1
|
Ellervik C, Boulakh L, Teumer A, Marouli E, Kuś A, Buch Hesgaard H, Heegaard S, Blankers L, Sterenborg R, Åsvold BO, Winkler TW, Medici M, Kjaergaard AD. Thyroid Function, Diabetes, and Common Age-Related Eye Diseases: A Mendelian Randomization Study. Thyroid 2024; 34:1414-1423. [PMID: 39283829 DOI: 10.1089/thy.2024.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Background: Previous Mendelian randomization (MR) studies showed an association between hypothyroidism and cataract and between high-normal free thyroxine (FT4) and late age-related macular degeneration (AMD), but not between FT4, thyroid stimulating hormone (TSH), or hyperthyroidism and diabetic retinopathy or cataract. These studies included a limited number of genetic variants for thyroid function and did not investigate autoimmune thyroid disease (AITD) or glaucoma, include bidirectional and multivariable MR (MVMR), and examine sex differences or potential mediation effects of diabetes. We aimed to address this knowledge gap. Methods: We examined the causality and directionality of the associations of AITD, and FT4 and TSH within the reference range with common age-related eye diseases (diabetic retinopathy, cataract, early and late AMD, and primary open-angle glaucoma). We conducted a bidirectional two-sample MR study utilizing publicly available genome-wide association study (GWAS) summary statistics from international consortia (ThyroidOmics, International AMD Genetics Consortium, deCODE, UK Biobank, FinnGen, and DIAGRAM). Bidirectional MR tested directionality, whereas MVMR estimated independent causal effects. Furthermore, we investigated type 1 diabetes (T1D) and type 2 diabetes (T2D) as potential mediators. Results: Genetic predisposition to AITD was associated with increased risk of diabetic retinopathy (p = 3 × 10-4), cataract (p = 3 × 10-3), and T1D (p = 1 × 10-3), but less likely T2D (p = 0.01). MVMR showed attenuated estimates for diabetic retinopathy and cataract when adjusting for T1D, but not T2D. We found pairwise bidirectional associations between AITD, T1D, and diabetic retinopathy. Genetic predisposition to both T1D and T2D increased the risk of diabetic retinopathy and cataract (p < 4 × 10-4). Moreover, genetically predicted higher FT4 within the reference range was associated with an increased risk of late AMD (p = 0.01), particularly in women (p = 7 × 10-3). However, we neither found any association between FT4 and early AMD nor between TSH and early and late AMD. No other associations were observed. Conclusions: Genetic predisposition to AITD is associated with risk of diabetic retinopathy and cataract, mostly mediated through increased T1D risk. Reciprocal associations between AITD, diabetic retinopathy, and T1D imply a shared autoimmune origin. The role of FT4 in AMD and potential sex discrepancies needs further investigation.
Collapse
Affiliation(s)
- Christina Ellervik
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Clinical Biochemistry, Zealand University Hospital, Køge, Denmark
| | - Lena Boulakh
- Department of Ophthalmology, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Eirini Marouli
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aleksander Kuś
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Helena Buch Hesgaard
- Institute of Neuroscience and Physiology, Gothenburg University, Sweden
- Department of Ophthalmology, Sahlgrenska University Hospital, Sweden
| | - Steffen Heegaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet-Glostrup, Glostrup, Denmark
- Department of Pathology, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Lizette Blankers
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rosalie Sterenborg
- Department of Internal Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Bjørn Olav Åsvold
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | - Marco Medici
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
2
|
Boulakh L. Intraocular and extraocular manifestations of thyroid dysfunction in Danish patients: A Nationwide Study. Acta Ophthalmol 2024; 102 Suppl 283:3-25. [PMID: 39238437 DOI: 10.1111/aos.16734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 09/07/2024]
Affiliation(s)
- Lena Boulakh
- Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
| |
Collapse
|
3
|
Ma H, Stanford D, Freeman WM, Ding XQ. Transcriptomic Analysis Reveals That Excessive Thyroid Hormone Signaling Impairs Phototransduction and Mitochondrial Bioenergetics and Induces Cellular Stress in Mouse Cone Photoreceptors. Int J Mol Sci 2024; 25:7435. [PMID: 39000540 PMCID: PMC11242393 DOI: 10.3390/ijms25137435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Thyroid hormone (TH) plays an essential role in cell proliferation, differentiation, and metabolism. Experimental and clinical studies have shown a potential association between TH signaling and retinal degeneration. The suppression of TH signaling protects cone photoreceptors in mouse models of retinal degeneration, whereas excessive TH signaling induces cone degeneration, manifested as reduced light response and a loss of cones. This work investigates the genes/transcriptomic alterations that might be involved in TH-induced cone degeneration in mice using single-cell RNA sequencing (scRNAseq) analysis. One-month-old C57BL/6 mice received triiodothyronine (T3, 20 µg/mL in drinking water) for 4 weeks as a model of hyperthyroidism/excessive TH signaling. At the end of the experiments, retinal cells were dissociated, and cell viability was analyzed before being subjected to scRNAseq. The resulting data were analyzed using the Seurat package and visualized using the Loupe browser. Among 155,866 single cells, we identified 14 cell clusters, representing various retinal cell types, with rod and cone clusters comprising 76% and 4.1% of the total cell population, respectively. Cone cluster transcriptomes demonstrated the most alterations after the T3 treatment, with 450 differentially expressed genes (DEGs), accounting for 38.5% of the total DEGs. Statistically significant changes in the expression of genes in the cone cluster revealed that phototransduction and oxidative phosphorylation were impaired after the T3 treatment, along with mitochondrial dysfunction. A pathway analysis also showed the activation of the sensory neuronal/photoreceptor stress pathways after the T3 treatment. Specifically, the eukaryotic initiation factor-2 signaling pathway and the cAMP response element-binding protein signaling pathway were upregulated. Thus, excessive TH signaling substantially affects cones at the transcriptomic level. The findings from this work provide an insight into how excessive TH signaling induces cone degeneration.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 553, Oklahoma, OK 73104, USA
| | - David Stanford
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 553, Oklahoma, OK 73104, USA
| |
Collapse
|
4
|
Nicolini G, Casini G, Posarelli C, Amato R, Lulli M, Balzan S, Forini F. Thyroid Hormone Signaling in Retinal Development and Function: Implications for Diabetic Retinopathy and Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:7364. [PMID: 39000471 PMCID: PMC11242054 DOI: 10.3390/ijms25137364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Thyroid Hormones (THs) play a central role in the development, cell growth, differentiation, and metabolic homeostasis of neurosensory systems, including the retina. The coordinated activity of various components of TH signaling, such as TH receptors (THRs) and the TH processing enzymes deiodinases 2 and 3 (DIO2, DIO3), is required for proper retinal maturation and function of the adult photoreceptors, Müller glial cells, and pigmented epithelial cells. Alterations of TH homeostasis, as observed both in frank or subclinical thyroid disorders, have been associated with sight-threatening diseases leading to irreversible vision loss i.e., diabetic retinopathy (DR), and age-related macular degeneration (AMD). Although observational studies do not allow causal inference, emerging data from preclinical models suggest a possible correlation between TH signaling imbalance and the development of retina disease. In this review, we analyze the most important features of TH signaling relevant to retinal development and function and its possible implication in DR and AMD etiology. A better understanding of TH pathways in these pathological settings might help identify novel targets and therapeutic strategies for the prevention and management of retinal disease.
Collapse
Affiliation(s)
| | - Giovanni Casini
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Chiara Posarelli
- Ophthalmology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy
| | - Rosario Amato
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | | | | |
Collapse
|
5
|
Seo JH, Lee Y. Causal Associations of Glaucoma and Age-Related Macular Degeneration with Cataract: A Bidirectional Two-Sample Mendelian Randomisation Study. Genes (Basel) 2024; 15:413. [PMID: 38674349 PMCID: PMC11049509 DOI: 10.3390/genes15040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Common age-related eye disorders include glaucoma, cataract, and age-related macular degeneration (AMD); however, little is known about their relationship with age. This study investigated the potential causal relationship between glaucoma and AMD with cataract using genetic data from multi-ethnic populations. Single-nucleotide polymorphisms (SNPs) associated with exposure to cataract were selected as instrumental variables (IVs) from genome-wide association studies using meta-analysis data from BioBank Japan and UK Biobank. A bidirectional two-sample Mendelian randomisation (MR) study was conducted to assess the causal estimates using inverse variance weighted, MR-Egger, and MR pleiotropy residual sum and outlier tests. SNPs with (p < 5.0 × 10-8) were selected as IVs for cataract, primary open-angle glaucoma, and AMD. We found no causal effects of cataract on glaucoma or AMD (all p > 0.05). Furthermore, there were no causal effects of AMD on cataract (odds ratio [OR] = 1.02, p = 0.400). However, glaucoma had a substantial causal effect on cataract (OR = 1.14, p = 0.020). Our study found no evidence for a causal relationship of cataract on glaucoma or AMD and a casual effect of AMD on cataract. Nonetheless, glaucoma demonstrates a causal link with cataract formation, indicating the need for future investigations of age-related eye diseases.
Collapse
Affiliation(s)
- Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
- Department of Applied Statistics, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Ma H, Yang F, York LR, Li S, Ding XQ. Excessive Thyroid Hormone Signaling Induces Photoreceptor Degeneration in Mice. eNeuro 2023; 10:ENEURO.0058-23.2023. [PMID: 37596046 PMCID: PMC10481642 DOI: 10.1523/eneuro.0058-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023] Open
Abstract
Rod and cone photoreceptors degenerate in inherited and age-related retinal degenerative diseases, ultimately leading to loss of vision. Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have shown a link between TH signaling and retinal degeneration. This work investigates the effects of excessive TH signaling on photoreceptor function and survival in mice. C57BL/6, Thra1 -/-, Thrb2 -/-, Thrb -/-, and the cone dominant Nrl -/- mice received triiodothyronine (T3) treatment (5-20 μg/ml in drinking water) for 30 d, followed by evaluations of retinal function, photoreceptor survival/death, and retinal stress/damage. Treatment with T3 reduced light responses of rods and cones by 50-60%, compared with untreated controls. Outer nuclear layer thickness and cone density were reduced by ∼18% and 75%, respectively, after T3 treatment. Retinal sections prepared from T3-treated mice showed significantly increased numbers of TUNEL-positive, p-γH2AX-positive, and 8-OHdG-positive cells, and activation of Müller glial cells. Gene expression analysis revealed upregulation of the genes involved in oxidative stress, necroptosis, and inflammation after T3 treatment. Deletion of Thra1 prevented T3-induced degeneration of rods but not cones, whereas deletion of Thrb2 preserved both rods and cones. Treatment with an antioxidant partially preserved photoreceptors and reduced retinal stress responses. This study demonstrates that excessive TH signaling induces oxidative stress/damage and necroptosis, induces photoreceptor degeneration, and impairs retinal function. The findings provide insights into the role of TH signaling in retinal degeneration and support the view of targeting TH signaling for photoreceptor protection.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Lilliana R York
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Shujuan Li
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
7
|
Wan B, Lu L, Lv C. Mendelian randomization analyses identified bioavailable testosterone mediates the effect of sex hormone-binding globulin on prostate cancer. Andrology 2023; 11:1023-1030. [PMID: 36524281 DOI: 10.1111/andr.13358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE A better knowledge of the hormonal etiology of prostate cancer is essential for its prevention and treatment. The goal of this study was to provide causal estimates of the connection between sex hormone-binding globulin and prostate cancer and investigate the possible mediating function of other modifiable risk indicators. METHODS We used two-step, two-sample multivariable Mendelian randomization using single-nucleotide polymorphisms as instrumental variables for exposure and mediators. Single-nucleotide polymorphisms associated with sex hormone-binding globulin and bioavailable testosterone were screened via a genome-wide association study enrolling European-descent adult male individuals. Summary-level data for prostate cancer (79,148 cases and 61,106 controls) were extracted from the PRACTICAL consortium. The total effect of sex hormone-binding globulin on prostate cancer risk was decomposed into direct and indirect effects through the mediator, bioavailable testosterone. An inverse-variance-weighted method was the primary Mendelian randomization analysis method. Sensitivity analyses were performed via Mendelian randomization-Egger regression, heterogeneity test, pleiotropy test, and leave-one-out test. The directionality that exposure causes the outcome was verified using Mendelian randomization-Steiger test. RESULTS In the univariable Mendelian randomization analysis, genetically predicted higher sex hormone-binding globulin levels had a causal association with lower prostate cancer risk (odds ratio = 0.944, 95% confidence interval = 0.897-0.993, p = 0.027) and an inverse association with bioavailable testosterone level (odds ratio = 0.945, 95% confidence interval = 0.926-0.965, p = 1.62E-07) without controlling for other factors. Moreover, an increase of one standard deviation (59.5 pmol/L) in genetically predicted bioavailable testosterone level was significantly associated with a 22.0% increase in the overall prostate cancer risk (odds ratio = 1.220, 95% confidence interval = 1.064-1.398, p = 0.004) after adjusting for sex hormone-binding globulin level. The effect size ratio of bioavailable testosterone-mediated sex hormone-binding globulin to prostate cancer was further analyzed to clarify the importance of the mediating effect. Notably, the mediator bioavailable testosterone explained 19.28% (95% confidence interval = 10.76%, 73.78%) of the total effect of sex hormone-binding globulin level on prostate cancer risk. CONCLUSION The results support the potentially protective causal effect of genetically predicted higher sex hormone-binding globulin levels against prostate cancer with mediation by the modifiable risk factor, bioavailable testosterone. More research is needed to determine how this possible sex hormone-binding globulin-bioavailable testosterone-prostate cancer link works. Targeting sex hormone-binding globulin and bioavailable testosterone traits may be a valuable strategy for preventing prostate cancer.
Collapse
Affiliation(s)
- Bangbei Wan
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou, China
| | - Likui Lu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Cai Lv
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| |
Collapse
|
8
|
Julian TH, Cooper-Knock J, MacGregor S, Guo H, Aslam T, Sanderson E, Black GCM, Sergouniotis PI. Phenome-wide Mendelian randomisation analysis identifies causal factors for age-related macular degeneration. eLife 2023; 12:e82546. [PMID: 36705323 PMCID: PMC9883012 DOI: 10.7554/elife.82546] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/18/2022] [Indexed: 01/28/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is a leading cause of blindness in the industrialised world and is projected to affect >280 million people worldwide by 2040. Aiming to identify causal factors and potential therapeutic targets for this common condition, we designed and undertook a phenome-wide Mendelian randomisation (MR) study. Methods We evaluated the effect of 4591 exposure traits on early AMD using univariable MR. Statistically significant results were explored further using: validation in an advanced AMD cohort; MR Bayesian model averaging (MR-BMA); and multivariable MR. Results Overall, 44 traits were found to be putatively causal for early AMD in univariable analysis. Serum proteins that were found to have significant relationships with AMD included S100-A5 (odds ratio [OR] = 1.07, p-value = 6.80E-06), cathepsin F (OR = 1.10, p-value = 7.16E-05), and serine palmitoyltransferase 2 (OR = 0.86, p-value = 1.00E-03). Univariable MR analysis also supported roles for complement and immune cell traits. Although numerous lipid traits were found to be significantly related to AMD, MR-BMA suggested a driving causal role for serum sphingomyelin (marginal inclusion probability [MIP] = 0.76; model-averaged causal estimate [MACE] = 0.29). Conclusions The results of this MR study support several putative causal factors for AMD and highlight avenues for future translational research. Funding This project was funded by the Wellcome Trust (224643/Z/21/Z; 200990/Z/16/Z); the University of Manchester's Wellcome Institutional Strategic Support Fund (Wellcome ISSF) grant (204796/Z/16/Z); the UK National Institute for Health Research (NIHR) Academic Clinical Fellow and Clinical Lecturer Programmes; Retina UK and Fight for Sight (GR586); the Australian National Health and Medical Research Council (NHMRC) (1150144).
Collapse
Affiliation(s)
- Thomas H Julian
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
- Manchester Royal Eye Hospital, Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Johnathan Cooper-Knock
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of SheffieldSheffieldUnited Kingdom
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Hui Guo
- Centre for Biostatistics, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Tariq Aslam
- Manchester Royal Eye Hospital, Manchester University NHS Foundation TrustManchesterUnited Kingdom
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, University of ManchesterManchesterUnited Kingdom
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
| | - Graeme CM Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
- Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Panagiotis I Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
- Manchester Royal Eye Hospital, Manchester University NHS Foundation TrustManchesterUnited Kingdom
- Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Manchester University NHS Foundation TrustManchesterUnited Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusCambridgeUnited Kingdom
| |
Collapse
|
9
|
Cai J, Hao W, Zeng S, Li J, Guo Y, Tan K, Kang Y, Huang Y, Zhang Y, Santos T, Qian C, Luo A. Fundus-Vascular Responses to Color Deviation Caused by Non-Oxidative Blue Filtering. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9592009. [PMID: 36275906 PMCID: PMC9581710 DOI: 10.1155/2022/9592009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Aims Short-wavelength blue light damaged retina by the oxidative stress in the retinal pigment epithelial (RPE) cells. Filtering blue light from screen could reduce blue hazard, whereas it inevitably altered color-gamut coverage and color-deviation level. Although abnormal fundus-vascular density (FVD) sometimes indicated fundus disease, few researchers noticed its responses to the variation of color-gamut coverage and color-deviation level. Methods In this study, we performed cellular experiments and analyzed the RPE cell viabilities (CVs) in spectrums with different blue (455-475 nm) ratios to describe the corresponding oxidative-stress levels. Further, we investigated the effects of color-gamut and deviation on FVD variations during the screen-watching task using human factor experiments with 30 participants (university students, including 17 males and 13 females, 21 to 30 years old). Results RPE CVs were similar in different spectrums, implying that non-oxidative blue filtering hardly contributed to CV improvement. Color-deviation level seems to induce more significant effects on the visual function compared to color-gamut coverage, and MTF and FVD presents similar variation trends during the visual task. Conclusion Oxidative-free blue filtering contributed little to decrease retinal oxidative stress yet caused color-deviation increase, which caused significant FVD reduction.
Collapse
Affiliation(s)
- Jianqi Cai
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Lab of Visual Health and Safety Protection, China National Institute of Standardization, Beijing 100191, China
| | - Wentao Hao
- Beijing Yangming Zhidao Photoelectric Science and Technology Co., Ltd, Beijing 100102, China
| | - Shanshan Zeng
- Lab of Visual Health and Safety Protection, China National Institute of Standardization, Beijing 100191, China
| | - Junkai Li
- Hangzhou Innovei Technology Co., Ltd, Hangzhou 311199, China
| | - Ya Guo
- Lab of Visual Health and Safety Protection, China National Institute of Standardization, Beijing 100191, China
| | - Kai Tan
- Guangzhou Shirui Electronics Co., Ltd, Guangzhou 510663, China
| | - Yongyin Kang
- Najing Technology Co., Ltd, Hangzhou 310052, China
| | - Yitao Huang
- Guangzhou Shirui Electronics Co., Ltd, Guangzhou 510663, China
| | - Yue Zhang
- Guangzhou Shirui Electronics Co., Ltd, Guangzhou 510663, China
| | - Thebano Santos
- Center of Information Technology “Renato Archer” (CTI), Ministry of Science Technology Innovations and Communications, Brazil
| | - Cheng Qian
- School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
| | - Aiqin Luo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|