1
|
Zaabaar E, Asiamah R, Kyei S, Ankamah S. Myopia control strategies: A systematic review and meta-meta-analysis. Ophthalmic Physiol Opt 2025; 45:160-176. [PMID: 39530399 DOI: 10.1111/opo.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To summarise pooled estimates of the efficacies of various myopia control interventions, as drawn from published meta-analyses. METHOD PubMed, SCOPUS and Web of Science were searched from inception to February 2024 for systematic reviews and meta-analyses reporting treatment effects of various myopia control strategies. The qualities of the included meta-analyses were assessed using the 16-item A MeaSurement Tool to Assess systematic Reviews (AMSTAR) 2. An intervention was defined as having a clinically significant effect if it resulted in a change in spherical equivalent refraction (SER) of ≥0.50 D/year or axial length (AL) change of ≤-0.18 mm/year. RESULTS A total of 38 studies were identified. The overall respective changes in SER and AL, mean difference (95% CI) were high-concentration (≥0.5%) atropine 0.67 D (0.58-0.77) and -0.24 mm (-0.36 to -0.11); moderate-concentration (>0.05% to <0.5%) atropine 0.48 D (0.34-0.62) and -0.23 mm (-0.27 to -0.19); low-concentration (0.01%, 0.025%, 0.05%) atropine 0.33 D (0.23-0.43) and -0.14 mm (-0.19 to -0.09); orthokeratology -0.47 mm (-0.66 to -0.28); peripheral plus soft contact lenses 0.30 D (0.18-0.42) and -0.35 mm (-0.62 to -0.08); peripheral plus spectacles 0.77 D (0.40-1.14) and -0.43 mm (-0.78 to -0.08); multifocal spectacles 0.21 D (0.11-0.31); repeated low-level red light therapy 0.55 D (0.46-0.65) and -0.25 mm (-0.29 to -0.20); outdoor time 0.17 D (0.16-0.18) and -0.04 mm (-0.06 to -0.01). CONCLUSION High and moderate concentrations of atropine, orthokeratology, peripheral plus spectacles and repeated low-level red light demonstrated clinically significant effects on slowing AL elongation, while high and moderate concentrations of atropine, peripheral plus spectacles and repeated low-level red light demonstrated clinically significant effects on slowing SER progression.
Collapse
Affiliation(s)
- Ebenezer Zaabaar
- School of Optometry and Vision Science, University of Cape Coast, Cape Coast, Ghana
| | - Randy Asiamah
- School of Optometry and Vision Science, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Kyei
- School of Optometry and Vision Science, University of Cape Coast, Cape Coast, Ghana
- Biomedical and Clinical Research Centre, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Ankamah
- University of Ghana Library System, University of Ghana, Accra, Ghana
| |
Collapse
|
2
|
Opazo G, Tapia F, Díaz A, Vielma AH, Schmachtenberg O. Prolonged Photobiomodulation with Deep Red Light Mitigates Incipient Retinal Deterioration in a Mouse Model of Type 2 Diabetes. Int J Mol Sci 2024; 25:12128. [PMID: 39596197 PMCID: PMC11595010 DOI: 10.3390/ijms252212128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic retinopathy is a prevalent complication of type 2 diabetes mellitus, characterized by progressive damage to the retinal structure and function. Photobiomodulation therapy, using red or near-infrared light, has been proposed as a non-invasive intervention to mitigate retinal damage, but has been tested generally with short-term stimuli. This study aimed to evaluate the effects of prolonged photobiomodulation with deep red light on retinal structure and function in a type 2 diabetes mouse model. Transgenic LepRdb/J (db/db) mice were exposed to photobiomodulation therapy via LED devices emitting 654 nm light for 12 h daily over ten weeks and compared to untreated mice. Retinal function was evaluated by flash electroretinography, while structural changes were assessed through histology and immunohistochemistry to detect astro- and microgliosis. At 33 weeks of age, db/db mice were obese and severely diabetic, but exhibited only incipient indicators of retinal deterioration. Electroretinogram b-wave peak latencies were prolonged at intermediate flash intensities, while the outer plexiform layer displayed significantly elevated IBA1 expression. Photobiomodulation therapy prevented these two markers of early retinal deterioration but had no effect on other morphological and functional parameters. Photobiomodulation is well-tolerated and maintains potential as a complementary treatment option for diabetic retinopathy but requires further optimization of therapeutic settings and combinatory treatment approaches.
Collapse
Affiliation(s)
- Gabriela Opazo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Felipe Tapia
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Alejandra Díaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
3
|
Sun JR, Du ZQ, Wu GY. Efficacy comparison of repeated low-level red-light therapy and orthokeratology lenses for myopia control. Optom Vis Sci 2024; 101:660-665. [PMID: 39485347 DOI: 10.1097/opx.0000000000002197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
PURPOSE This study aimed to compare and analyze the efficacy of repeated low-level red-light therapy and orthokeratology lenses for myopia control in children. METHODS Exactly 138 participants were enrolled in this retrospective study. Comprehensive eye examinations were performed prior to treatment. The repeated low-level red-light therapy and orthokeratology lenses groups comprised 67 and 71 patients, respectively. The age range was between 6 and 14 years, with myopia of ≤-0.50 D and astigmatism of ≤2.50 D after cycloplegia. Follow-up data were collected during the initial visit and the treatment period. Changes in axial length over a 2-year period and associated factors were analyzed. RESULTS Over the 2-year period, the repeated low-level red-light therapy group exhibited significantly less axial length growth compared with the orthokeratology lenses group (0.17 ± 0.40 vs. 0.50 ± 0.27 mm, p<0.001). In the first year, the axial length growth in the repeated low-level red-light therapy group was significantly less than that in the orthokeratology lenses group (0.03 ± 0.22 vs. 0.28 ± 0.18 mm, p<0.001), with no significant difference observed in the second year (0.14 ± 0.29 vs. 0.21 ± 0.14 mm, p=0.06). The repeated low-level red-light therapy group showed a 55% reduction in axial length after 1 month and a 42% reduction after 1 year, compared with 4% and 3% reductions in the orthokeratology lenses group, respectively. Linear mixed-effects model analysis indicated that the annual axial length change rate in the repeated low-level red-light therapy group was 0.10 mm (95% confidence interval [CI], 0.07 to 0.14), compared with 0.25 mm in the orthokeratology lenses group (95% CI, 0.24 to 0.27), with an average difference of 0.15 mm (95% CI, -0.17 to -0.12, p<0.001). CONCLUSIONS Repeated low-level red-light therapy demonstrated slightly superior efficacy in controlling myopia progression in children compared with orthokeratology lenses.
Collapse
Affiliation(s)
- Jing-Ru Sun
- Department of Optometry, Jinhua Eye Hospital, Jinhua, Zhejiang Province, China
| | - Zhi-Qiang Du
- Department of Optometry, Jinhua Eye Hospital, Jinhua, Zhejiang Province, China
| | | |
Collapse
|
4
|
Chen Y, Xiong R, Yang S, Zhu Z, Li H, Xiang K, Congdon N, Wang W, He M. Safety of repeated low-level red-light therapy for myopia: A systematic review. Asia Pac J Ophthalmol (Phila) 2024; 13:100124. [PMID: 39672511 DOI: 10.1016/j.apjo.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024] Open
Abstract
PURPOSE Establishing the safety profile of repeated low-level red-light (RLRL) therapy is necessary prior to its widespread clinical implementation. METHODS We conducted a systematic review (International Prospective Register of Systematic Reviews, CRD42024516676) of articles across seven databases from inception through February 10, 2024, with keywords related to myopia and RLRL therapy. Pooled safety outcomes and risk-to-benefit ratios were reported, and incidence of side effects was compared with other antimyopia interventions. RESULTS Among 689 screened articles, 20 studies (2.90 %; median duration 9 months, longest 24 months) were analysed, encompassing 2380 participants aged 3-18 years and 1436 individuals undergoing RLRL therapy. Two case reports described an identical patient with reversible decline in visual acuity and optical coherence tomography (OCT) abnormalities, completely resolved 4 months after treatment cessation. No cases of permanent vision loss were reported. Temporary afterimage was the most common ocular symptom following treatment, resolving within 6 minutes in reported studies. The number needed to harm outweighed the number needed to treat by a ratio of 12.7-21.4 for a person with -3D to -8D myopia treated with RLRL therapy. Incidence of side effects from RLRL was 0.088 per 100 patient-years (95 % confidence interval, 0.02-0.50). CONCLUSIONS No irreversible visual function loss or ocular structural damage was identified with RLRL. Fundus photography and OCT before and during therapy, alongside home monitoring of visual acuity and duration of afterimages, are necessary to identify side effects. Further adequately powered studies of longer duration are needed to evaluate long-term safety of RLRL.
Collapse
Affiliation(s)
- Yanping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Ruilin Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Shaopeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Ziyu Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Huangdong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Kaidi Xiang
- Department of Clinical Research, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center and Shanghai Children Myopia Institute, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Key Clinical Specialty, Shanghai, China; Shanghai Clinical Research Center for Eye Diseases, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China, Shanghai Eye Research Institute, Shanghai, China
| | - Nathan Congdon
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom; Orbis International, New York, NY, USA.
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Mingguang He
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia; Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| |
Collapse
|
5
|
Xiong R, Wang W, Tang X, He M, Hu Y, Zhang J, Du B, Jiang Y, Zhu Z, Chen Y, Zhang S, Kong X, Wei R, Yang X, He M. Myopia Control Effect of Repeated Low-Level Red-Light Therapy Combined with Orthokeratology: A Multicenter Randomized Controlled Trial. Ophthalmology 2024; 131:1304-1313. [PMID: 38763303 DOI: 10.1016/j.ophtha.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
PURPOSE To investigate the efficacy and safety of repeated low-level red-light (RLRL) therapy combined with orthokeratology among children who, despite undergoing orthokeratology, exhibited an axial elongation of at least 0.50 mm over 1 year. DESIGN Multicenter, randomized, parallel-group, single-blind clinical trial (ClinicaTrials.gov identifier, NCT04722874). PARTICIPANTS Eligible children were 8-13 years of age with a cycloplegic spherical equivalent refraction of -1.00 to -5.00 diopters at the initial orthokeratology fitting examination and had annual axial length (AL) elongation of ≥0.50 mm despite undergoing orthokeratology. Forty-eight children were enrolled from March 2021 through January 2022, and the final follow-up was completed in March 2023. METHODS Children were assigned randomly to the RLRL therapy combined with orthokeratology (RCO) group or to the orthokeratology group in a 2:1 ratio. The orthokeratology group wore orthokeratology lenses for at least 8 hours per night, whereas the RCO group received daily RLRL therapy twice daily for 3 minutes in addition to orthokeratology. MAIN OUTCOME MEASURES The primary outcome was AL change measured at 12 months relative to baseline. The primary analysis was conducted in children who received the assigned intervention and completed at least 1 follow-up after randomization using the modified intention-to-treat principle. RESULTS Forty-seven children (97.9%) were included in the analysis (30 in the RCO group and 17 in the orthokeratology group). The mean axial elongation rate before the trial was 0.60 mm/year and 0.61 mm/year in the RCO and orthokeratology groups, respectively. After 12 months, the adjusted mean AL changes were -0.02 mm (95% confidence interval [CI], -0.08 to +0.03 mm) in the RCO group and 0.27 mm (95% CI, 0.19-0.34 mm) in the orthokeratology group. The adjusted mean difference in AL change was -0.29 mm (95% CI, -0.44 to -0.14 mm) between the groups. The percentage of children achieving an uncorrected visual acuity of more than 20/25 was similar in the RCO (64.3%) and orthokeratology (65.5%) groups (P = 0.937). CONCLUSIONS Combining RLRL therapy with orthokeratology may offer a promising approach to optimize axial elongation control among children with myopia. This approach also potentially allows children to achieve satisfactory visual acuity, reducing daytime dependence on corrective eyewear. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Ruilin Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Xianghua Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Meinan He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yu Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China; Department of Ophthalmology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhuoting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China; Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Yanping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Shiran Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Xiangbin Kong
- Ophthalmology, Department of Surgery, The Second People's Hospital of Foshan, Foshan, Guangdong, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China; School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; Centre for Eye and Vision Research (CEVR), Hong Kong, China.
| |
Collapse
|
6
|
Xu Y, Cui L, Kong M, Li Q, Feng X, Feng K, Zhu H, Cui H, Shi C, Zhang J, Zou H. Repeated Low-Level Red Light Therapy for Myopia Control in High Myopia Children and Adolescents: A Randomized Clinical Trial. Ophthalmology 2024; 131:1314-1323. [PMID: 38849054 DOI: 10.1016/j.ophtha.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
PURPOSE To assess the effectiveness and safety of repeated low-level red light (RLRL), which is a newly available treatment for myopia control in children and adolescents with high myopia. DESIGN Multicenter, randomized, parallel-group, single-blind clinical trial (randomized controlled trial; NCT05184621). PARTICIPANTS Between February 2021 and April 2022, 192 children aged 6 to 16 years were enrolled. Each child had at least 1 eye with myopia of cycloplegic spherical equivalent refraction (SER) at least -4.0 diopters (D), astigmatism of ≤2.0 D, anisometropia of ≤3.0 D, and best-corrected visual acuity (BCVA) of 0.2 logarithm of the minimum angle of resolution or better. Follow-up was completed by April 2023. METHODS Participants were randomly assigned at a 1:1 ratio to intervention (RLRL treatment plus single-vision spectacles) or control (single-vision spectacles) groups. The RLRL treatment was administered for 3 minutes per session, twice daily with a minimum interval of 4 hours, 7 days per week. MEAN OUTCOME MEASURES The primary outcome and key secondary outcome were changes in axial length (AL) and cycloplegic SER measured at baseline and the 12-month follow-up visit. Participants who had at least 1 postrandomization follow-up visit were analyzed for treatment efficacy. RESULTS Among 192 randomized participants, 188 (97.91%) were included in the analyses (96 in the RLRL group and 92 in the control group). After 12 months, the adjusted mean change in AL was -0.06 mm (95% confidence interval [CI], -0.10 to -0.02 mm) and 0.34 mm (95% CI, 0.30 to 0.39 mm) in the intervention and control groups, respectively. A total of 48 participants (53.3%) in the intervention group were still experiencing axial shortening >0.05 mm at the 12-month follow-up. The mean SER change after 12 months was 0.11 D (95% CI, 0.02to 0.19 D) and -0.75 D (95% CI, -0.88 to -0.62 D) in the intervention and control groups, respectively. CONCLUSIONS Repeated low-level red light demonstrates stronger treatment efficacy among those with high myopia, with 53.3% experiencing substantial axial shortening. Repeated low-level red light provides an excellent solution for the management of high myopia progression, a significant challenge in ophthalmology practice. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Yan Xu
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lipu Cui
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai, China
| | - Miao Kong
- Shanxi Eye Hospital, Taiyuan, Shanxi, China
| | - Qian Li
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | - Kehong Feng
- Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huang Zhu
- Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Cui
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Caiping Shi
- Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China; Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou, China.
| | - Haidong Zou
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China.
| |
Collapse
|
7
|
Roth A, Breher K, Gisbert S, Arias A, Clement SP, Wahl S. Peripheral Contrast Reduction Optically Induced by Scattering Lenses Thickens Peripheral Choroid. Transl Vis Sci Technol 2024; 13:32. [PMID: 39436671 PMCID: PMC11498638 DOI: 10.1167/tvst.13.10.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose The mechanisms underlying a myopia control strategy using scattering lenses are unclear. Therefore, this study investigates the short-term effects of scatter lenses on central and peripheral choroidal thickness and axial length, which serve as a biomarker in myopia progression research. Methods In total, 23 participants underwent a 60-minute lens wear phase each to five lens conditions: medium peripheral scattering, high peripheral scattering, medium full-field scattering, high full-field scattering and control (clear lens). Central and peripheral choroidal thickness, foveal axial length, and central visual acuity were measured before and after each lens wear condition. Results Peripheral choroidal thickening was found after the lens wear phase of the medium peripheral scattering condition (+3.91 ± 5.37 µm, P = 0.04), revealing a significant difference to the control lens condition (P = 0.004), most pronounced in the superior peripheral retina (+1.95 ± 10.74 µm, P = 0.02). In the central retina, significant choroidal thickening was only found in the nasal part after exposure to medium full-field scattering (+3.91 ± 11.72 µm) compared to the control condition (P = 0.001). High peripheral and full-field scattering conditions did not significantly affect central or peripheral choroidal thickness. Visual acuity was significantly reduced in the full-field scattering conditions compared to control and peripheral scattering lenses, with no improvement after 60-minute lens wear. Axial length did not differ significantly after 60-minute exposure to any scattering lens condition or when compared to the control lens. Conclusions The results indicate a local retinal contrast detection mechanism signals the choroid to thicken peripherally after adaptation to medium peripheral scattering but not high peripheral scattering or full-field scattering at all, while central thickening was only significant nasally after exposure to medium full-field scattering. This emphasizes the importance of the peripheral retina and the level of contrast reduction in the context of myopia research. Translational Relevance This finding gives insight into the mechanism behind the myopia control strategy inducing peripheral scattering.
Collapse
Affiliation(s)
- Antonia Roth
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | | | - Augusto Arias
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Aalen, Germany
| |
Collapse
|
8
|
Wan B, Zhang X, Qi Y, She H, Wang Z, Jin ZB. Parallel comparison of ocular metrics in non-human primates with high myopia by LS900, ultrasonography and MRI-based 3D reconstruction. Exp Eye Res 2024; 246:110007. [PMID: 39029552 DOI: 10.1016/j.exer.2024.110007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
We investigate the ocular dimensions and shape by using Lenstar900 (LS900), A-scan ultrasonography, and Magnetic Resonance Imaging (MRI) in highly myopic Macaca fascicularis. The ocular dimensions data of LS900, A-scan ultrasonography and MRI was assessed from 8 eyes (4 adult male cynomolgus macaque) with extremely high myopia (≤-1000DS) and compared by means of coefficients of concordance and 95% limits of agreement. Multiple regression analysis was performed to explore the associations between ocular biometry, volume, refraction and inter-instrument discrepancies. Test-retest reliability of three measurements of ocular parameters at two time points was almost equal (intraclass correlation = 0.831 to 1.000). The parallel-forms reliability of three measurements was strong for vitreous chamber depth (VCD) (coefficient of concordance = 0.919 to 0.981), moderate for axial length (AL) (coefficient of concordance = 0.486 to 0.981), and weak for anterior chamber depth (ACD) (coefficient of concordance = 0.267 to 0.621) and lens thickness (LT) (coefficient of concordance = 0.035 to 0.631). The LS900 and MRI systematically underestimated the ACD and LT comparing to A-scan ultrasonography (P < 0.05). Notably, the average AL on LS900 displayed a significant correlation with those on MRI (r = 0.978, P < 0.001) and A-scan ultrasonography (r = 0.990, P < 0.001). Almost 4/5 eyeballs were prolate. The mean eyeball volume positively correlated with AL (r = 0.782, P = 0.022), the width (r = 0.945, P = 0.000), and the length (r = 0.782, P = 0.022) of eyeball, while negatively correlated with SER (r = -0.901, P = 0.000). In conclusion, there was a high inter-instrument concordance for VCD with LS900, A-scan ultrasonography and MRI, while ACD and LT were underestimated with LS900 compared to A-scan ultrasonography, and the LS900 and A-scan ultrasonography could reliably measure the AL. MRI further revealed an equatorial globe shape in extremely myopic non-human primates.
Collapse
Affiliation(s)
- Bo Wan
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Department of Ophthalmology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Qi
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Haicheng She
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhaoyang Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Liu G, Rong H, Liu Y, Wang B, Du B, Song D, Wei R. Effectiveness of repeated low-level red light in myopia prevention and myopia control. Br J Ophthalmol 2024; 108:1299-1305. [PMID: 38631861 PMCID: PMC11347203 DOI: 10.1136/bjo-2023-324260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/23/2023] [Indexed: 04/19/2024]
Abstract
BACKGROUND/AIMS To compare the effects of repeated low-level red light (RLRL) treatment on axial length growth and refractive error changes in myopic and premyopic children. METHODS Subjects were assigned randomly to four subgroups: myopia-RLRL group (M-RL), myopia-control group (M-C), premyopia-RLRL group (PM-RL) and premyopia-control group (PM-C). Subjects in the RLRL group completed a 12-month treatment composed of a 3 min RLRL treatment session twice daily, with an interval of at least 4 hours, for 7 days per week. Visits were scheduled before and at 1-month, 3-month, 6-month, 9-month and 12-month follow-up after the treatment. Repeated-measures analysis of variance was used to compare the spherical equivalent refractive errors (SE) and axial length (AL) changes between the groups across the treatment period. RESULTS After 12 months of treatment, in the myopia group, SE and AL changes were -0.078±0.375 D and 0.033±0.123 mm for M-RL and -0.861±0.556 D and 0.415±0.171 mm for M-C; in the premyopia group, the progression of SE and AL was -0.181±0.417 D and 0.145±0.175 mm for PM-RL and -0.521±0.436 D and 0.292±0.128 mm for PM-C. PM-RL indicated a lower myopia incidence than PM-C (2.5% vs 19.4%). Additionally, the percentage of AL shortening in the M-RL was higher than that in the PM-RL before the 9-month follow-up. CONCLUSION RLRL effectively delayed myopia progression in children with myopia and reduced the incidence of myopia in premyopic children. Moreover, RLRL exhibited a stronger impact on myopic children compared with premyopic individuals.
Collapse
Affiliation(s)
- Guihua Liu
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hua Rong
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yipu Liu
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Biying Wang
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Bei Du
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Desheng Song
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
10
|
Valter K, Tedford SE, Eells JT, Tedford CE. Photobiomodulation use in ophthalmology - an overview of translational research from bench to bedside. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1388602. [PMID: 39211002 PMCID: PMC11358123 DOI: 10.3389/fopht.2024.1388602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
Photobiomodulation (PBM) refers to the process in which wavelengths of light are absorbed by intracellular photoacceptors, resulting in the activation of signaling pathways that culminate in biological changes within the cell. PBM is the result of low-intensity light-induced reactions in the cell in contrast to thermal photoablation produced by high-intensity lasers. PBM has been effectively used in the clinic to enhance wound healing and mitigate pain and inflammation in musculoskeletal conditions, sports injury, and dental applications for many decades. In the past 20 years, experimental evidence has shown the benefit of PBM in increasing numbers of retinal and ophthalmic conditions. More recently, preclinical findings in ocular models have been translated to the clinic with promising results. This review discusses the preclinical and clinical evidence of the effects of PBM in ophthalmology and provides recommendations of the clinical use of PBM in the management of ocular conditions.
Collapse
Affiliation(s)
- Krisztina Valter
- Clear Vision Laboratory, John Curtin School of Medical Research, Eccles Institute of Neuroscience, Canberra, ACT, Australia
- School of Medicine and Psychology, Australian National University, Canberra, ACT, Australia
| | | | - Janis T. Eells
- College of Health Professions and Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | |
Collapse
|
11
|
Chang DJ, P. L. S, Jeong J, Saw SM, Sevdalis N, Najjar RP. Light Therapy for Myopia Prevention and Control: A Systematic Review on Effectiveness, Safety, and Implementation. Transl Vis Sci Technol 2024; 13:31. [PMID: 39167378 PMCID: PMC11343011 DOI: 10.1167/tvst.13.8.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose This systematic review focuses on the effectiveness, safety, and implementation outcomes of light therapy as an intervention to prevent or control myopia in children. Methods A systematic literature search was performed in PubMed, EMBASE, CINAHL, SCOPUS, and Web of Science up to January 27, 2024. Effectiveness outcomes included myopia incidence, and changes in axial length (AL), spherical equivalent refraction (SER), and choroidal thickness (CT). Safety outcomes relating to retinal health or damage and implementation outcomes including compliance rates and loss to follow-up were extracted. ROBINS-I, ROB 2, and ROB-2 CRT were used to assess risk of bias. Results Nineteen interventional studies were included. Increased outdoor time (n = 3), red-light therapy (n = 13), and increased classroom lighting (n = 1) had a significant effect on myopia incidence, and changes in AL, SER, and CT. Violet-light therapy (n = 2) was only effective in children aged 8 to 10 years and children without eyeglasses with less than 180 minutes of near-work time daily. Two studies using red-light therapy reported adverse effects. For all studies, only compliance rates and loss to follow-up were reported on implementation effectiveness. Conclusions Evidence is compelling for the effectiveness of red-light therapy and outdoors time; more data are needed to confirm safety. Robust data are still needed to prove the effectiveness of violet-light and increased classroom lighting. Clearer implementation strategies are needed for all light therapies. Translational Relevance Light therapy has emerged as effective for myopia prevention and control. This systematic review summarizes the state of knowledge and highlights gaps in safety and implementation for these strategies.
Collapse
Affiliation(s)
- Dylan James Chang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sriram P. L.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jooyeon Jeong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Nick Sevdalis
- Centre for Behavioural and Implementation Science Interventions (BISI), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Holistic Initiatives for Learning and Development, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Raymond P. Najjar
- Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore
- Eye N' Brain Research Group, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
12
|
Zhang H, Song D, Wei R. The efficacy and safety of combination therapy of repeated low-level red light and defocus-incorporated multiple segments spectacle lenses for myopia control in children: the study protocol for a 12-month, randomized, parallel-controlled, and single-center clinical trial. Trials 2024; 25:514. [PMID: 39080704 PMCID: PMC11289993 DOI: 10.1186/s13063-024-08210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Myopia is increasing in prevalence worldwide. Combination therapy showed a better effect on myopia control than monotherapy. Repeated low-level red light therapy (RLRL) therapy and defocus-incorporated multiple segment (DIMS) spectacle lenses have been reported to retard myopia progression significantly. However, whether these two therapies are better than one is still unknown. The present study aims to report the study protocol of a trial designed to evaluate the efficacy and safety of combination therapy of RLRL and DIMS versus DIMS alone for reducing the progression of myopia among Chinese school-aged children. METHODS This study is a 12-month, randomized, parallel-controlled, single-center clinical trial. We will recruit children aged 8-12 years with spherical equivalence (SE) between - 0.50 D and - 6.00 D under cycloplegia in both eyes. We will recruit 66 participants with an allocation ratio of 1:1 from our hospital. Participants in the intervention group will be treated with an RLRL therapy device twice a day from Monday to Friday at home, 3 min per session, with a minimum interval of 4 h, under the supervision of their parents/guardians. They will wear DIMS spectacles for myopia correction during the day. Participants in the control group will not receive the RLRL therapy and will only wear DIMS spectacles to correct myopia. Participants from both groups will attend the hospital every 6 months. The primary outcome is the change in axial length at 12 months. Secondary outcomes include changes in refraction under cycloplegia, optical coherence tomography (OCT), multifocal electroretinogram (mfERG), color vision, and participants' self-reporting of adverse events at 12 months. DISCUSSION This study will report the efficacy and safety outcome of the combination therapy of RLRL and DIMS versus DIMS for school-aged children with myopia in detail. TRIAL REGISTRATION ChiCTR2300075398. Registered 4 September 2023. https://www.chictr.org.cn/bin/project/edit?pid=200751 .
Collapse
Affiliation(s)
- Hongmei Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Desheng Song
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
13
|
Schaeffel F, Wildsoet CF. Red light therapy for myopia: Merits, risks and questions. Ophthalmic Physiol Opt 2024; 44:801-807. [PMID: 38563650 DOI: 10.1111/opo.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Christine F Wildsoet
- Herbert Wertheim School of Optometry and Vision Science, University California Berkeley, Berkeley, California, USA
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Eppenberger LS, Grzybowski A, Schmetterer L, Ang M. Myopia Control: Are We Ready for an Evidence Based Approach? Ophthalmol Ther 2024; 13:1453-1477. [PMID: 38710983 PMCID: PMC11109072 DOI: 10.1007/s40123-024-00951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
INTRODUCTION Myopia and its vision-threatening complications present a significant public health problem. This review aims to provide an updated overview of the multitude of known and emerging interventions to control myopia, including their potential effect, safety, and costs. METHODS A systematic literature search of three databases was conducted. Interventions were grouped into four categories: environmental/behavioral (outdoor time, near work), pharmacological (e.g., atropine), optical interventions (spectacles and contact lenses), and novel approaches such as red-light (RLRL) therapies. Review articles and original articles on randomized controlled trials (RCT) were selected. RESULTS From the initial 3224 retrieved records, 18 reviews and 41 original articles reporting results from RCTs were included. While there is more evidence supporting the efficacy of low-dose atropine and certain myopia-controlling contact lenses in slowing myopia progression, the evidence about the efficacy of the newer interventions, such as spectacle lenses (e.g., defocus incorporated multiple segments and highly aspheric lenslets) is more limited. Behavioral interventions, i.e., increased outdoor time, seem effective for preventing the onset of myopia if implemented successfully in schools and homes. While environmental interventions and spectacles are regarded as generally safe, pharmacological interventions, contact lenses, and RLRL may be associated with adverse effects. All interventions, except for behavioral change, are tied to moderate to high expenditures. CONCLUSION Our review suggests that myopia control interventions are recommended and prescribed on the basis of accessibility and clinical practice patterns, which vary widely around the world. Clinical trials indicate short- to medium-term efficacy in reducing myopia progression for various interventions, but none have demonstrated long-term effectiveness in preventing high myopia and potential complications in adulthood. There is an unmet need for a unified consensus for strategies that balance risk and effectiveness for these methods for personalized myopia management.
Collapse
Affiliation(s)
- Leila Sara Eppenberger
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Andrzej Grzybowski
- University of Warmia and Mazury, Olsztyn, Poland
- Institute for Research in Ophthalmology, Poznan, Poland
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
- Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
15
|
Chen YY, Tsai TH, Liu YL, Lin HJ, Wang IJ. The impact of light properties on ocular growth and myopia development. Taiwan J Ophthalmol 2024; 14:143-150. [PMID: 39027063 PMCID: PMC11253990 DOI: 10.4103/tjo.tjo-d-24-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
The objective of this article is to comprehensively review the effect of environmental lighting on ocular growth and refractive status in both animal and clinical studies, with an emphasis on the underlying mechanisms. This review was performed by searching research articles and reviews utilizing the terms "myopia," "light therapy," "axial length," "refractive error," and "emmetropization" in PubMed datasets. The review was finalized in December 2023. In the animal studies, high lighting brightness, illumination periods aligning with circadian rhythm, and color contrast signals including multiple wavelengths all help regulate ocular growth against myopia. Long wavelengths have been found to induce myopia in chicks, mice, fish, and guinea pigs, whereas shorter wavelengths lead to hyperopia. In contrast, red light has been observed to have a protective effect against myopia in tree shrews and rhesus monkeys. Apart from wavelength, flicker status also showed inconsistent effects on ocular growth, which could be attributed to differences in ocular refractive status, evolutionary disparities in retinal cone cells across species, and the selection of myopia induction models in experiments. In the clinical studies, current evidence suggests a control effect with red light therapy. Although the lighting conditions diverge from those in animal experiments, further reports are needed to assess the long-term effects. In conclusion, this review encompasses research related to the impact of light exposure on myopia and further explores the retinoscleral signaling pathway in refractive development. The aim is to establish a theoretical foundation for optimizing environmental factors in lighting design to address the epidemic of childhood myopia.
Collapse
Affiliation(s)
- Ying-Yi Chen
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Lin Liu
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Sánchez-Tena MÁ, Ballesteros-Sánchez A, Martinez-Perez C, Alvarez-Peregrina C, De-Hita-Cantalejo C, Sánchez-González MC, Sánchez-González JM. Assessing the rebound phenomenon in different myopia control treatments: A systematic review. Ophthalmic Physiol Opt 2024; 44:270-279. [PMID: 38193312 DOI: 10.1111/opo.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE To review the rebound effect after cessation of different myopia control treatments. METHODS A systematic review that included full-length randomised controlled studies (RCTs), as well as post-hoc analyses of RCTs reporting new findings on myopia control treatments rebound effect in two databases, PubMed and Web of Science, was performed according to the PRISMA statement. The search period was between 15 June 2023 and 30 June 2023. The Cochrane risk of bias tool was used to analyse the quality of the selected studies. RESULTS A total of 11 studies were included in this systematic review. Unifying the rebound effects of all myopia control treatments, the mean rebound effect for axial length (AL) and spherical equivalent refraction (SER) were 0.10 ± 0.07 mm [-0.02 to 0.22] and -0.27 ± 0.2 D [-0.71 to -0.03] after 10.2 ± 7.4 months of washout, respectively. In addition, spectacles with highly aspherical lenslets or defocus incorporated multiple segments technology, soft multifocal contact lenses and orthokeratology showed lower rebound effects compared with atropine and low-level light therapy, with a mean rebound effect for AL and SER of 0.04 ± 0.04 mm [0 to 0.08] and -0.13 ± 0.07 D [-0.05 to -0.2], respectively. CONCLUSIONS It appears that the different treatments for myopia control produce a rebound effect after their cessation. Specifically, optical treatments seem to produce less rebound effect than pharmacological or light therapies. However, more studies are required to confirm these results.
Collapse
Affiliation(s)
- Miguel Ángel Sánchez-Tena
- Optometry and Vision Department, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
- ISEC LISBOA (Instituto Superior de Educação e Ciências), Lisbon, Portugal
| | - Antonio Ballesteros-Sánchez
- Department of Physics of Condensed Matter, Optics Area, University of Seville, Seville, Spain
- Department of Ophthalmology, Clínica Novovisión, Murcia, Spain
| | | | - Cristina Alvarez-Peregrina
- Optometry and Vision Department, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
17
|
Ostrin LA, Schill AW. Red light instruments for myopia exceed safety limits. Ophthalmic Physiol Opt 2024; 44:241-248. [PMID: 38180093 PMCID: PMC10922340 DOI: 10.1111/opo.13272] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE Low-level red light (LLRL) therapy has recently emerged as a myopia treatment in children, with several studies reporting significant reduction in axial elongation and myopia progression. The goal of this study was to characterise the output and determine the thermal and photochemical maximum permissible exposure (MPE) of LLRL devices for myopia control. METHODS Two LLRL devices, a Sky-n1201a and a Future Vision, were examined. Optical power measurements were made using an integrating sphere radiometer through a 7-mm diameter aperture, in accordance with ANSI Z136.1-2014, sections 3.2.3-3.2.4. Retinal spot sizes of the devices were obtained using a model eye and high-resolution beam profiler. Corneal irradiance, retinal irradiance and MPE were calculated for an eye positioned at the oculars of each device. RESULTS Both devices were confirmed to be Class 1 laser products. Findings showed that the Sky-n1201a delivers laser light as a point source with a 654-nm wavelength, 0.2 mW power (Ø 7 mm aperture, 10-cm distance), 1.17 mW/cm2 corneal irradiance and 7.2 W/cm2 retinal irradiance (Ø 2 mm pupil). The MPE for photochemical damage is 0.55-7.0 s for 2-7 mm pupils and for thermal damage is 0.41-10 s for 4.25-7 mm pupils. Future Vision delivers the laser as an extended source subtending 0.75 × 0.325°. It has a 652-nm wavelength, 0.06 mW power (Ø 7 mm aperture, 10 cm distance), 0.624 mW/cm2 corneal irradiance and 0.08 W/cm2 retinal irradiance (Ø 2 mm pupil). MPE for photochemical damage is 50-625 s for 2-7 mm pupils. DISCUSSION For both of the LLRL devices evaluated here, 3 min of continuous viewing approached or surpassed the MPE, putting the retina at risk of photochemical and thermal damage. Clinicians should be cautious with the use of LLRL therapy for myopia in children until safety standards can be confirmed.
Collapse
Affiliation(s)
- Lisa A Ostrin
- University of Houston College of Optometry, Houston, Texas., USA
| | | |
Collapse
|
18
|
Youssef MA, Shehata AR, Adly AM, Ahmed MR, Abo-Bakr HF, Fawzy RM, Gouda AT. Efficacy of Repeated Low-Level Red Light (RLRL) therapy on myopia outcomes in children: a systematic review and meta-analysis. BMC Ophthalmol 2024; 24:78. [PMID: 38378527 PMCID: PMC10877869 DOI: 10.1186/s12886-024-03337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Myopia is the most prevalent form of refractive error that has a major negative impact on visual function and causes blurring of vision. We aimed to determine if Repeated Low-Level Red Light (RLRL) treatment is beneficial in treating childhood myopia in terms of axial length (AL), spherical equivalent refraction (SER), and sub foveal choroidal thickness (SFCT). METHODS This systematic review was performed on RLRL for treatment of myopia in children compared to single vision spectacles (SVS). We employed the search strategy with key terms myopia and low-level light therapy then we searched PubMed, Scopus, Cochrane, and Web of Science databases. The mean differences (MD) were used to evaluate the treatment effects. Heterogeneity was quantified using I2 statistics and explored by sensitivity analysis. RESULTS Five randomized controlled trials (RCTs) were included in our meta-analysis with a total of 833 patients, 407 in treatment group and 426 in control group. At a 3 month follow up period, pooled studies show a statistical difference in AL between RLRL and SVS group (MD = -0.16; 95% CI [-0.19, -0.12], SER (MD = 0.33; 95% CI [0.27, 0.38]), and SFCT (MD = 43.65; 95% CI [23.72, 45.58]). At a 6 month follow up period, pooled studies show a statistical difference in AL between RLRL and SVS group (MD = -0.21; 95% CI [-0.28, -0.15]), SER (MD = 0.46; 95% CI [0.26, 0.65]), and SFCT (MD = 25.07; 95% CI [18.18, 31.95]). At a 12 month follow up period, pooled studies show a statistical difference in AL between RLRL and SVS group (MD = -0.31; 95% CI [-0.42, -0.19]) and SER (MD = 0.63; 95% CI [0.52, 0.73]). CONCLUSION This is the first systematic review and meta-analysis investigating only RCTs evidence supporting the efficacy of 650 nm RLRL for myopia control in the short term of 3, 6, and 12 months follow up. The present review revealed the clinical significance of RLRL as a new alternative treatment for myopia control with good user acceptability and no documented functional or structural damage. However, the effect of long-term RLRL treatment and the rebound effect after cessation require further investigations.
Collapse
Affiliation(s)
| | | | - Ahmed Moataz Adly
- Faculty of Medicine, Beni Suef University, Beni Suef city, Beni Suef, Egypt
| | | | | | | | - Ahmed Taha Gouda
- Faculty of Medicine, Beni Suef University, Beni Suef city, Beni Suef, Egypt
| |
Collapse
|
19
|
Yasir ZH, Sharma R, Zakir SM. Scleral collagen cross linkage in progressive myopia. Indian J Ophthalmol 2024; 72:174-180. [PMID: 38153964 PMCID: PMC10941927 DOI: 10.4103/ijo.ijo_1392_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 12/30/2023] Open
Abstract
High myopia is often associated with local ectasia and scleral thinning. The progression of myopia depends upon scleral biochemical and biomechanical properties. Scleral thinning is associated with decreased collagen fiber diameter, defective collagen fibrillogenesis, and collagen cross-linking. Reversing these abnormalities may make the sclera tougher and might serve as a treatment option for myopic progression. Collagen cross-linking is a natural process in the cornea and sclera, which makes the structure stiff. Exogenous collagen cross-linkage is artificially induced with the help of external mediators by using light and dark methods. In this systematic review, we discussed existing literature available on the internet on current evidence-based applications of scleral collagen cross-linking (SXL) by using different interventions. In addition, we compared them in tabular form in terms of their technique, mechanisms, cytotoxicity, and the stage of transition from preclinical to clinical development. Furthermore, we discussed the in-vivo technique to evaluate the post-SXL scleral biomechanical property and outcome in the human eye.
Collapse
Affiliation(s)
- Ziaul H Yasir
- Department of Ophthalmology, T. S. Misra Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Rakesh Sharma
- Department of Ophthalmology, T. S. Misra Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Shaik M Zakir
- Department of Ophthalmology, J. N. Medical College, AMU, Aligarh, Uttar Pradesh, India
| |
Collapse
|
20
|
Biswas S, El Kareh A, Qureshi M, Lee DMX, Sun CH, Lam JSH, Saw SM, Najjar RP. The influence of the environment and lifestyle on myopia. J Physiol Anthropol 2024; 43:7. [PMID: 38297353 PMCID: PMC10829372 DOI: 10.1186/s40101-024-00354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Myopia, commonly known as near-sightedness, has emerged as a global epidemic, impacting almost one in three individuals across the world. The increasing prevalence of myopia during early childhood has heightened the risk of developing high myopia and related sight-threatening eye conditions in adulthood. This surge in myopia rates, occurring within a relatively stable genetic framework, underscores the profound influence of environmental and lifestyle factors on this condition. In this comprehensive narrative review, we shed light on both established and potential environmental and lifestyle contributors that affect the development and progression of myopia. MAIN BODY Epidemiological and interventional research has consistently revealed a compelling connection between increased outdoor time and a decreased risk of myopia in children. This protective effect may primarily be attributed to exposure to the characteristics of natural light (i.e., sunlight) and the release of retinal dopamine. Conversely, irrespective of outdoor time, excessive engagement in near work can further worsen the onset of myopia. While the exact mechanisms behind this exacerbation are not fully comprehended, it appears to involve shifts in relative peripheral refraction, the overstimulation of accommodation, or a complex interplay of these factors, leading to issues like retinal image defocus, blur, and chromatic aberration. Other potential factors like the spatial frequency of the visual environment, circadian rhythm, sleep, nutrition, smoking, socio-economic status, and education have debatable independent influences on myopia development. CONCLUSION The environment exerts a significant influence on the development and progression of myopia. Improving the modifiable key environmental predictors like time spent outdoors and engagement in near work can prevent or slow the progression of myopia. The intricate connections between lifestyle and environmental factors often obscure research findings, making it challenging to disentangle their individual effects. This complexity underscores the necessity for prospective studies that employ objective assessments, such as quantifying light exposure and near work, among others. These studies are crucial for gaining a more comprehensive understanding of how various environmental factors can be modified to prevent or slow the progression of myopia.
Collapse
Affiliation(s)
- Sayantan Biswas
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Antonio El Kareh
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Mariyem Qureshi
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | | | - Chen-Hsin Sun
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Janice S H Lam
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Raymond P Najjar
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
- Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Zhou W, Liao Y, Wang W, Sun Y, Li Q, Liu S, Tang J, Li L, Wang X. Efficacy of Different Powers of Low-Level Red Light in Children for Myopia Control. Ophthalmology 2024; 131:48-57. [PMID: 37634757 DOI: 10.1016/j.ophtha.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023] Open
Abstract
PURPOSE To compare the efficacy and safety of low-level red light (LRL) in controlling myopia progression at 3 different powers: 0.37 mW, 0.60 mW, and 1.20 mW. DESIGN Single-center, single-masked, randomized controlled trial. PARTICIPANTS Two hundred children aged 6-15 with myopia of -0.50 diopter (D) or more and astigmatism of -2.50 D or less were enrolled from April to May 2022. Follow-up ended in December 2022. METHODS Participants were assigned randomly to 3 intervention groups and 1 control group (1:1:1:1). All participants wore single-vision spectacles. Moreover, the intervention group randomly received LRL at 3 different powers twice daily for 3 minutes per session, with a minimum 4-hour interval. MAIN OUTCOME MEASURES Changes in spherical equivalent (SE), axial length (AL), and subfoveal choroidal thickness (SFCT) were measured. RESULTS After 6 months, SE progression was significantly lower in the 0.37-mW group (0.01 D; 95% confidence interval [CI], -0.12 to 0.15), 0.60-mW group (-0.05 D; 95% CI, -0.18 to 0.07), and 1.20-mW group (0.16 D; 95% CI, 0.03 to 0.30) compared to the control group (-0.22 D; 95% CI, -0.50 to 0.30; adjusted P < 0.001 for all). AL changes in the 0.37-mW group (0.04 mm; 95% CI, -0.01 to 0.08), 0.60-mW group (0.00 mm; 95% CI, -0.05 to 0.05), and 1.20-mW group (-0.04 mm; 95% CI, -0.08 to 0.01) were significantly smaller than the control group (0.27 mm; 95% CI, 0.22 to 0.33; adjusted P < 0.001 for all). Similarly, increases in SFCT were significantly greater in the 0.37-mW group (22.63 μm; 95% CI, 12.13 to 33.34 μm), 0.60-mW group (36.17 μm; 95% CI, 24.37 to 48.25 μm), and 1.20-mW group (42.59 μm; 95% CI, 23.43 to 66.24 μm) than the control group (-5.07 μm; 95% CI, -10.32 to -0.13 μm; adjusted P < 0.001 for all). No adverse events were observed. CONCLUSIONS LRL effectively controlled myopia progression at 0.37 mW, 0.60 mW, and 1.20 mW. Further research is required. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; First School of Clinical Medicine of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ya Liao
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Community and Health Education, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanmei Sun
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qin Li
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Siqi Liu
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Tang
- Department of Community and Health Education, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Li
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaojuan Wang
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; First School of Clinical Medicine of Xuzhou Medical University, Xuzhou, Jiangsu, China; Suzhou Vocational Health College, Suzhou, Jiangsu, China.
| |
Collapse
|
22
|
Salzano AD, Khanal S, Cheung NL, Weise KK, Jenewein EC, Horn DM, Mutti DO, Gawne TJ. Repeated Low-level Red-light Therapy: The Next Wave in Myopia Management? Optom Vis Sci 2023; 100:812-822. [PMID: 37890098 DOI: 10.1097/opx.0000000000002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
SIGNIFICANCE Exposure to long-wavelength light has been proposed as a potential intervention to slow myopia progression in children. This article provides an evidence-based review of the safety and myopia control efficacy of red light and discusses the potential mechanisms by which red light may work to slow childhood myopia progression.The spectral composition of the ambient light in the visual environment has powerful effects on eye growth and refractive development. Studies in mammalian and primate animal models (macaque monkeys and tree shrews) have shown that daily exposure to long-wavelength (red or amber) light promotes slower eye growth and hyperopia development and inhibits myopia induced by form deprivation or minus lens wear. Consistent with these results, several recent randomized controlled clinical trials in Chinese children have demonstrated that exposure to red light for 3 minutes twice a day significantly reduces myopia progression and axial elongation. These findings have collectively provided strong evidence for the potential of using red light as a myopia control intervention in clinical practice. However, several questions remain unanswered. In this article, we review the current evidence on the safety and efficacy of red light as a myopia control intervention, describe potential mechanisms, and discuss some key unresolved issues that require consideration before red light can be broadly translated into myopia control in children.
Collapse
Affiliation(s)
| | - Safal Khanal
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nathan L Cheung
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina
| | - Katherine K Weise
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Erin C Jenewein
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania
| | - Darryl M Horn
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania
| | - Donald O Mutti
- The Ohio State University College of Optometry, Columbus, Ohio
| | - Timothy J Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
23
|
Gawne TJ, Samal AV, She Z. The effects of intensity, spectral purity and duty cycle on red light-induced hyperopia in tree shrews. Ophthalmic Physiol Opt 2023; 43:1419-1426. [PMID: 37431102 PMCID: PMC10592436 DOI: 10.1111/opo.13201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION There have recently been several clinical studies suggesting that brief periods of exposure to red light (repeated low-level red light, 'RLRL') may produce a dramatic anti-myopia effect, calling for further investigations into its therapeutic parameters. Unfortunately, many experimental species used in refractive studies develop myopia in response to this wavelength. Tree shrews are the only animal model other than rhesus monkeys that consistently exhibit hyperopic responses to ambient red light. Here, tree shrews were used to study the influence of the spectral purity, duty cycle and intensity of red light on its anti-myopic effect. METHODS Juvenile tree shrews (Tupaia belangeri) were raised from 24 to 35 days after eye opening under ambient lighting that was: standard white colony fluorescent light; pure narrow band red light of either 600, 50-100 or 5 lux; red light that was diluted with 10% white light (by lux) or 50% white and 2 s of pure red light that alternated with 2 s of pure white light (50% duty cycle). Refractive measures were taken with a NIDEK ARK-700 autorefractor and axial dimensions with a LenStar LS-900 Axial Biometer. RESULTS The pro-hyperopia effect of ambient red light was greatly reduced by even small amounts of concurrent white light 'contamination', but remained robust if 2-s periods of pure white light alternated with 2 s of red. Finally, the hyperopic effect of red light was maintained at reduced luminance levels in the 50-100 lux range and only failed at 5 lux. CONCLUSIONS These results have implications for understanding the mechanisms by which ambient red light affects refractive development, and possibly also for clinical therapies using RLRL. Nevertheless, it remains to be determined if the mechanism of the current clinical RLRL therapy is the same as that operating on tree shrews in ambient red light.
Collapse
Affiliation(s)
- Timothy J. Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham (UAB). USA
| | - Alena V. Samal
- Department of Optometry and Vision Science, University of Alabama at Birmingham (UAB). USA
- Current Location: MyEyeDr., Birmingham, Alabama. USA
| | - Zhihui She
- Department of Optometry and Vision Science, University of Alabama at Birmingham (UAB). USA
| |
Collapse
|
24
|
Congdon N, Chan VF. Schools, Children and Myopia. Am J Ophthalmol 2023; 254:A1-A3. [PMID: 37463629 DOI: 10.1016/j.ajo.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Affiliation(s)
- Nathan Congdon
- Centre for Public Health (N.C., V.F.C.), School of Medicine, Dentistry and Biological Sciences, Queen's University Belfast, Northern Ireland, UK; Orbis International (N.C.), New York, New York, USA; Zhongshan Ophthalmic Centre (N.C.), Sun Yat-sen University, Guangzhou, China.
| | - Ving Fai Chan
- Centre for Public Health (N.C., V.F.C.), School of Medicine, Dentistry and Biological Sciences, Queen's University Belfast, Northern Ireland, UK; College of Health Sciences (V.F.C.), University KwaZulu Natal, Durban, South Africa
| |
Collapse
|
25
|
She Z, Ward AH, Gawne TJ. The effects of ambient narrowband long-wavelength light on lens-induced myopia and form-deprivation myopia in tree shrews. Exp Eye Res 2023; 234:109593. [PMID: 37482282 PMCID: PMC10529043 DOI: 10.1016/j.exer.2023.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Here we examine the effects of ambient red light on lens-induced myopia and diffuser-induced myopia in tree shrews, small diurnal mammals closely related to primates. Starting at 24 days of visual experience (DVE), seventeen tree shrews were reared in red light (624 ± 10 or 634 ± 10 nm, 527-749 human lux) for 12-14 days wearing either a -5D lens (RL-5D, n = 5) or a diffuser (RLFD, n = 5) monocularly, or without visual restriction (RL-Control, n = 7). Refractive errors and ocular dimensions were compared to those obtained from tree shrews raised in broad-spectrum white light (WL-5D, n = 5; WLFD, n = 10; WL Control, n = 7). The RL-5D tree shrews developed less myopia in their lens-treated eyes than WL-5D tree shrews at the end of the experiment (-1.1 ± 0.9D vs. -3.8 ± 0.3D, p = 0.007). The diffuser-treated eyes of the RLFD tree shrews were near-emmetropic (-0.3 ± 0.6D, vs. -5.4 ± 0.7D in the WLFD group). Red light induced hyperopia in control animals (RL-vs. WL-Control, +3.0 ± 0.7 vs. +1.0 ± 0.2D, p = 0.02), the no-lens eyes of the RL-5D animals, and the no-diffuser eyes of the RLFD animals (+2.5 ± 0.5D and +2.3 ± 0.3D, respectively). The refractive alterations were consistent with the alterations in vitreous chamber depth. The lens-induced myopia developed in red light suggests that a non-chromatic cue could signal defocus to a less accurate extent, although it could also be a result of "form-deprivation" caused by defocus blur. As with previous studies in rhesus monkeys, the ability of red light to promote hyperopia appears to correlate with its ability to retard lens-induced myopia and form-deprivation myopia, the latter of which might be related to non-visual ocular mechanisms.
Collapse
Affiliation(s)
- Zhihui She
- Department of Optometry and Vision Science, University of Alabama at Birmingham, 1716 University Blvd, HPB 528, Birmingham, AL, 35294, UK
| | - Alexander H Ward
- Georgia Cancer Center, Augusta University. Dr. Ward Contributed to This Work During His Graduate Training at the University of Alabama at Birmingham, UK
| | - Timothy J Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham, 1716 University Blvd, HPB 528, Birmingham, AL, 35294, UK.
| |
Collapse
|