (IOP) and an increase in aqueous humor outflow resistance. In the conventional outflow tissues that regulates IOP, inducible nitric oxide synthase (iNOS) was up-regulated and 3-nitrotyrosine (3-NT) formation increased. At the cellular level, PM2.5 exposure increased the transendothelial electrical resistance of cells that control IOP (AAP cells). This is accompanied by increased reactive oxygen species (ROS), iNOS and 3-NT levels. Peroxynitrite scavenger MnTMPyP successfully treated the IOP elevation and restored it to normal levels by reducing 3-NT formation in outflow tissues. This study provides the novel evidence that in young mice, lifetime whole-body PM2.5 exposure has a direct toxic effect on intraocular tissues, which imposes a significant risk of IOP elevation and may initiate the development of ocular hypertension and glaucoma. This occurs as a result of protein nitration of conventional aqueous humor outflow tissues.
Collapse
Affiliation(s)
- Liping Li
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China; Shanghai Typhoon Institute, CMA, Shanghai 200030, China; Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200031, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, Nanjing 210009, China; Pharmaceutical University, Nanjing 210009, China
| | - Liangliang Niu
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Maomao Song
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Bo Qin
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China.
| |
Collapse
|
16
|
Grant A, Leung G, Aubin MJ, Kergoat MJ, Li G, Freeman EE. Fine Particulate Matter and Age-Related Eye Disease: The Canadian Longitudinal Study on Aging. Invest Ophthalmol Vis Sci 2021; 62:7. [PMID: 34369984 PMCID: PMC8354031 DOI: 10.1167/iovs.62.10.7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To determine the relationship between fine particulate matter (PM2.5) and ocular outcomes such as visual impairment and age-related eye disease. Methods Baseline data were used from the Canadian Longitudinal Study on Aging. The Comprehensive Cohort consisted of 30,097 adults ages 45 to 85 years. Annual mean PM2.5 levels (µg/m3) for each participant's postal code were estimated from satellite data. Ozone, sulfur dioxide, and nitrogen dioxide levels were also estimated. Binocular presenting visual acuity was measured using a visual acuity chart. Intraocular pressure (IOP) was measured in millimeters of mercury using the Reichart Ocular Response Analyzer. Participants were asked about a diagnosis of glaucoma, macular degeneration, or cataract. Logistic and linear regression models were used. Results The overall mean PM2.5 level was 6.5 µg/m3 (SD = 1.8). In the single pollutant models, increased PM2.5 levels (per interquartile range) were associated with visual impairment (odds ratio [OR] = 1.12; 95% confidence interval [CI], 1.02-1.24), glaucoma (OR = 1.14; 95% CI, 1.01-1.29), and visually impairing age-related macular degeneration (OR = 1.52; 95% CI, 1.10-2.09) after adjustment for sociodemographics and disease. PM2.5 had a borderline adjusted association with cataract (OR = 1.06; 95% CI, 0.99-1.14). In the multi-pollutant models, increased PM2.5 was associated with glaucoma and IOP only after adjustment for sociodemographics and disease (OR = 1.24; 95% CI, 1.05-1.46 and β = 0.24; 95% CI, 0.12-0.37). Conclusions Increased PM2.5 is associated with glaucoma and IOP. These associations should be confirmed using longitudinal data and potential mechanisms should be explored. If confirmed, this work may have relevance for revision of World Health Organization thresholds to protect human health.
Collapse
Affiliation(s)
- Alyssa Grant
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Gareth Leung
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Marie-Josée Aubin
- Department of Ophthalmology, Université de Montréal, Montréal, Canada.,Centre universitaire d'ophtalmologie de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada.,Department of Social and Preventive Medicine, ESPUM, Université de Montréal, Montréal, Canada
| | - Marie-Jeanne Kergoat
- Centre de Recherche, Institut universitaire de gériatrie de Montréal, Montréal, Canada.,Department of Medicine, Université de Montréal, Montréal, Canada
| | - Gisèle Li
- Department of Ophthalmology, Université de Montréal, Montréal, Canada.,Centre universitaire d'ophtalmologie de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Ellen E Freeman
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
17
|
Affiliation(s)
- Valentin Navel
- Ophthalmology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, Auvergne Rhône Alpes, France
| | - Frédéric Chiambaretta
- Ophthalmology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, Auvergne Rhône Alpes, France
| | - Frédéric Dutheil
- Preventive and Occupational Medicine, University Hospital of Clermont-Ferrand, Clermont-Ferrand, Auvergne-Rhône-Alpes, France
| |
Collapse
|
18
|
Sun HY, Luo CW, Chiang YW, Li KLYYC, Ho YC, Lee SS, Chen WY, Chen CJ, Kuan YH. Association Between PM 2.5 Exposure Level and Primary Open-Angle Glaucoma in Taiwanese Adults: A Nested Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041714. [PMID: 33578928 PMCID: PMC7916685 DOI: 10.3390/ijerph18041714] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022]
Abstract
Primary open-angle glaucoma (POAG) is the most common type of glaucoma. However, little is known about POAG in adults and exposure to air pollution. The current study aims to investigate whether exposure to particulate matter with a mass median aerodynamic diameter of ≤2.5 μm (PM2.5) is associated with POAG diagnosis. Patient data were obtained from the Longitudinal Health Insurance Database 2010 (LHID2010) of Taiwan for the 2008–2013 period. PM2.5 concentration data, collected from the Ambient Air Quality Monitoring Network established by the Environmental Protection Administration of Taiwan, were categorized into four groups according to World Health Organization (WHO) exposure standards for PM2.5. We estimated the odds ratios (ORs) and 95% CIs for risk factors for POAG with logistic regression. The OR of per WHO standard level increase was 1.193 (95% CI 1.050–1.356). Compared with the normal level, the OR of WHO 2.0 level was 1.668 (95% CI 1.045–2.663, P < 0.05). After excluding confounding risk factors for POAG in this study, we determined that increased PM2.5 exposure is related to POAG risk (ORs > 1, P < 0.05). In this study, PM2.5 was an independent factor associated with open-angle glaucoma. Further research is required to better understand the mechanisms connecting PM2.5 and open-angle glaucoma.
Collapse
Affiliation(s)
- Han-Yin Sun
- Department of Optometry, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ci-Wen Luo
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-W.L.)
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yun-Wei Chiang
- Department of life sciences, National Chung-Hsing University, Taichung 402204, Taiwan;
| | - Kun-Lin Yeh Yi-Ching Li
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-W.L.)
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402204, Taiwan;
| | - Yung-Chung Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402204, Taiwan;
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-W.L.)
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-24730022
| |
Collapse
|