1
|
Herrera G, Shen M, Trivizki O, Liu J, Shi Y, Hiya FE, Li J, Cheng Y, Lu J, Zhang Q, O’Brien RC, Gregori G, Wang RK, Rosenfeld PJ. Comparison between Spectral-Domain and Swept-Source OCT Angiography for the Measurement of Persistent Hypertransmission Defects in Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2025; 5:100593. [PMID: 39318709 PMCID: PMC11417529 DOI: 10.1016/j.xops.2024.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
Purpose Spectral-domain OCT angiography (SD-OCTA) scans were tested in an algorithm developed for use with swept-source OCT angiography (SS-OCTA) scans to determine if SD-OCTA scans yielded similar results for the detection and measurement of persistent choroidal hypertransmission defects (hyperTDs). Design Retrospective study. Participants Forty pairs of scans from 32 patients with late-stage nonexudative age-related macular degeneration (AMD). Methods Patients underwent both SD-OCTA and SS-OCTA imaging at the same visit using the 6 × 6 mm OCTA scan patterns. Using a semiautomatic algorithm that helped with outlining the hyperTDs, 2 graders independently validated persistent hyperTDs, which are defined as having a greatest linear dimension ≥250 μm on the en face images generated using a slab extending from 64 to 400 μm beneath Bruch's membrane. The number of lesions and square root (sqrt) total area of the hyperTDs were obtained from the algorithm using each imaging method. Main Outcome Measures The mean sqrt area measurements and the number of hyperTDs were compared. Results The number of lesions and sqrt total area of the hyperTDs were highly concordant between the 2 instruments (rc = 0.969 and rc = 0.999, respectively). The mean number of hyperTDs was 4.3 ± 3.1 for SD-OCTA scans and 4.5 ± 3.3 for SS-OCTA scans (P = 0.06). The mean sqrt total area measurements were 1.16 ± 0.64 mm for the SD-OCTA scans and 1.17 ± 0.65 mm for the SS-OCTA scans (P < 0.001). Because of the small standard error of the differences, the mean difference between the scans was statistically significant but not clinically significant. Conclusions Spectral-domain OCTA scans provide similar results to SS-OCTA scans when used to obtain the number and area measurements of persistent hyperTDs through a semiautomated algorithm previously developed for SS-OCTA. This facilitates the detection of atrophy with a more widely available scan pattern and the longitudinal study of early to late-stage AMD. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Gissel Herrera
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Omer Trivizki
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- Department of Ophthalmology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Jeremy Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Yingying Shi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Farhan E. Hiya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jianqing Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Jie Lu
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Qinqin Zhang
- Research and Development, Carl Zeiss Meditec, Inc., Dublin, California
| | - Robert C. O’Brien
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Philip J. Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
2
|
Berni A, Shen M, Cheng Y, Herrera G, Hiya F, Liu J, Wang L, Li J, Zhou SW, Trivizki O, Waheed NK, O'Brien R, Gregori G, Wang RK, Rosenfeld PJ. The Total Macular Burden of Hyperreflective Foci and the Onset of Persistent Choroidal Hypertransmission Defects in Intermediate AMD. Am J Ophthalmol 2024; 267:61-75. [PMID: 38944135 PMCID: PMC11486582 DOI: 10.1016/j.ajo.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
PURPOSE The association between the total macular burden of hyperreflective foci (HRF) in eyes with intermediate AMD (iAMD) and the onset of persistent choroidal hypertransmission defects (hyperTDs) was studied using swept-source optical coherence tomography (SS-OCT). DESIGN Post hoc subgroup analysis of a prospective study. METHODS A retrospective review of iAMD eyes from subjects enrolled in a prospective SS-OCT study was performed. All eyes underwent 6×6 mm SS-OCT angiography (SS-OCTA) imaging at baseline and follow-up visits. En face sub-retinal pigment epithelium (subRPE) slabs with segmentation boundaries positioned 64 to 400 µm beneath Bruch's membrane (BM) were used to identify persistent choroidal hyperTDs. None of the eyes had persistent hyperTDs at baseline. The same subRPE slab was used to identify choroidal hypotransmission defects (hypoTDs) attributable to HRF located either intraretinally (iHRF) or along the RPE (rpeHRF) based on corresponding B-scans. A semiautomated algorithm was used by 2 independent graders to validate and refine the HRF outlines. The HRF area and the drusen volume within a 5 mm fovea-centered circle were measured at each visit. RESULTS The median follow-up time for the 171 eyes from 121 patients included in this study was 59.1 months (95% CI: 52.0-67.8 months). Of these, 149 eyes (87%) had HRF, and 82 (48%) developed at least one persistent hyperTD during the follow-up. Although univariable Cox regression analyses showed that both drusen volume and total HRF area were associated with the onset of the first persistent hyperTD, multivariable analysis showed that the area of total HRF was the sole significant predictor for the onset of hyperTDs (P < .001). ROC analysis identified an HRF area ≥ 0.07 mm² to predict the onset of persistent hyperTDs within 1 year with an area under the curve (AUC) of 0.661 (0.570-0.753), corresponding to a sensitivity of 55% and a specificity of 74% (P < .001). CONCLUSIONS The total macular burden of HRF, which includes both the HRF along the RPE and within the retina, is an important predictor of disease progression from iAMD to the onset of persistent hyperTDs and should serve as a key OCT biomarker to select iAMD patients at high risk for disease progression in future clinical trials.
Collapse
Affiliation(s)
- Alessandro Berni
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology (A.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mengxi Shen
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yuxuan Cheng
- Department of Bioengineering (Y.C., R.K.W.), University of Washington, Seattle, Washington, USA
| | - Gissel Herrera
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Farhan Hiya
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeremy Liu
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology and Visual Science (J.L.), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Liang Wang
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jianqing Li
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology (J.L.), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sandy Wenting Zhou
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology (W.Z.), Tan Tock Seng Hospital, National Health Group Eye Institute, Singapore
| | - Omer Trivizki
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology (O.T.), Tel Aviv Medical Center, University of Tel Aviv, Tel Aviv, Israel
| | - Nadia K Waheed
- New England Eye Center (N.K.W.), Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Robert O'Brien
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Giovanni Gregori
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ruikang K Wang
- Department of Bioengineering (Y.C., R.K.W.), University of Washington, Seattle, Washington, USA; Department of Ophthalmology (R.K.W.), University of Washington, Seattle, Washington, USA
| | - Philip J Rosenfeld
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
3
|
Beqiri S, Herrera G, Liu J, Shen M, Berni A, El-Mulki OS, Cheng Y, Trivizki O, Kastner J, O'Brien RC, Gregori G, Wang RK, Rosenfeld PJ. Evaluating the persistence of large choroidal hypertransmission defects using SS-OCT imaging. Exp Eye Res 2024; 248:110117. [PMID: 39368694 PMCID: PMC11532011 DOI: 10.1016/j.exer.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
In age-related macular degeneration (AMD), large choroidal hypertransmission defects (hyperTDs) are identified on en face optical coherence tomography (OCT) images as bright lesions measuring at least 250 μm in greatest linear dimension (GLD). These choroidal hyperTDs arise from focal attenuation or loss of the retinal pigment epithelium (RPE). We previously reported that once large hyperTDs formed, they were likely to persist compared with smaller lesions that were more likely to be transient. Due to their relative persistence, these large persistent choroidal hyperTDs are a point-of-no-return in the progression of intermediate AMD to the late stage of atrophic AMD. Moreover, the onset of these large choroidal hyperTDs can serve as a clinical trial endpoint when studying therapies that might slow disease progression from intermediate AMD to late atrophic AMD. To confirm the persistence of these large choroidal hyperTDs, we studied an independent dataset of AMD eyes enrolled in an ongoing prospective swept-source OCT (SS-OCT) natural history study to determine their overall persistence. We identified a total of 202 eyes with large choroidal hyperTDs containing 1725 hyperTDs followed for an average of 46.6 months. Of the 1725 large hyperTDs, we found that 1718 (99.6%) persisted while only 7 hyperTDs (0.4%) were non-persistent. Of the 7 non-persistent large hyperTDs in 6 eyes, their average GLD at baseline was 385 μm. Of the large hyperTDs ranging in size between 250 and 300 μm when first detected, only one was not persistent with a baseline GLD of 283 μm. In 6 of the non-persistent hyperTDs, the loss of a detectable large hyperTD was due to the accumulation of hyperreflective material along the retinal pigment epithelium (RPE) and in the retina over the area where the hyperTD was located. This hyperreflective material is thought to represent the migration and aggregation of RPE cells into this focal region where the choroidal hyperTD arose due to attenuated or lost RPE.
Collapse
Affiliation(s)
- Sara Beqiri
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gissel Herrera
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeremy Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alessandro Berni
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Omar S El-Mulki
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Omer Trivizki
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Ophthalmology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - James Kastner
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert C O'Brien
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Philip J Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
4
|
Borrelli E, Coco G, Pellegrini M, Mura M, Ciarmatori N, Scorcia V, Carnevali A, Lucisano A, Borselli M, Rossi C, Reibaldi M, Ricardi F, Vagge A, Nicolò M, Forte P, Cartabellotta A, Hasanreisoğlu M, Kesim C, Demirel S, Yanık Ö, Bernabei F, Rothschild PR, Farrant S, Giannaccare G. Safety, Tolerability, and Short-Term Efficacy of Low-Level Light Therapy for Dry Age-Related Macular Degeneration. Ophthalmol Ther 2024; 13:2855-2868. [PMID: 39271642 PMCID: PMC11494651 DOI: 10.1007/s40123-024-01030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
INTRODUCTION Photobiomodulation (PBM) has become a promising approach for slowing the progression of early and intermediate dry age-related macular degeneration (dAMD) to advanced AMD. This technique uses light to penetrate tissues and activate molecules that influence biochemical reactions and cellular metabolism. This preliminary analysis is aimed at assessing the safety, tolerability, and short-term effectiveness of the EYE-LIGHT®PBM treatment device in patients with dAMD. METHODS The EYE-LIGHT® device employs two wavelengths, 590 nm (yellow) and 630 nm (red), in both continuous and pulsed modes. Patients over 50 years of age with a diagnosis of dAMD in any AREDS (Age-Related Eye Disease Study) category were randomly assigned to either the treatment group or the sham group. The treatment plan consisted of an initial cycle of two sessions per week for 4 weeks. Safety, tolerability, and compliance outcomes, along with functional and anatomical outcomes, were assessed at the end of the fourth month. RESULTS This preliminary analysis included data from 76 patients (152 eyes). All patients were fully compliant with treatment sessions, and only one fifth of patients treated with PBM reported mild ocular adverse events, highlighting exceptional results in terms of tolerability and adherence. Changes in best-corrected visual acuity (BCVA) from baseline to month 4 differed significantly between the sham and PBM-treated groups, favoring the latter, with a higher proportion achieving a gain of five or more letters post-treatment (8.9% vs. 20.3%, respectively; p = 0.043). No significant differences in central subfield thickness (CST) were observed between the two groups over the 4-month period. The study also found a statistically significant disparity in mean drusen volume changes from baseline to month 4 between the groups in favor of patients treated with PBM (p = 0.013). CONCLUSION These preliminary results indicate that PBM treatment using the EYE-LIGHT® system is safe and well tolerated among patients with dAMD. Furthermore, both functional and anatomical data support the treatment's short-term efficacy. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT06046118.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy.
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Giulia Coco
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marco Pellegrini
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", Forlì, Italy
- Istituto Internazionale Per La Ricerca E Formazione in Oftalmologia (IRFO), Forlì, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Mura
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Nicolò Ciarmatori
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Adriano Carnevali
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Andrea Lucisano
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Costanza Rossi
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Federico Ricardi
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Aldo Vagge
- IRCCS Ospedale Policlinico San Martino, Eye Unit, Genoa, Italy
- DINOGMI, Dipartimento Di NeuroscienzeRiabilitazioneOftalmologiaGenetica e Scienze Materno-Infantili, University of Genoa, Genoa, Italy
| | - Massimo Nicolò
- IRCCS Ospedale Policlinico San Martino, Eye Unit, Genoa, Italy
- DINOGMI, Dipartimento Di NeuroscienzeRiabilitazioneOftalmologiaGenetica e Scienze Materno-Infantili, University of Genoa, Genoa, Italy
| | - Paolo Forte
- IRCCS Ospedale Policlinico San Martino, Eye Unit, Genoa, Italy
- DINOGMI, Dipartimento Di NeuroscienzeRiabilitazioneOftalmologiaGenetica e Scienze Materno-Infantili, University of Genoa, Genoa, Italy
| | - Antonio Cartabellotta
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Murat Hasanreisoğlu
- Department of Ophthalmology, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Kesim
- Department of Ophthalmology, Koc University School of Medicine, Istanbul, Turkey
| | - Sibel Demirel
- Department of Ophthalmology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Özge Yanık
- Department of Ophthalmology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Federico Bernabei
- Service d'Ophtalmologie, Ophtalmopôle de Paris, Hôpital Cochin, AP-HP, 75014, Paris, France
| | | | - Sarah Farrant
- Earlam and Christopher Optometrist and Contact Lens Specialists, Taunton, UK
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
5
|
Nanegrungsunk O, Corradetti G, Phinyo P, Choovuthayakorn J, Sadda SR. Relationship between hypertransmission defect size and progression in eyes with intermediate age-related macular degeneration. Eye (Lond) 2024:10.1038/s41433-024-03338-0. [PMID: 39279009 DOI: 10.1038/s41433-024-03338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVES To determine the associations between the presence of various-sized hypertransmission defects (hyperTDs) and progression to incomplete retinal pigment epithelial (RPE) and outer retinal atrophy (iRORA) and complete RORA (cRORA) in eyes with intermediate age-related macular degeneration (iAMD). METHODS Optical coherence tomography (OCT) data from consecutive iAMD patients, were retrospectively reviewed. All of iAMD eyes with or without iRORA (but not cRORA) at baseline were included. Graders evaluated the presence of hyperTDs at baseline (small: 63-124 µm; medium: 125-249 µm; large: ≥ 250 µm in diameter on choroidal en face OCT) and the progression two years later. RESULTS Of the 145 eyes that not developed neovascular AMD at two years, the eyes that progressed to or developed iRORA or cRORA included 13 eyes (10.7%), 5 eyes (83.3%), 9 eyes (81.8%), and 6 eyes (85.7%) in the groups with no, small, medium, and large hyperTDs at baseline, respectively (P-value < 0.001). The odds ratios (95% CI) for progression were 41.6 (4.5-383.6), 37.4 (7.3-192.0), and 49.9 (5.6-447.1) in the small, medium, and large hyperTDs groups, compared to no hyperTDs (P-value ≤ 0.001). Eyes with ≥ 2 hyperTDs also showed more frequent progression than eyes with one or no hyperTDs (100% vs. 16.4%; P-value < 0.001). CONCLUSIONS While most iAMD eyes with no hyperTDs remained stable on OCT over two years, eyes with hyperTDs of any size appeared to be at a higher risk for progression. HyperTDs may provide an important OCT biomarker for identifying high-risk iAMD patients.
Collapse
Affiliation(s)
- Onnisa Nanegrungsunk
- Doheny Imaging Reading Center and Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Giulia Corradetti
- Doheny Imaging Reading Center and Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Phichayut Phinyo
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Janejit Choovuthayakorn
- Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Srinivas R Sadda
- Doheny Imaging Reading Center and Doheny Eye Institute, Pasadena, CA, USA.
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Rosenfeld PJ, Shen M, Trivizki O, Liu J, Herrera G, Hiya FE, Li J, Berni A, Wang L, El-Mulki OS, Cheng Y, Lu J, Zhang Q, O'Brien RC, Gregori G, Wang RK. Rediscovering Age-Related Macular Degeneration with Swept-Source OCT Imaging: The 2022 Charles L. Schepens, MD, Lecture. Ophthalmol Retina 2024; 8:839-853. [PMID: 38641006 DOI: 10.1016/j.oret.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
PURPOSE Swept-source OCT angiography (SS-OCTA) scans of eyes with age-related macular degeneration (AMD) were used to replace color, autofluorescence, infrared reflectance, and dye-based fundus angiographic imaging for the diagnosis and staging of AMD. Through the use of different algorithms with the SS-OCTA scans, both structural and angiographic information can be viewed and assessed using both cross sectional and en face imaging strategies. DESIGN Presented at the 2022 Charles L. Schepens, MD, Lecture at the American Academy of Ophthalmology Retina Subspecialty Day, Chicago, Illinois, on September 30, 2022. PARTICIPANTS Patients with AMD. METHODS Review of published literature and ongoing clinical research using SS-OCTA imaging in AMD. MAIN OUTCOME MEASURES Swept-source OCT angiography imaging of AMD at different stages of disease progression. RESULTS Volumetric SS-OCTA dense raster scans were used to diagnose and stage both exudative and nonexudative AMD. In eyes with nonexudative AMD, a single SS-OCTA scan was used to detect and measure structural features in the macula such as the area and volume of both typical soft drusen and calcified drusen, the presence and location of hyperreflective foci, the presence of reticular pseudodrusen, also known as subretinal drusenoid deposits, the thickness of the outer retinal layer, the presence and thickness of basal laminar deposits, the presence and area of persistent choroidal hypertransmission defects, and the presence of treatment-naïve nonexudative macular neovascularization. In eyes with exudative AMD, the same SS-OCTA scan pattern was used to detect and measure the presence of macular fluid, the presence and type of macular neovascularization, and the response of exudation to treatment with vascular endothelial growth factor inhibitors. In addition, the same scan pattern was used to quantitate choriocapillaris (CC) perfusion, CC thickness, choroidal thickness, and the vascularity of the choroid. CONCLUSIONS Compared with using several different instruments to perform multimodal imaging, a single SS-OCTA scan provides a convenient, comfortable, and comprehensive approach for obtaining qualitative and quantitative anatomic and angiographic information to monitor the onset, progression, and response to therapies in both nonexudative and exudative AMD. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Philip J Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida.
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Omer Trivizki
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida; Department of Ophthalmology, Tel Aviv Medical Center, University of Tel Aviv, Tel Aviv, Israel
| | - Jeremy Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida; Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut
| | - Gissel Herrera
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Farhan E Hiya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jianqing Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida; Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Alessandro Berni
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida; Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Liang Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Omar S El-Mulki
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Jie Lu
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Qinqin Zhang
- Research and Development, Carl Zeiss Meditec, Inc., Dublin, California
| | - Robert C O'Brien
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington; Department of Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Borrelli E, Olivieri C, Serafino S, Coletto A, Ricardi F, Neri G, Marolo P, Reibaldi M. Interreader and Intermodality Variability in Macular Atrophy Quantification in Neovascular Age-related Macular Degeneration: Comparison of 6 Imaging Modalities. Ophthalmol Retina 2024:S2468-6530(24)00404-4. [PMID: 39216728 DOI: 10.1016/j.oret.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Macular atrophy is a common complication in neovascular age-related macular degeneration (AMD) and is associated with poorer visual outcomes. This study evaluated interreader and intermodality variability in measuring macular atrophy in previously treated neovascular AMD eyes without exudation using 6 imaging modalities. DESIGN Prospective, cohort study. PARTICIPANTS Thirty participants with previously treated neovascular AMD showing no signs of exudation at the time of enrollment and exhibiting macular atrophy. METHODS During the same clinic visit, patients were imaged using 6 different imaging modalities: color fundus photography (CFP; Clarus, Carl Zeiss Meditec), near-infrared imaging (NIR; Spectralis, Heidelberg Engineering), structural OCT (Spectralis, Heidelberg Engineering), green fundus autofluorescence (GAF; Clarus, Carl Zeiss Meditec), blue fundus autofluorescence (BAF; Spectralis, Heidelberg Engineering), and pseudocolor imaging (MultiColor; Spectralis, Heidelberg Engineering). Two readers independently measured the macular atrophy area. MAIN OUTCOME MEASURES Interreader and intermodality agreement. RESULTS The 95% coefficient of repeatability was 5.98 mm2 for CFP, 4.46 mm2 for MultiColor, 3.90 mm2 for BAF, 3.92 mm2 for GAF, 4.86 mm2 for NIR, and 3.55 mm2 for OCT. Similarly, the coefficient of variation was lowest for OCT-based grading at 0.08 and highest for NIR-based grading at 0.28. Accordingly, the intraclass correlation coefficient was 0.742 for CFP, 0.805 for MultiColor, 0.857 for BAF, 0.850 for GAF, 0.755 for NIR, and 0.917 for OCT. The 6 different imaging modalities presented measurements with different mean values, with only a limited number of comparisons not significantly different between the instruments, although measurements were correlated. The largest size of macular atrophy was measured with structural OCT-based grading (median = 4.65 mm2; interquartile range [IQR] = 4.78 mm2) and the smallest was with CFP-based grading (median = 3.86 mm2; IQR = 5.06 mm2). Inconsistencies arose from various factors. CONCLUSIONS In patients with neovascular AMD, macular atrophy measurements vary significantly depending on the imaging technique used. Color fundus photography-based assessments yielded the smallest macular atrophy sizes, whereas structural OCT-based assessments produced the largest. These discrepancies stem from both the inherent limitations of each modality in assessing retinal pigment epithelial atrophy and factors related to neovascularization, such as the coexistence of fibrosis. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Chiara Olivieri
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Sonia Serafino
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Andrea Coletto
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Federico Ricardi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Giovanni Neri
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Paola Marolo
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| |
Collapse
|
8
|
Baek J, Ashrafkhorasani M, Mahmoudi A, Nittala MG, Corradetti G, Sadda SR. En Face and Volumetric Comparison of Hypertransmission Defects Evaluated by Cirrus and Spectralis Optical Coherence Tomography. Am J Ophthalmol 2024; 264:135-144. [PMID: 38461947 DOI: 10.1016/j.ajo.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE To evaluate and compare en face and 3-dimensional (3-D) properties of hypertransmission defects (HTDs) between different optical coherence tomography (OCT) devices using OCT volumes and reconstructed en face images. SETTINGS Comparative diagnostic evaluation study. METHODS Thirty eyes with dry age-related macular degeneration (AMD) that underwent dense OCT macular volume scans with both the Spectralis (97 B-scans/volume; 2910 B-scans in total) and Cirrus OCT (128 B-scans/volume; 3840 B-scans in total) from the Amish Eye Study cohort were included in this analysis. HTD regions were labeled on each B-scan and reconstructed into en face and 3-D volume images. Properties of HTD volume were compared between the 2 devices. RESULTS The qualitative score of en face images for HTD was higher for the Cirrus compared to the Spectralis (P < .01). The quality of Spectralis en face images improved after preprocessing and reconstruction. The 2-D HTD area on en face obtained from 2-D projections of 3-D volume did not differ between devices (P = .478, ICC = 0.998; Jaccard index 0.721 ± 0.086). There was no difference in the number, volume, PALs, and surface areas of HTDs between devices in the volumetric analysis (all P ≥ .090). The signal intensity of HTD normalized by the mean choroidal signal intensity did not differ between devices (P = .861). CONCLUSIONS The visualization of HTD on en face images from Spectralis OCT could be enhanced through image processing. The equivalence in 3-D HTD parameters between the 2 devices suggests interchangeability for assessing these lesions in AMD.
Collapse
Affiliation(s)
- Jiwon Baek
- From the Doheny Eye Institute (J.B., M.A., A.M., M.G.N., G.C., S.R.S.), Pasadena, California, USA; Department of Ophthalmology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea (J.B.), Bucheon, Gyeonggi-do, South Korea; Department of Ophthalmology, College of Medicine, The Catholic University of Korea (J.B.), Seoul, South Korea; Department of Ophthalmology, David Geffen School of Medicine at UCLA (J.B., A.M., G.C., S.R.S.), Los Angeles, California, USA
| | - Maryam Ashrafkhorasani
- From the Doheny Eye Institute (J.B., M.A., A.M., M.G.N., G.C., S.R.S.), Pasadena, California, USA
| | - Alireza Mahmoudi
- From the Doheny Eye Institute (J.B., M.A., A.M., M.G.N., G.C., S.R.S.), Pasadena, California, USA; Department of Ophthalmology, David Geffen School of Medicine at UCLA (J.B., A.M., G.C., S.R.S.), Los Angeles, California, USA
| | - Muneeswar Gupta Nittala
- From the Doheny Eye Institute (J.B., M.A., A.M., M.G.N., G.C., S.R.S.), Pasadena, California, USA
| | - Giulia Corradetti
- From the Doheny Eye Institute (J.B., M.A., A.M., M.G.N., G.C., S.R.S.), Pasadena, California, USA; Department of Ophthalmology, David Geffen School of Medicine at UCLA (J.B., A.M., G.C., S.R.S.), Los Angeles, California, USA
| | - SriniVas R Sadda
- From the Doheny Eye Institute (J.B., M.A., A.M., M.G.N., G.C., S.R.S.), Pasadena, California, USA; Department of Ophthalmology, David Geffen School of Medicine at UCLA (J.B., A.M., G.C., S.R.S.), Los Angeles, California, USA..
| |
Collapse
|
9
|
de Carlo Forest TE, Gill Z, Lisker-Cervantes A, Gnanaraj R, Grove N, Patnaik JL, Lynch AM, Palestine AG, Mathias M, Manoharan N, Mandava N. Association Between Quantitative and Qualitative Imaging Biomarkers and Geographic Atrophy Growth Rate. Am J Ophthalmol 2024; 264:168-177. [PMID: 38552931 PMCID: PMC11257804 DOI: 10.1016/j.ajo.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE Investigate associations between geographic atrophy (GA) growth rate and multimodal imaging biomarkers and patient demographics in patients with advanced non-neovascular age-related macular degeneration (nnAMD). DESIGN Prospective cohort study. METHODS One hundred twenty-one eyes of 66 patients with advanced nnAMD with GA enrolled in the University of Colorado AMD Registry from August 2014 to June 2021, with follow-up through June 2023. Multimodal images were reviewed by two graders for imaging biomarkers at enrollment. GA growth rate and square-root transformed (SQRT) GA growth rate were measured between enrollment and final visit. Associations between the outcome SQRT GA growth rate and imaging biomarkers, baseline GA lesions characteristics, and patient demographics were evaluated. RESULTS Average GA growth rate was 1.430 mm2/year and SQRT GA growth rate was 0.268 mm/year over a mean of 3.7 years. SQRT GA growth rate was positively associated with patient age (P = .010) and female sex (0.035), and negatively associated with body mass index (0.041). After adjustment for these demographic factors, SQRT GA growth rate was positively associated with presence of non-exudative subretinal fluid (P < .001), non-exudative subretinal hyperreflective material (P = .037), and incomplete retinal pigment epithelium and outer retina atrophy (P = .022), and negatively associated with subfoveal choroidal thickness (P = .031) and presence of retinal pseudocysts (P = .030). Larger baseline GA size at enrollment was associated with faster GA growth rate (P = .002) but not SQRT GA growth rate. CONCLUSIONS Select patient demographic factors and basic clinically-relevant imaging biomarkers were associated with GA growth rate. These biomarkers may guide patient selection when considering treating GA patients with novel therapeutics.
Collapse
Affiliation(s)
- Talisa E de Carlo Forest
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Zafar Gill
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andres Lisker-Cervantes
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ramya Gnanaraj
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nathan Grove
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer L Patnaik
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anne M Lynch
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alan G Palestine
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marc Mathias
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Niranjan Manoharan
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Naresh Mandava
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Csaky KG, Miller JML, Martin DF, Johnson MW. Drug Approval for the Treatment of Geographic Atrophy: How We Got Here and Where We Need to Go. Am J Ophthalmol 2024; 263:231-239. [PMID: 38387826 PMCID: PMC11162935 DOI: 10.1016/j.ajo.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE To discuss the clinical trial results leading to the US Food and Drug Administration (FDA) approval of anti-complement therapies for geographic atrophy (GA), perspectives on functional data from the GA clinical trials, and how lessons from the FDA approval may guide future directions for basic and clinical research in AMD. DESIGN Selected literature review with analysis and perspective METHODS: We performed a targeted review of publicly available data from the clinical trials of pegcetacoplan and avacincaptad for the treatment of GA, as well as scientific literature on the natural history of GA and the genetics and basic science of complement in AMD. RESULTS The approval of pegcetacoplan and avacincaptad was based on an anatomic endpoint of a reduction in the rate of GA expansion over time. However, functional data from 2 phase 3 clinical trials for each drug demonstrated no visual benefit to patients in the treatment groups. Review of the genetics of AMD and the basic science of the role for complement in AMD provides only modest support for targeting complement as treatment for GA expansion, and alternative molecular targets for GA treatment are therefore discussed. Reasons for the disconnect between anatomic and functional outcomes in the clinical trials of anti-complement therapies are discussed, providing insight to guide the configuration of future clinical studies for GA. CONCLUSION Although avacincaptad and pegcetacoplan are our first FDA-approved treatments for GA, results from the clinical trials failed to show any functional improvement after 1 and 2 years, respectively, calling into question whether the drugs represent a "clinically relevant outcome." To improve the chances of more impactful therapies in the future, we provide basic-science rationale for pursuing non-complement targets; emphasize the importance of ongoing clinical research that more closely pins anatomic features of GA to functional outcomes; and provide suggestions for clinical endpoints for future clinical trials on GA.
Collapse
Affiliation(s)
- Karl G Csaky
- From the Retina Foundation of the Southwest (K.G.C.), Dallas, Texas, USA.
| | - Jason M L Miller
- Kellogg Eye Center (J.M.L.M., M.W.J.), University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program (J.M.L.M.), University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel F Martin
- Cole Eye Institute (D.F.M.), Cleveland Clinic, Cleveland Ohio, USA
| | - Mark W Johnson
- Kellogg Eye Center (J.M.L.M., M.W.J.), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Vallino V, Berni A, Coletto A, Serafino S, Bandello F, Reibaldi M, Borrelli E. Structural OCT and OCT angiography biomarkers associated with the development and progression of geographic atrophy in AMD. Graefes Arch Clin Exp Ophthalmol 2024:10.1007/s00417-024-06497-8. [PMID: 38689123 DOI: 10.1007/s00417-024-06497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Geographic atrophy (GA) is an advanced, irreversible, and progressive form of age-related macular degeneration (AMD). Structural optical coherence tomography (OCT) and OCT angiography (OCTA) have been largely used to characterize this stage of AMD and, more importantly, to define biomarkers associated with the development and progression of GA in AMD. METHODS Articles pertaining to OCT and OCTA biomarkers related to the development and progression of GA with relevant key words were used to search in PubMed, Researchgate, and Google Scholar. The articles were selected based on their relevance, reliability, publication year, published journal, and accessibility. RESULTS Previous reports have highlighted various OCT and OCTA biomarkers linked to the onset and advancement of GA. These biomarkers encompass characteristics such as the size, volume, and subtype of drusen, the presence of hyperreflective foci, basal laminar deposits, incomplete retinal pigment epithelium and outer retinal atrophy (iRORA), persistent choroidal hypertransmission defects, and the existence of subretinal drusenoid deposits (also referred to as reticular pseudodrusen). Moreover, biomarkers associated with the progression of GA include thinning of the outer retina, photoreceptor degradation, the distance between retinal pigment epithelium and Bruch's membrane, and choriocapillaris loss. CONCLUSION The advent of novel treatment strategies for GA underscores the heightened need for prompt diagnosis and precise monitoring of individuals with this condition. The utilization of structural OCT and OCTA becomes essential for identifying distinct biomarkers associated with the initiation and progression of GA.
Collapse
Affiliation(s)
- Veronica Vallino
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Alessandro Berni
- Vita-Salute San Raffaele University Milan, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Coletto
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Sonia Serafino
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Francesco Bandello
- Vita-Salute San Raffaele University Milan, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy.
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| |
Collapse
|
12
|
Berlin A, Fischer NA, Clark ME, Kar D, Swain TA, Martindale RM, McGwin G, Crosson JN, Sloan KR, Owsley C, Curcio CA. Quantitative Autofluorescence at AMD's Beginnings Highlights Retinal Topography and Grading System Differences: ALSTAR2 Baseline. Ophthalmologica 2024; 247:1-13. [PMID: 38599207 PMCID: PMC11499297 DOI: 10.1159/000538696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION The aims of the study were to describe baseline quantitative (short-wavelength) autofluorescence (qAF) findings in a large pseudophakic cohort at age-related macular degeneration (AMD)'s beginnings and to assess qAF8 as an outcome measure and evaluate Age-Related Eye Disease Study (AREDS) and Beckman grading systems. METHODS In the ALSTAR2 baseline cohort (NCT04112667), 346 pseudophakic eyes of 188 persons (74.0 ± 5.5 years) were classified as normal (N = 160 by AREDS, 158 by Beckman), early AMD (eAMD) (N = 104, 66), and intermediate AMD (iAMD) (N = 82, 122). Groups were compared via mean qAF intensities in a 6°-8° annulus (qAF8) and maps of differences between observations and the overall mean, divided by standard deviation (Z-score). RESULTS qAF8 did not differ significantly among diagnostic groups by either stratification (p = 0.0869 AREDS; p = 0.0569 by Beckman). Notably, 45 eyes considered eAMD by AREDS became iAMD by Beckman. For AREDS-stratified eyes, Z-score maps showed higher centrally located qAF for normal, near the mean in eAMD, and lower values for iAMD. Maps deviated from this pattern for Beckman-stratified eyes. CONCLUSIONS In a large sample of pseudophakic eyes, qAF8 does not differ overall from normal aging to iAMD but also does not capture the earliest AMD activity in the macula lutea. AREDS classification gives results more consistent with a slow decline in histologic autofluorescence than Beckman classification.
Collapse
Affiliation(s)
- Andreas Berlin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA,
- University Hospital Würzburg, Würzburg, Germany,
| | - Nathan A Fischer
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Retina Consultants of Alabama, Birmingham, Alabama, USA
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas A Swain
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard M Martindale
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Retina Consultants of Alabama, Birmingham, Alabama, USA
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Retina Consultants of Alabama, Birmingham, Alabama, USA
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Iliescu DA, Ghita AC, Ilie LA, Voiculescu SE, Geamanu A, Ghita AM. Non-Neovascular Age-Related Macular Degeneration Assessment: Focus on Optical Coherence Tomography Biomarkers. Diagnostics (Basel) 2024; 14:764. [PMID: 38611677 PMCID: PMC11011935 DOI: 10.3390/diagnostics14070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The imagistic evaluation of non-neovascular age-related macular degeneration (AMD) is crucial for diagnosis, monitoring progression, and guiding management of the disease. Dry AMD, characterized primarily by the presence of drusen and retinal pigment epithelium atrophy, requires detailed visualization of the retinal structure to assess its severity and progression. Several imaging modalities are pivotal in the evaluation of non-neovascular AMD, including optical coherence tomography, fundus autofluorescence, or color fundus photography. In the context of emerging therapies for geographic atrophy, like pegcetacoplan, it is critical to establish the baseline status of the disease, monitor the development and expansion of geographic atrophy, and to evaluate the retina's response to potential treatments in clinical trials. The present review, while initially providing a comprehensive description of the pathophysiology involved in AMD, aims to offer an overview of the imaging modalities employed in the evaluation of non-neovascular AMD. Special emphasis is placed on the assessment of progression biomarkers as discerned through optical coherence tomography. As the landscape of AMD treatment continues to evolve, advanced imaging techniques will remain at the forefront, enabling clinicians to offer the most effective and tailored treatments to their patients.
Collapse
Affiliation(s)
- Daniela Adriana Iliescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Ana Cristina Ghita
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Larisa Adriana Ilie
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Suzana Elena Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
| | - Aida Geamanu
- Ophthalmology Department, Bucharest University Emergency Hospital, 169 Independence Street, 050098 Bucharest, Romania;
| | - Aurelian Mihai Ghita
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
- Ophthalmology Department, Bucharest University Emergency Hospital, 169 Independence Street, 050098 Bucharest, Romania;
| |
Collapse
|
14
|
Wu Z, Terheyden JH, Hodgson LAB, Guymer RH. Choroidal signal hypertransmission on optical coherence tomography imaging: Association with development of geographic atrophy in age-related macular degeneration. Clin Exp Ophthalmol 2024. [PMID: 38286571 DOI: 10.1111/ceo.14356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND To examine the association between large choroidal signal hypertransmission ≥250 μm (LHyperT) on optical coherence tomography (OCT) with the risk of developing geographic atrophy (GA) and compare this risk with those associated with nascent geographic atrophy (nGA). METHODS Two hundred and eighty eyes from 140 participants with bilateral large drusen and without late age-related macular degeneration (AMD) or nGA at baseline underwent OCT imaging and colour fundus photography (CFP) at 6-monthly intervals up to 5 years. OCT scans were graded for the presence of LHyperT and nGA, and CFPs were graded for the presence of GA. RESULTS The five-year incidence of LHyperT and nGA were 37% and 27% respectively (p = 0.003), and the two-year probability of their progression to GA were 17% and 40%, respectively (p = 0.002). LHyperT and nGA explained 81% and 91% of the variance in the time to develop GA, respectively (p = 0.032), and they were both associated with a significantly higher rate of GA development compared to eyes without these lesions (adjusted hazard ratio = 110.8 and 183.2, respectively; p < 0.001 for both). CONCLUSIONS LHyperT and nGA were both high-risk features for GA development, but the latter showed a higher rate of GA progression and explained a significantly greater proportion of the variance in the time to develop GA. As such, nGA may be a more robust surrogate endpoint than LHyperT for the conventional clinical endpoint of CFP-defined GA for intervention trials in the early stages of AMD.
Collapse
Affiliation(s)
- Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jan H Terheyden
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Lauren A B Hodgson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Lu J, Cheng Y, Hiya FE, Shen M, Herrera G, Zhang Q, Gregori G, Rosenfeld PJ, Wang RK. Deep-learning-based automated measurement of outer retinal layer thickness for use in the assessment of age-related macular degeneration, applicable to both swept-source and spectral-domain OCT imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:413-427. [PMID: 38223170 PMCID: PMC10783897 DOI: 10.1364/boe.512359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024]
Abstract
Effective biomarkers are required for assessing the progression of age-related macular degeneration (AMD), a prevalent and progressive eye disease. This paper presents a deep learning-based automated algorithm, applicable to both swept-source OCT (SS-OCT) and spectral-domain OCT (SD-OCT) scans, for measuring outer retinal layer (ORL) thickness as a surrogate biomarker for outer retinal degeneration, e.g., photoreceptor disruption, to assess AMD progression. The algorithm was developed based on a modified TransUNet model with clinically annotated retinal features manifested in the progression of AMD. The algorithm demonstrates a high accuracy with an intersection of union (IoU) of 0.9698 in the testing dataset for segmenting ORL using both SS-OCT and SD-OCT datasets. The robustness and applicability of the algorithm are indicated by strong correlation (r = 0.9551, P < 0.0001 in the central-fovea 3 mm-circle, and r = 0.9442, P < 0.0001 in the 5 mm-circle) and agreement (the mean bias = 0.5440 um in the 3-mm circle, and 1.392 um in the 5-mm circle) of the ORL thickness measurements between SS-OCT and SD-OCT scans. Comparative analysis reveals significant differences (P < 0.0001) in ORL thickness among 80 normal eyes, 30 intermediate AMD eyes with reticular pseudodrusen, 49 intermediate AMD eyes with drusen, and 40 late AMD eyes with geographic atrophy, highlighting its potential as an independent biomarker for predicting AMD progression. The findings provide valuable insights into the ORL alterations associated with different stages of AMD and emphasize the potential of ORL thickness as a sensitive indicator of AMD severity and progression.
Collapse
Affiliation(s)
- Jie Lu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Farhan E. Hiya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gissel Herrera
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Qinqin Zhang
- Research and Development, Carl Zeiss Meditec, Inc., Dublin, CA, USA
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Philip J. Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Lad EM, Finger RP, Guymer R. Biomarkers for the Progression of Intermediate Age-Related Macular Degeneration. Ophthalmol Ther 2023; 12:2917-2941. [PMID: 37773477 PMCID: PMC10640447 DOI: 10.1007/s40123-023-00807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe vision loss worldwide, with a global prevalence that is predicted to substantially increase. Identifying early biomarkers indicative of progression risk will improve our ability to assess which patients are at greatest risk of progressing from intermediate AMD (iAMD) to vision-threatening late-stage AMD. This is key to ensuring individualized management and timely intervention before substantial structural damage. Some structural biomarkers suggestive of AMD progression risk are well established, such as changes seen on color fundus photography and more recently optical coherence tomography (drusen volume, pigmentary abnormalities). Emerging biomarkers identified through multimodal imaging, including reticular pseudodrusen, hyperreflective foci, and drusen sub-phenotypes, are being intensively explored as risk factors for progression towards late-stage disease. Other structural biomarkers merit further research, such as ellipsoid zone reflectivity and choriocapillaris flow features. The measures of visual function that best detect change in iAMD and correlate with risk of progression remain under intense investigation, with tests such as dark adaptometry and cone-specific contrast tests being explored. Evidence on blood and plasma markers is preliminary, but there are indications that changes in levels of C-reactive protein and high-density lipoprotein cholesterol may be used to stratify patients and predict risk. With further research, some of these biomarkers may be used to monitor progression. Emerging artificial intelligence methods may help evaluate and validate these biomarkers; however, until we have large and well-curated longitudinal data sets, using artificial intelligence effectively to inform clinical trial design and detect outcomes will remain challenging. This is an exciting area of intense research, and further work is needed to establish the most promising biomarkers for disease progression and their use in clinical care and future trials. Ultimately, a multimodal approach may yield the most accurate means of monitoring and predicting future progression towards vision-threatening, late-stage AMD.
Collapse
Affiliation(s)
- Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA.
| | - Robert P Finger
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Rosenfeld PJ, Cheng Y, Shen M, Gregori G, Wang RK. Unleashing the power of optical attenuation coefficients to facilitate segmentation strategies in OCT imaging of age-related macular degeneration: perspective. BIOMEDICAL OPTICS EXPRESS 2023; 14:4947-4963. [PMID: 37791280 PMCID: PMC10545179 DOI: 10.1364/boe.496080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 10/05/2023]
Abstract
The use of optical attenuation coefficients (OAC) in optical coherence tomography (OCT) imaging of the retina has improved the segmentation of anatomic layers compared with traditional intensity-based algorithms. Optical attenuation correction has improved our ability to measure the choroidal thickness and choroidal vascularity index using dense volume scans. Algorithms that combine conventional intensity-based segmentation with depth-resolved OAC OCT imaging have been used to detect elevations of the retinal pigment epithelium (RPE) due to drusen and basal laminar deposits, the location of hyperpigmentation within the retina and along the RPE, the identification of macular atrophy, the thickness of the outer retinal (photoreceptor) layer, and the presence of calcified drusen. OAC OCT algorithms can identify the risk-factors that predict disease progression in age-related macular degeneration.
Collapse
Affiliation(s)
- Philip J. Rosenfeld
- Department of Ophthalmology, Bascom Palmer
Eye Institute, University of Miami Miller School of
Medicine, Miami, Florida, USA
| | - Yuxuan Cheng
- Department of Bioengineering,
University of Washington, Seattle,
Washington, USA
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer
Eye Institute, University of Miami Miller School of
Medicine, Miami, Florida, USA
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer
Eye Institute, University of Miami Miller School of
Medicine, Miami, Florida, USA
| | - Ruikang K. Wang
- Department of Bioengineering,
University of Washington, Seattle,
Washington, USA
- Department of Ophthalmology,
University of Washington, Seattle,
Washington, USA
| |
Collapse
|