1
|
Araujo TMD, Ferreira PP, Lisboa IAPB, Vogel CJ, Starling CR. Orthodontic retainers: are they all the same? Dental Press J Orthod 2025; 29:e24spe6. [PMID: 39813579 PMCID: PMC11734435 DOI: 10.1590/2177-6709.29.6.e24spe6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/24/2024] [Indexed: 01/18/2025] Open
Abstract
INTRODUCTION It is known that the stability of the results obtained with orthodontic treatment depends, in addition to the functional and aesthetic aspects, also on the adequate planning of the retention devices, the patient's compliance with this new phase, and the physiological changes that the human body experiences over the years, throughout the craniofacial aging process. OBJECTIVE This article discusses the importance of the orthodontic retention phase and the influence of diagnosis, planning and execution of corrective treatment of malocclusions, in order to achieve the expected success. METHODS Throughout the text, different types of retainers and approaches during this phase will be presented, with the aim of ensuring the stability of the results obtained after correcting problems in the vertical, transverse and anteroposterior directions. RESULTS Orthodontic retainers are not all the same. The retention protocol must be performed in an individualized and planned manner, taking the initial dental positions as a reference. CONCLUSIONS The orthodontist must inform the patient and parents about important aspects of how to maintain the occlusion achieved with orthodontic treatment. The retainers installed after the end of corrective treatment are not everlasting, they can suffer damage with use and must be replaced. Therefore, the patient must be aware of the importance of using retainers as prescribed by the orthodontist, and of returning for scheduled review appointments.
Collapse
Affiliation(s)
- Telma Martins de Araujo
- Federal University of Rio de Janeiro, School of Dentistry, Department of Orthodontics (Rio de Janeiro/RJ, Brazil)
- Federal University of Bahia, School of Dentistry, Department of Orthodontics (Salvador/BA, Brazil)
| | - Paula Paes Ferreira
- Federal University of Bahia, School of Dentistry, Department of Orthodontics (Salvador/BA, Brazil)
- Federal University of Bahia, School of Dentistry, Department of Dentistry and Health (Salvador/BA, Brazil)
| | - Izabelle Alice Pinheiro Barros Lisboa
- Federal University of Bahia, School of Dentistry, Department of Orthodontics (Salvador/BA, Brazil)
- FAIPE - Higher Education Institution, School of Dentistry, Department of Orofacial Harmonization (Cuiabá/MT, Brazil)
| | - Carlos Jorge Vogel
- University of São Paulo, School of Dentistry, Department of Orthodontics (São Paulo, Brazil)
- University of Illinois, Department of Orthodontics (Illinois /USA)
| | - Carolina Ribeiro Starling
- Federal University of Rio de Janeiro, School of Dentistry, Department of Orthodontics (Rio de Janeiro/RJ, Brazil)
- Federal University of Bahia, School of Dentistry, Department of Orthodontics (Salvador/BA, Brazil)
| |
Collapse
|
2
|
Renu K. Exosomes derived from human adipose mesenchymal stem cells act as a therapeutic target for oral submucous fibrosis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102224. [PMID: 39765310 DOI: 10.1016/j.jormas.2025.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Oral submucosal fibrosis is a highly malignant oral condition that necessitates the use of sophisticated therapeutic procedures. OSF is a multifactorial precancerous condition induced by areca nut chewing, deficiencies in vitamins and trace minerals, immunological aspects, and hereditary factors. Adipose tissue-derived mesenchymal stem cells possess the capability for multidirectional activation and are extensively distributed throughout the body. They have minimal immunogenicity and are extensively utilized in cancer treatment. Exosomes are extracellular vesicles produced by the intracellular route. They are biological carriers comprising microRNA, messenger RNA, lipids and proteins crucial for intercellular communication. ADSC exosomes, serving as a vehicle for miRNA, possess accessibility and little immunogenicity. They can significantly contribute to adipose tissue regrowth, angiogenesis, immunological modulation, and tissue repair. ADSC-Exo exhibits antifibrotic properties and may serve as a potential treatment for OSF. This review presents a novel therapeutic approach and clarifies the precise mechanisms involved in the clinical management of OSF using ADSC-Exo.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600077, Tamil Nadu, India.
| |
Collapse
|
3
|
Sun H, Feng Y, Tu S, Zhou J, Wang Y, Wei J, Zhang S, Hou Y, Shao Y, Ai H, Chen Z. Dopamine promotes osteogenic differentiation of PDLSCs by activating DRD1 and DRD2 during orthodontic tooth movement via ERK1/2 signaling pathway. Regen Ther 2024; 27:268-278. [PMID: 38617443 PMCID: PMC11015103 DOI: 10.1016/j.reth.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Introduction Orthodontic tooth movement (OTM) involves complex interactions between mechanical forces and periodontal tissue adaptation, mainly mediated by periodontal ligament cells, including periodontal ligament stem cells (PDLSCs), osteoblasts, and osteoclasts. Dopamine (DA), a neurotransmitter known for its critical role in bone metabolism, is investigated in this study for its potential to enhance osteogenic differentiation in PDLSCs, which are pivotal in OTM. This study examined the potential of DA to facilitate OTM by binding to DA receptors (D1R and D2R) and activating the ERK1/2 signaling pathway. We propose that DA's interaction with these receptors on PDLSCs could enhance osteogenic differentiation, thereby accelerating bone remodeling and reducing the duration of orthodontic treatments, which offering a novel approach to improve clinical outcomes in orthodontic care. Methods This study utilized a rat OTM model, micro-CT, histological analyses, and in vitro assays to investigate dopamine's effect on osteogenesis. PDLSCs were cultured and treated with DA, and cytotoxicity, osteogenic differentiation, gene and protein expression assessed. Results Dopamine administration significantly increased trabecular bone density and osteogenic marker expression in an OTM rat model. In vitro, DA at 10 nM optimally promoted human PDLSCs osteogenesis without affecting proliferation. Blocking DA receptors or inhibiting the ERK1/2 pathway attenuated these effects, underscoring the importance of dopaminergic signaling in tension-induced osteogenesis during OTM. Conclusion Taken together, our study reveals that local dopamine administration at a concentration of 10 nM not only enhances tension-induced osteogenesis in vivo but also significantly promotes osteogenic differentiation of PDLSCs in vitro through D1 and D2 receptor-mediated ERK1/2 signaling pathway activation.
Collapse
Affiliation(s)
| | | | | | - Jianwu Zhou
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxuan Wang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiaming Wei
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Sai Zhang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuluan Hou
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yiting Shao
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
4
|
Huang W, Wu H, Zheng B, Liu Y. The effects of luteolin on orthodontic tooth movement and relapse. Am J Orthod Dentofacial Orthop 2024:S0889-5406(24)00424-4. [PMID: 39503670 DOI: 10.1016/j.ajodo.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Luteolin is a natural flavonoid compound that widely exists in human food. Studies have demonstrated luteolin has powerful anti-inflammatory properties and can affect bone remodeling in an inflammatory environment. This study aimed to investigate the effect of luteolin on orthodontic tooth movement (OTM) and relapse after OTM. METHODS Male Sprague Dawley rats were randomly divided into 3 groups (n = 8): OTM, 50 mg/kg/d luteolin, and 100 mg/kg/d luteolin. Then, 50 g of orthodontic force was applied to all animals. A saline solution or corresponding concentration of luteolin was given orally. For the OTM experiment, after 14 days of force application, rats were killed, the maxilla was dissected, and then microcomputed tomography, histologic staining, and western blotting were performed. For the relapse experiment, the spring was removed, and a silicone impression was made to record the relapse status. RESULTS Compared with the OTM alone group, systemic administration of luteolin inhibited OTM and tooth relapse (P <0.05). Increased bone volume, reduced osteoclast activity, and a decrease in osteoclastogenesis-related protein expression were observed in luteolin-treated groups. These effects may be attributed to the inhibition of the nuclear factor-kappa B pathway. CONCLUSIONS Luteolin can significantly inhibit OTM and relapse after OTM. Thus, luteolin is a prospective candidate for enhancing tooth anchorage and preventing relapse in orthodontic treatment.
Collapse
Affiliation(s)
- Wenkai Huang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang Clinical Medical Research Center of Orthodontic Disease, Shenyang, Liaoning Province, China
| | - Haopeng Wu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang Clinical Medical Research Center of Orthodontic Disease, Shenyang, Liaoning Province, China
| | - Bowen Zheng
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang Clinical Medical Research Center of Orthodontic Disease, Shenyang, Liaoning Province, China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang Clinical Medical Research Center of Orthodontic Disease, Shenyang, Liaoning Province, China.
| |
Collapse
|
5
|
Zhang Y, Liu K, Ma X, Su X, Zhao L, Wu Y, Shi Y. Therapeutic Effects of Puerarin Loaded Bone Marrow Mesenchymal Stem Cell-Derived Exosomes in a Rat Model of Osteoarthritis. Chem Biodivers 2024:e202402095. [PMID: 39420681 DOI: 10.1002/cbdv.202402095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease among the aged population. The primary objective of this study was to assess the therapeutic potential of puerarin loaded bone marrow mesenchymal stem cell-derived exosomes (Pue@BMSC-Exo), and reveal their inflammatory regulating mechanisms through affecting the nuclear factor kappa-B (NF-κB) signaling pathway. In this study, exosomes derived from BMSCs were isolated and identified. Cell proliferation and migration were evaluated by CCK-8 and scratch methods. Furthermore, histological and micro-computed tomography analysis were performed to assess alterations of articular cartilage in OA rats. Results showed that BMSC-Exo and Pue@BMSC-Exo conformed with the basic characteristics of exosomes. BMSC-Exo increased the solubility of Pue and enhanced drug uptake by chondrocytes. In addition, Pue@BMSC-Exo stimulated proliferation and migration of chondrocyte, and also promoted cartilage repair by reducing matrix metalloproteinase MMP13 production and increasing type II collagen (Col2) synthesis. Furthermore, Pue@BMSC-Exo, by effectively inhibiting the NF-κB signaling pathway, reduced the production of inflammatory mediators and attenuated the release of the inflammatory marker nitric oxide (NO), ultimately ameliorating the damage of chondrocyte. These findings exhibited the potential therapeutic significance of Pue@BMSC-Exo in OA and warranted further exploration in clinical applications.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Kang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Xuejing Ma
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Yi Wu
- Liaoning Provincial Academy of Traditional Chinese Medicine, Shenyang, 110030, P R China
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110030, P R China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| |
Collapse
|
6
|
Peng B, Wang L, Han G, Cheng Y. Mesenchymal stem cell-derived exosomes: a potential cell-free therapy for orthodontic tooth stability management. Stem Cell Res Ther 2024; 15:342. [PMID: 39354604 PMCID: PMC11446149 DOI: 10.1186/s13287-024-03962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
Orthodontic relapse (OR) occurs at a rate of over 70%. Retention is the current attempt at prevention, but it requires a considerable amount of time and cannot fully block OR. It's imperative to find a safe and effective method for managing post-orthodontic tooth stability. Periodontal bone remodeling is one crucial biological foundation of OR. Mesenchymal stem cell-derived exosomes (MSC-Exo) show promise in relapse management by regulating periodontal bone remodeling. MSC-Exo can prevent relapse by regulating periodontal ligament function, osteoclast activity, osteoblast differentiation, macrophage polarization, and periodontal microcirculation. In recent years, exosome-loaded hydrogels, which achieve controlled exosome release, have demonstrated efficacy in promoting bone regeneration and remodeling, offering promising prospects for OR management. This review aims to highlight the use of MSC-Exo-based therapy for preventing OR, offering new insights for future research focused on improving tooth stability and enhancing orthodontic anchorage.
Collapse
Affiliation(s)
- Boyuan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Lianhao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Guangli Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Orthodontics Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Yong Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
7
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 3-therapeutic + diagnostic potential in dentistry. Periodontol 2000 2024; 94:415-482. [PMID: 38546137 DOI: 10.1111/prd.12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 05/18/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of various diseases. Over 5000 publications are currently being published on this topic yearly, many of which in the dental space. This extensive review article is the first scoping review aimed at summarizing all therapeutic uses of exosomes in regenerative dentistry. A total of 944 articles were identified as using exosomes in the dental field for either their regenerative/therapeutic potential or for diagnostic purposes derived from the oral cavity. In total, 113 research articles were selected for their regenerative potential (102 in vitro, 60 in vivo, 50 studies included both). Therapeutic exosomes were most commonly derived from dental pulps, periodontal ligament cells, gingival fibroblasts, stem cells from exfoliated deciduous teeth, and the apical papilla which have all been shown to facilitate the regenerative potential of a number of tissues including bone, cementum, the periodontal ligament, nerves, aid in orthodontic tooth movement, and relieve temporomandibular joint disorders, among others. Results demonstrate that the use of exosomes led to positive outcomes in 100% of studies. In the bone field, exosomes were found to perform equally as well or better than rhBMP2 while significantly reducing inflammation. Periodontitis animal models were treated with simple gingival injections of exosomes and benefits were even observed when the exosomes were administered intravenously. Exosomes are much more stable than growth factors and were shown to be far more resistant against degradation by periodontal pathogens found routinely in a periodontitis environment. Comparative studies in the field of periodontal regeneration found better outcomes for exosomes even when compared to their native parent stem cells. In total 47 diagnostic studies revealed a role for salivary/crevicular fluid exosomes for the diagnosis of birth defects, cardiovascular disease, diabetes, gingival recession detection, gingivitis, irritable bowel syndrome, neurodegenerative disease, oral lichen planus, oral squamous cell carcinoma, oropharyngeal cancer detection, orthodontic root resorption, pancreatic cancer, periodontitis, peri-implantitis, Sjögren syndrome, and various systemic diseases. Hence, we characterize the exosomes as possessing "remarkable" potential, serving as a valuable tool for clinicians with significant advantages.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
- Advanced PRF Education, Venice, Florida, USA
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
8
|
Wang J, Jing J, Zhou C, Fan Y. Emerging roles of exosomes in oral diseases progression. Int J Oral Sci 2024; 16:4. [PMID: 38221571 PMCID: PMC10788352 DOI: 10.1038/s41368-023-00274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Lin Y, Fu ML, Harb I, Ma LX, Tran SD. Functional Biomaterials for Local Control of Orthodontic Tooth Movement. J Funct Biomater 2023; 14:294. [PMID: 37367258 DOI: 10.3390/jfb14060294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
Orthodontic tooth movement (OTM) occurs with the application of a controlled mechanical force and results in coordinated tissue resorption and formation in the surrounding bone and periodontal ligament. The turnover processes of the periodontal and bone tissue are associated with specific signaling factors, such as Receptor Activator of Nuclear factor Kappa-β Ligand (RANKL), osteoprotegerin, runt-related transcription factor 2 (RUNX2), etc., which can be regulated by different biomaterials, promoting or inhibiting bone remodeling during OTM. Different bone substitutes or bone regeneration materials have also been applied to repair alveolar bone defects followed by orthodontic treatment. Those bioengineered bone graft materials also change the local environment that may or may not affect OTM. This article aims to review functional biomaterials that were applied locally to accelerate OTM for a shorter duration of orthodontic treatment or impede OTM for retention purposes, as well as various alveolar bone graft materials which may affect OTM. This review article summarizes various types of biomaterials that can be locally applied to affect the process of OTM, along with their potential mechanisms of action and side effects. The functionalization of biomaterials can improve the solubility or intake of biomolecules, leading to better outcomes in terms of increasing or decreasing the speed of OTM. The ideal timing for initiating OTM is generally considered to be 8 weeks post-grafting. However, more evidence is needed from human studies to fully understand the effects of these biomaterials, including any potential adverse effects.
Collapse
Affiliation(s)
- Yi Lin
- Division of Orthodontics, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Moyu Lara Fu
- School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ingrid Harb
- Division of Dentistry, Montreal Children's Hospital and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Lisa Xiaolu Ma
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Simon D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
10
|
Chauhan N, Kumar M, Chaurasia S, Garg Y, Chopra S, Bhatia A. A Comprehensive Review on Drug Therapies and Nanomaterials used in Orthodontic Treatment. Curr Pharm Des 2023; 29:3154-3165. [PMID: 38018198 DOI: 10.2174/0113816128276153231117054242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023]
Abstract
Orthodontic treatment typically requires an extended duration of 1-2 years to complete the treatment. Accelerating the rate of tooth movement during orthodontic treatment is essential for shortening the overall treatment duration. After the completion of orthodontic treatment, a prominent concern arises in the form of orthodontic relapse, where the teeth tend to revert to their original positions. This issue affects approximately 60% of the global population, underscoring the importance of implementing effective measures to address orthodontic relapse. An approach in this regard involves the targeted administration of herbal and synthetic drugs applied directly to the specific area of interest to facilitate tooth movement and prevent orthodontic relapse. Apart from this, researchers are investigating the feasibility of utilizing different types of nanoparticles to improve the process of orthodontic tooth movement. In recent years, there has been a noticeable increase in the number of studies examining the effects of various drugs on orthodontics. However, the currently available literature does not provide significant evidence relating to orthodontic tooth movement. In this review, the authors provide valuable information about the drugs and nanomaterials that are capable of further enhancing the rate of orthodontic tooth movement and reducing the risk of orthodontic relapse. However, a notable hurdle remains, i.e., there is no marketed formulation available that can enhance orthodontic tooth movement and reduce treatment time. Therefore, researchers should try herbal-synthetic approaches to achieve a synergistic effect that can enhance orthodontic tooth movement. In this nutshell, there is an urgent need to develop a non-invasive, patient-compliant, and cost-effective formulation that will provide quality treatment and ultimately reduce the treatment time. Another critical issue is orthodontic relapse, which can be addressed by employing drugs that slow down osteoclastogenesis, thereby preventing tooth movement after treatment. Nevertheless, extensive research is still required to overcome this challenge in the future.
Collapse
Affiliation(s)
- Nitasha Chauhan
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Simran Chaurasia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| |
Collapse
|
11
|
Rosyida NF, Ana ID, Alhasyimi AA. The Use of Polymers to Enhance Post-Orthodontic Tooth Stability. Polymers (Basel) 2022; 15:polym15010103. [PMID: 36616453 PMCID: PMC9824751 DOI: 10.3390/polym15010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Relapse after orthodontic treatment occurs at a rate of about 70 to 90%, and this phenomenon is an orthodontic issue that has not yet been resolved. Retention devices are one attempt at prevention, but they require a considerable amount of time. Most orthodontists continue to find it challenging to manage orthodontic relapse; therefore, additional research is required. In line with existing knowledge regarding the biological basis of relapse, biomedical engineering approaches to relapse regulation show promise. With so many possible uses in biomedical engineering, polymeric materials have long been at the forefront of the materials world. Orthodontics is an emerging field, and scientists are paying a great deal of attention to polymers because of their potential applications in this area. In recent years, the controlled release of bisphosphonate risedronate using a topically applied gelatin hydrogel has been demonstrated to be effective in reducing relapse. Simvastatin encapsulation in exosomes generated from periodontal ligament stem cells can promote simvastatin solubility and increase the inhibitory action of orthodontic relapse. Moreover, the local injection of epigallocatechin gallate-modified gelatin suppresses osteoclastogenesis and could be developed as a novel treatment method to modify tooth movement and inhibit orthodontic relapse. Furthermore, the intrasulcular administration of hydrogel carbonated hydroxyapatite-incorporated advanced platelet-rich fibrin has been shown to minimize orthodontic relapse. The objective of this review was to provide an overview of the use of polymer materials to reduce post-orthodontic relapse. We assume that bone remodeling is a crucial factor even though the exact process by which orthodontic correction is lost after retention is not fully known. Delivery of a polymer containing elements that altered osteoclast activity inhibited osteoclastogenesis and blocking orthodontic relapse. The most promising polymeric materials and their potential orthodontic uses for the prevention of orthodontic relapse are also discussed.
Collapse
Affiliation(s)
- Niswati Fathmah Rosyida
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Correspondence: ; Tel.: +62-82136708250
| |
Collapse
|