1
|
Kammala AK, Lintao RC, Vora N, Mosebarger A, Khanipov K, Golovko G, Yaklic JL, Peltier MR, Conrads TP, Menon R. Expression of CYP450 enzymes in human fetal membranes and its implications in xenobiotic metabolism during pregnancy. Life Sci 2022; 307:120867. [DOI: 10.1016/j.lfs.2022.120867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
2
|
Jacobs SO, Sheller-Miller S, Richardson LS, Urrabaz-Garza R, Radnaa E, Menon R. Characterizing the immune cell population in the human fetal membrane. Am J Reprod Immunol 2020; 85:e13368. [PMID: 33145922 DOI: 10.1111/aji.13368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
PROBLEM This study localized CD45+ immune cells and compared changes in their numbers between term, not in labor (TNIL) and term, labor (TL) human fetal membranes. METHOD OF STUDY Fetal membranes (amniochorion) from normal TNIL and TL subjects were analyzed by immunohistochemistry (IHC), immunofluorescence (IF), and flow cytometry for evidence of total (CD45+ ) immune cells as well as innate immune cells (neutrophils, macrophages and NK cells) using specific markers. Fetal origin of immune cells was determined using polymerase chain reaction (PCR) for SRY gene in Y chromosome. RESULTS CD45+ cells were localized in human fetal membranes for both TNIL and TL. A threefold increase in CD45+ cells was seen in TL fetal membranes of (7.73% ± 2.35) compared to TNIL (2.36% ± 0.78). This increase is primarily contributed by neutrophils. Macrophages and NK cells did not change in the membranes between TNIL and TL. Leukocytes of fetal origin are present in the fetal membranes. CONCLUSION The fetal membranes without decidua contain a small proportion of immune cells. Some of these immune cells in the fetal membrane are fetal in origin. There is a moderate increase of immune cells in the fetal membranes at term labor; however, it is unclear whether this is a cause or consequence of labor. Further functional studies are needed to determine their contribution to membrane inflammation associated with parturition.
Collapse
Affiliation(s)
- Sara O Jacobs
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Samantha Sheller-Miller
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren S Richardson
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rheanna Urrabaz-Garza
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Enkhtuya Radnaa
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
3
|
Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol 2020; 42:431-450. [PMID: 32785751 DOI: 10.1007/s00281-020-00808-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Spontaneous preterm birth (PTB) and preterm pre-labor rupture of the membranes (pPROM) are major pregnancy complications. Although PTB and pPROM have common etiologies, they arise from distinct pathophysiologic pathways. Inflammation is a common underlying mechanism in both conditions. Balanced inflammation is required for fetoplacental growth; however, overwhelming inflammation (physiologic at term and pathologic at preterm) can lead to term and preterm parturition. A lack of effective strategies to control inflammation and reduce the risk of PTB and pPROM suggests that there are several modes of the generation of inflammation which may be dependent on the type of uterine tissue. The avascular fetal membrane (amniochorion), which provides structure, support, and protection to the intrauterine cavity, is one of the key contributors of inflammation. Localized membrane inflammation helps tissue remodeling during pregnancy. Two unique mechanisms that generate balanced inflammation are the progressive development of senescence (aging) and cyclic cellular transitions: epithelial to mesenchymal (EMT) and mesenchymal to epithelial (MET). The intrauterine build-up of oxidative stress at term or in response to risk factors (preterm) can accelerate senescence and promote a terminal state of EMT, resulting in the accumulation of inflammation. Inflammation degrades the matrix and destabilizes membrane function. Inflammatory mediators from damaged membranes are propagated via extracellular vesicles (EV) to maternal uterine tissues and transition quiescent maternal uterine tissues into an active state of labor. Membrane inflammation and its propagation are fetal signals that may promote parturition. This review summarizes the mechanisms of fetal membrane cellular senescence, transitions, and the generation of inflammation that contributes to term and preterm parturitions.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA.
| | - Faranak Behnia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, UT Health, Houston, Texas, USA
| | - Jossimara Polettini
- Universidade Federal da Fronteira Sul, Campus Passo Fundo, Rua Capitão Araujo, 20, Centro, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA
| |
Collapse
|
4
|
Maxwell JR, Yellowhair TR, Davies S, Rogers DA, McCarson KL, Savage DD, Jantzie LL. Prenatal Alcohol Exposure and Chorioamnionitis Results in Microstructural Brain Injury in a Preclinical Investigation. ANNALS OF PEDIATRIC RESEARCH 2020; 4:1031. [PMID: 33073262 PMCID: PMC7560999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Prenatal Alcohol Exposure (PAE) impacts 2% to 5% of infants born in the United States yearly. Women who consume alcohol during pregnancy have a five-fold increased rate of Chorioamnionitis (CHORIO). Both PAE and CHORIO cause microstructural injury to multiple brain regions including major white matter tracts. OBJECTIVE Utilizing two previously established animal models, we hypothesized that the combination of PAE+CHORIO would result in greater deficits in myelination and structural integrity than PAE alone. MATERIAL AND METHODS Pregnant Long-Evans rats voluntarily drank 5% ethanol or saccharin until Gestational Day 19 (GD). On GD19, CHORIO was induced in one group of PAE dams by a 30 min uterine artery occlusion and injection of Lipopolysaccharide (LPS) into each amniotic sac. The remaining PAE dams and saccharin controls underwent sham surgery. Pups were born on GD22 and weaned on Postnatal Day 24 (PD). On PD28, offspring were sacrificed, and their brains examined using ex-vivo Diffusion Tensor Imaging (DTI). RESULTS Compared to control, PAE alone did not affect offspring birth weights, mortality or any DTI measures. In contrast, PAE+CHORIO significantly reduced offspring survival and, in surviving pups, increased Radial Diffusivity (RD) in medial frontal cortex and decreased Fractional Anisotropy (FA) in medial and ventral frontal cortex and within capsular regions. CONCLUSION The combination of moderate PAE+CHORIO results in an increased mortality, concomitant with diffuse microstructural brain injury noted in young adolescent offspring at PD28. Future studies should examine the extent to which PAE exacerbates the damage caused by CHORIO alone and whether these deficits persist into adulthood.
Collapse
Affiliation(s)
- Jessie R Maxwell
- Department of Pediatrics, University of New Mexico, USA
- Department of Neurosciences, University of New Mexico, USA
| | | | - Suzy Davies
- Department of Neurosciences, University of New Mexico, USA
| | | | - Krystle L McCarson
- Department of Pediatrics, University of Arkansas for Medical Sciences, USA
| | - Daniel D Savage
- Department of Pediatrics, University of New Mexico, USA
- Department of Neurosciences, University of New Mexico, USA
| | - Lauren L Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, USA
- Department of Neurology, Johns Hopkins University School of Medicine, USA
- Kennedy Krieger Institute, USA
| |
Collapse
|
5
|
Seferovic MD, Pace RM, Carroll M, Belfort B, Major AM, Chu DM, Racusin DA, Castro EC, Muldrew KL, Versalovic J, Aagaard KM. Visualization of microbes by 16S in situ hybridization in term and preterm placentas without intraamniotic infection. Am J Obstet Gynecol 2019; 221:146.e1-146.e23. [PMID: 31055031 DOI: 10.1016/j.ajog.2019.04.036] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/06/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Numerous reports have documented bacteria in the placental membranes and basal plate decidua in the absence of immunopathology using histologic techniques. Similarly, independent metagenomic characterizations have identified an altered taxonomic makeup in association with spontaneous preterm birth. Here we sought to corroborate these findings by localizing presumptive intact bacteria using molecular histology within the placental microanatomy. OBJECTIVE Here we examined for microbes in term and preterm gestations using a signal-amplified 16S universal in situ hybridization probe set for bacterial rRNA, alongside traditional histologic methods of Warthin-Starry and Gram stains, as well as clinical culture methodologies. We further sought to differentiate accompanying 16S gene sequencing taxonomic profiles from germ-free (gnotobiotic) mouse and extraction and amplicon contamination controls. STUDY DESIGN Placentas were collected from a total of 53 subjects, composed of term labored (n = 4) and unlabored cesarean deliveries (n = 22) and preterm vaginal (n = 18) and cesarean deliveries (n = 8); a placenta from a single subject with clinical and histologic evident choriomanionitis was employed as a positive control (n = 1). The preterm cohort included spontaneous preterm birth with (n = 6) and without (n = 10) preterm premature rupture of membranes, as well as medically indicated preterm births (n = 10). Placental microbes were visualized using an in situ hybridization probe set designed against highly conserved regions of the bacterial 16S ribosome, which produces an amplified stable signal using branched DNA probes. Extracted bacterial nucleic acids from these same samples were subjected to 16S rRNA metagenomic sequencing (Illumina, V4) for course taxonomic analysis, alongside environmental and kit contaminant controls. A subset of unlabored, cesarean-delivered term pregnancies were also assessed with clinical culture for readily cultivatable pathogenic microbes. RESULTS Molecular in situ hybridization of bacterial rRNA enabled visualization and localization of low-abundance microbes after systematic high-power scanning. Despite the absence of clinical or histologic chorioamnionitis in 52 of 53 subjects, instances of 16S rRNA signal were confidently observed in 13 of 16 spontaneous preterm birth placentas, which was not significantly different from term unlabored cesarean specimens (18 of 22; P > .05). 16S rRNA signal was largely localized to the villous parenchyma and/or syncytiotrophoblast, and less commonly the chorion and the maternal intervillous space. In all term and unlabored cesarean deliveries, visualization of evident placental microbes by in situ hybridization occurred in the absence of clinical or histologic detection using conventional clinical cultivation, hematoxylin-eosin, and Gram staining. In 1 subject, appreciable villous bacteria localized to an infarction, where 16S microbial detection was confirmed by Warthin-Starry stain. In all instances, parallel sample principle coordinate analysis using Bray-Cutis distances of 16S rRNA gene sequencing data demonstrated consistent taxonomic distinction from all negative or potential contamination controls (P = .024, PERMANOVA). Classification from contaminant filtered data identified a distinct taxonomic makeup among term and preterm cohorts when compared with contaminant controls (false discovery rate <0.05). CONCLUSION Presumptively intact placental microbes are visualized as low-abundance, low-biomass and sparse populations within the placenta regardless of gestational age and mode of delivery. Their taxonomic makeup is distinct from contamination controls. These findings further support several previously published findings, including our own, which have used metagenomics to characterize low-abundance and low-biomass microbial communities in the placenta.
Collapse
|
6
|
Tsuji M, Sizonenko SV, Baud O. Editorial: Preventing Developmental Brain Injury-From Animal Models to Clinical Trials. Front Neurol 2019; 10:775. [PMID: 31379725 PMCID: PMC6659124 DOI: 10.3389/fneur.2019.00775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/03/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Masahiro Tsuji
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Stéphane V Sizonenko
- Division of Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivier Baud
- Division of Neonatology, Department of Pediatrics Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland.,Robert Debré Hospital, INSERM U1141, Paris-Diderot University, Paris, France
| |
Collapse
|
7
|
Mitro SD, Sanchez SE, Palomino H, Gelaye B, Williams MA. Childhood abuse, intimate partner violence, and placental abruption among Peruvian women. Ann Epidemiol 2018; 31:26-31. [PMID: 30606468 DOI: 10.1016/j.annepidem.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/08/2018] [Accepted: 12/15/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE Experiencing childhood abuse (CA) or intimate partner violence (IPV) has been linked to adverse pregnancy outcomes. We examined whether CA history and current IPV are independently and jointly associated with placental abruption (PA). METHODS We recruited 662 PA cases and 665 controls in Lima, Peru. We used multivariate logistic regression to calculate odds ratios (OR), adjusting for age, education, and parity. RESULTS Approximately 42% of cases and controls reported CA; 50% of cases and 49% of controls reported IPV. History of any CA was not associated with PA, but history of severe CA was associated with 38% increased odds of PA (adjusted OR [aOR], 1.38; 95% confidence interval (CI), 1.07-1.80), adjusting for IPV. There was a statistically nonsignificant association between severe IPV and odds of PA (aOR, 1.22; 95% CI, 0.92-1.62), adjusting for CA. Women who experienced severe CA and severe IPV had 2.06-fold (95% CI, 1.25-3.40) increased odds of PA compared with women who did not experience severe abuse. The joint effect of CA and IPV was positive but statistically nonsignificant on the multiplicative (aOR, 1.48; 95% CI, 0.79-2.80) and additive scale (relative excess risk due to interaction, 0.70; 95% CI, -0.39 to 1.78). CONCLUSIONS Preventing exposure to violence may improve maternal outcomes.
Collapse
Affiliation(s)
- Susanna D Mitro
- Population Health Sciences Program, Harvard University, Boston, MA.
| | - Sixto E Sanchez
- Asociación Civil PROESA, Lima, Peru; Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Henry Palomino
- Facultad de Medicina Humana, Universidad San Martin de Porres, Lima, Peru
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Michelle A Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
8
|
Heese S, Hammer K, Möllers M, Köster HA, Falkenberg MK, Eveslage M, Braun J, Oelmeier de Murcia K, Klockenbusch W, Schmitz R. Adrenal gland size in growth restricted fetuses. J Perinat Med 2018. [PMID: 29543592 DOI: 10.1515/jpm-2017-0339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective To compare the adrenal gland size of fetal growth restricted (FGR) and normal control fetuses. Study design In this prospective study the adrenal gland size of 63 FGR fetuses and 343 normal controls was measured between 20 and 41 weeks of gestation. The total width and the medulla width were measured in a new standardized transversal plane. The cortex width and a calculated ratio of the total and medulla width (adrenal gland ratio) were compared between both groups. Results The mean cortex width and the adrenal gland ratio in FGR fetuses were higher in comparison to the controls (P<0.001; P=0.036, respectively). The cortex width correlated positively with the gestational age (control group: P<0.001; FGR group: P=0.089) whilst the adrenal gland ratio showed no association with the gestational age (control group: P=0.153; FGR group: P=0.314). Conclusion The adrenal gland cortex width and the adrenal gland ratio were increased in FGR fetuses compared to normal fetuses.
Collapse
Affiliation(s)
- Sandra Heese
- Department of Obstetrics and Gynecology, University Hospital of Münster, Münster, Germany
| | - Kerstin Hammer
- Department of Obstetrics and Gynecology, University Hospital of Münster, Münster, Germany
| | - Mareike Möllers
- Department of Obstetrics and Gynecology, University Hospital of Münster, Münster, Germany
| | - Helen A Köster
- Department of Obstetrics and Gynecology, University Hospital of Münster, Münster, Germany
| | - Maria K Falkenberg
- Department of Obstetrics and Gynecology, University Hospital of Münster, Münster, Germany
| | - Maria Eveslage
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Janina Braun
- Department of Obstetrics and Gynecology, University Hospital of Münster, Münster, Germany
| | | | - Walter Klockenbusch
- Department of Obstetrics and Gynecology, University Hospital of Münster, Münster, Germany
| | - Ralf Schmitz
- Department of Obstetrics and Gynecology, University Hospital of Münster, Münster, Germany
| |
Collapse
|
9
|
Burris HH, Just AC, Haviland MJ, Neo DT, Baccarelli AA, Dereix AE, Brennan KJ, Rodosthenous RS, Ralston SJ, Hecht JL, Hacker MR. Long noncoding RNA expression in the cervix mid-pregnancy is associated with the length of gestation at delivery. Epigenetics 2018; 13:742-750. [PMID: 30045669 DOI: 10.1080/15592294.2018.1503490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infants born preterm are at increased risk of multiple morbidities and mortality. Why some women deliver preterm remains poorly understood. Prior studies have shown that cervical microRNA expression and DNA methylation are associated with the length of gestation. However, no study has examined the role of long noncoding RNAs (lncRNAs) in the cervix during pregnancy. To determine whether expression of lncRNAs is associated with length of gestation at delivery, we analyzed RNA from cervical swabs obtained from 78 women during pregnancy (mean 15.5, SD 5.0, weeks of gestation) who were participating in the Spontaneous Prematurity and Epigenetics of the Cervix (SPEC) Study in Boston, MA, USA. We used a PCR-based platform and found that 9 lncRNAs were expressed in at least 50% of the participants. Of these, a doubling of the expression of TUG1, TINCR, and FALEC was associated with shorter lengths of gestation at delivery [2.8 (95% CI: 0.31, 5.2); 3.3 (0.22, 6.3); and 4.5 (7.3, 1.6) days shorter respectively]. Of the lncRNAs analyzed, none was statistically associated with preterm birth, but expression of FALEC was 2.6-fold higher in women who delivered preterm vs. term (P = 0.051). These findings demonstrate that lncRNAs can be measured in cervical samples obtained during pregnancy and are associated with subsequent length of gestation at delivery. Further, this study supports future work to replicate these findings in other cohorts and perform mechanistic studies to determine the role of lncRNAs in the cervix during pregnancy.
Collapse
Affiliation(s)
- Heather H Burris
- a Department of Neonatology, Beth Israel Deaconess Medical Center, Department of Pediatrics , Harvard Medical School , Boston , MA , USA.,b Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,c Department of Environmental Health , Harvard TH Chan School of Public Health , Boston , MA , USA.,d Department of Pediatrics , Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine , Philadelphia , PA , USA
| | - Allan C Just
- e Department of Environmental Medicine & Public Health , Icahn School of Medicine at Mount Sinai , NY , NY , USA
| | - Miriam J Haviland
- b Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Dayna T Neo
- b Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Andrea A Baccarelli
- f Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , NY , NY , USA
| | - Alexandra E Dereix
- f Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , NY , NY , USA
| | - Kasey J Brennan
- f Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , NY , NY , USA
| | - Rodosthenis S Rodosthenous
- g Cardiology Division, Department of Medicine , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Steven J Ralston
- h Department of Obstetrics and Gynecology , Pennsylvania Hospital, University of Pennsylvania Perelman School of Medicine , Philadelphia , PA , USA
| | - Jonathan L Hecht
- i Department of Pathology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Michele R Hacker
- b Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,j Department of Epidemiology , Harvard TH Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
10
|
Preclinical chorioamnionitis dysregulates CXCL1/CXCR2 signaling throughout the placental-fetal-brain axis. Exp Neurol 2017; 301:110-119. [PMID: 29117499 DOI: 10.1016/j.expneurol.2017.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
In the United States, perinatal brain injury (PBI) is a major cause of infant mortality and childhood disability. For a large proportion of infants with PBI, central nervous system (CNS) injury begins in utero with inflammation (chorioamnionitis/CHORIO) and/or hypoxia-ischemia. While studies show CHORIO contributes to preterm CNS injury and is also a common independent risk factor for brain injury in term infants, the molecular mechanisms mediating inflammation in the placental-fetal-brain axis that result in PBI remain a gap in knowledge. The chemokine (C-X-C motif) ligand 1 (CXCL1), and its cognate receptor, CXCR2, have been clinically implicated in CHORIO and in mature CNS injury, although their specific role in PBI pathophysiology is poorly defined. Given CXCL1/CXCR2 signaling is essential to neural cell development and neutrophil recruitment, a key pathological hallmark of CHORIO, we hypothesized CHORIO would upregulate CXCL1/CXCR2 expression in the placenta and fetal circulation, concomitant with increased CXCL1/CXCR2 signaling in the developing brain, immune cell activation, neutrophilia, and microstructural PBI. On embryonic day 18 (E18), a laparotomy was performed in pregnant Sprague Dawley rats to induce CHORIO. Specifically, uterine arteries were occluded for 60min to induce placental transient systemic hypoxia-ischemia (TSHI), followed by intra-amniotic injection of lipopolysaccharide (LPS). Pups were born at E22. Placentae, serum and brain were collected along an extended time course from E19 to postnatal day (P)15 and analyzed using multiplex electrochemiluminescence (MECI), Western blot, qPCR, flow cytometry (FC) and diffusion tensor imaging (DTI). Results demonstrate that compared to sham, CHORIO increases placental CXCL1 and CXCR2 mRNA levels, concomitant with increased CXCR2+ neutrophils. Interestingly, pup serum CXCL1 expression in CHORIO parallels this increase, with sustained elevation through P15. Analyses of CHORIO brains reveal similarly increased CXCL1/CXCR2 expression through P7, together with increased neutrophilia, microgliosis and peripheral macrophages. Similar to the placenta, cerebral neutrophilia was defined by increased CXCR2 surface expression and elevated myeloperoxidase expression (MPO), consistent with immune cell activation. Evaluation of microstructural brain injury at P15 with DTI reveals aberrant microstructural integrity in the callosal and capsular white matter, with reduced fractional anisotropy in superficial and deep layers of overlying cortex. In summary, using an established model of CHORIO that exhibits mature CNS deficits mimicking those of preterm survivors, we show CHORIO induces injury throughout the placental-fetal-brain axis with a CXCL1/CXCR2 inflammatory signature, neutrophilia, and microstructural abnormalities. These data are concomitant with abnormal cerebral CXCL1/CXCR2 expression, and support temporal aberrations in CXCL1/CXCR2 and neutrophil dynamics in the placental-fetal-brain axis following CHORIO. These investigations define novel targets for directed therapies for infants at high risk for PBI.
Collapse
|
11
|
Burris HH, Hacker MR. Birth outcome racial disparities: A result of intersecting social and environmental factors. Semin Perinatol 2017; 41:360-366. [PMID: 28818300 PMCID: PMC5657505 DOI: 10.1053/j.semperi.2017.07.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adverse birth outcomes such as preterm birth, low-birth weight, and infant mortality continue to disproportionately affect black and poor infants in the United States. Improvements in healthcare quality and access have not eliminated these disparities. The objective of this review was to consider societal factors, including suboptimal education, income inequality, and residential segregation, that together lead to toxic environmental exposures and psychosocial stress. Many toxic chemicals, as well as psychosocial stress, contribute to the risk of adverse birth outcomes and black women often are more highly exposed than white women. The extent to which environmental exposures combine with stress and culminate in racial disparities in birth outcomes has not been quantified but is likely substantial. Primary prevention of adverse birth outcomes and elimination of disparities will require a societal approach to improve education quality, income equity, and neighborhoods.
Collapse
Affiliation(s)
- Heather H. Burris
- Department of Neonatology, Beth Israel Deaconess Medical Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA,Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA,Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA,Corresponding Author: 330 Brookline Ave, RO 318 Neonatology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; ; 617-667-3276 (phone); 617-667-7040 (fax)
| | - Michele R. Hacker
- Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
12
|
Barchitta M, Maugeri A, Quattrocchi A, Agrifoglio O, Agodi A. The Role of miRNAs as Biomarkers for Pregnancy Outcomes: A Comprehensive Review. Int J Genomics 2017; 2017:8067972. [PMID: 28884117 PMCID: PMC5572592 DOI: 10.1155/2017/8067972] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022] Open
Abstract
Several studies showed that altered expression of the miRNA-ome in maternal circulation or in placental tissue may reflect not only gestational disorders, such as preeclampsia, spontaneous abortion, preterm birth, low birth weight, or macrosomia, but also prenatal exposure to environmental pollutants. Generally, the relationships between environmental exposure, changes in miRNA expression, and gestational disorders are explored separately, producing conflicting findings. However, validation of tissue-accessible biomarkers for the monitoring of adverse pregnancy outcomes needs a systematic methodological approach that takes also into account early-life environmental exposure. To achieve this goal, exposure to xenochemicals, endogenous agents, and diet should be assessed. This study has the aim to provide a comprehensive review on the role of miRNAs as potential biomarkers for adverse pregnancy outcomes and prenatal environmental exposure.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Annalisa Quattrocchi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Ottavia Agrifoglio
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Lemos AP, Feitosa FEDL, Araujo Júnior E, Feitosa HN, Pereira JGD, Mota RMS, Carvalho FHC. Delivery prediction in pregnant women with spontaneous preterm birth using fetal adrenal gland biometry. J Matern Fetal Neonatal Med 2016; 29:3756-61. [PMID: 26820835 DOI: 10.3109/14767058.2016.1147556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To assess the prediction of delivery within 7 days in pregnant women who showed symptoms of spontaneous preterm birth (PB) by means of fetal adrenal gland biometry and to compare these predictions with the cervical length (CL) measurement. METHODS We performed a prospective cross-sectional study with 53 pregnant women between 24 and 36 weeks of gestation. An ultrasound exam was performed for each participant to obtain the CL measurement (transvaginal route) and fetal adrenal gland biometry on day 1 of their hospital admission because of symptoms of spontaneous PB. The main outcome measure was the time between the ultrasound exam and delivery, which was classified into two groups: delivery ≤7 days and delivery >7 days. A receiver operating characteristics (ROC) curve was performed to define the cutoffs for sensitivity and specificity. RESULTS The prevalence of delivery within 7 days was 35.8%, which showed a statistically significant difference from the depth of the central zone of the fetal adrenal gland (p = 0.036). The cutoff for the depth of the central zone of the fetal adrenal gland was 7.2 mm (sensitivity 66.7%, specificity 61.8% and accuracy 63.5%). These values were not significantly different than the cutoffs for cervical length measurement: 20 mm (p = 0.267) and 9 mm (p = 0.118). CONCLUSION The biometry for the central zone of the fetal adrenal gland predicted delivery within 7 days in pregnant women with spontaneous PB and had a predictive accuracy similar to that of CL measurement.
Collapse
Affiliation(s)
- Aline Pinto Lemos
- a Fetal Medicine Service - Maternidade-Escola Assis Chateaubriand, Federal University of Ceará (UFC) , Fortaleza - CE , Brazil and
| | | | - Edward Araujo Júnior
- b Department of Obstetrics , Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP) , São Paulo - SP , Brazil
| | - Helvécio Neves Feitosa
- a Fetal Medicine Service - Maternidade-Escola Assis Chateaubriand, Federal University of Ceará (UFC) , Fortaleza - CE , Brazil and
| | - João Gabriel Damasceno Pereira
- a Fetal Medicine Service - Maternidade-Escola Assis Chateaubriand, Federal University of Ceará (UFC) , Fortaleza - CE , Brazil and
| | - Rosa Maria Salani Mota
- a Fetal Medicine Service - Maternidade-Escola Assis Chateaubriand, Federal University of Ceará (UFC) , Fortaleza - CE , Brazil and
| | | |
Collapse
|
14
|
Leviton A, Allred EN, Kuban KC, O'Shea TM, Paneth N, Majzoub J. Brain disorders associated with corticotropin-releasing hormone expression in the placenta among children born before the 28th week of gestation. Acta Paediatr 2016; 105:e7-11. [PMID: 26331704 DOI: 10.1111/apa.13174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/11/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022]
Abstract
AIM To evaluate the relationship between placenta corticotropin-releasing hormone (CRH) expression and brain structure and function abnormalities in extremely preterm newborns. METHODS In a sample of 1243 infants born before the 28th week of gestation, we evaluated the relationship between CRH expression in the placenta and the risk of brain ultrasound scan abnormalities identified while these infants were in the intensive care nursery, low scores on the Bayley Scales of Infant Development-II of 900 of these children at age two years and head circumference measurements then more than one and two standard deviations below the mean. RESULTS Infants who had a low placenta CRH messenger ribonucleic acid (mRNA) concentration were at increased risk of ventriculomegaly on an ultrasound scan. An elevated placenta CRH mRNA concentration was associated with increased risk of an inability to walk at age two years, and a Bayley Motor Scale 3 standard deviations below the mean. CONCLUSION Placenta CRH mRNA concentration appears to convey information about the risk of brain damage in the infant born at an extremely low gestational age.
Collapse
Affiliation(s)
- Alan Leviton
- Boston Children's Hospital and Harvard Medical School; Boston MA USA
| | | | - Karl C.K. Kuban
- Boston Medical Center; Boston University School of Medicine; Boston MA USA
| | | | - Nigel Paneth
- College of Human Medicine; Michigan State University; East Lansing MI USA
| | - Joseph Majzoub
- Boston Children's Hospital and Harvard Medical School; Boston MA USA
| | | |
Collapse
|
15
|
Jantzie LL, Winer JL, Maxwell JR, Chan LAS, Robinson S. Modeling Encephalopathy of Prematurity Using Prenatal Hypoxia-ischemia with Intra-amniotic Lipopolysaccharide in Rats. J Vis Exp 2015. [PMID: 26649874 DOI: 10.3791/53196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Encephalopathy of prematurity (EoP) is a term that encompasses the central nervous system (CNS) abnormalities associated with preterm birth. To best advance translational objectives and uncover new therapeutic strategies for brain injury associated with preterm birth, preclinical models of EoP must include similar mechanisms of prenatal global injury observed in humans and involve multiple components of the maternal-placental-fetal system. Ideally, models should produce a similar spectrum of functional deficits in the mature animal and recapitulate multiple aspects of the pathophysiology. To mimic human systemic placental perfusion defects, placental underperfusion and/or chorioamnionitis associated with pathogen-induced inflammation in early preterm birth, we developed a model of prenatal transient systemic hypoxia-ischemia (TSHI) combined with intra-amniotic lipopolysaccharide (LPS). In pregnant Sprague Dawley rats, TSHI via uterine artery occlusion on embryonic day 18 (E18) induces a graded placental underperfusion defect associated with increasing CNS damage in the fetus. When combined with intra-amniotic LPS injections, placental inflammation is increased and CNS damage is compounded with associated white matter, gait and imaging abnormalities. Prenatal TSHI and TSHI+LPS prenatal insults meet several of the criteria of an EoP model including recapitulating the intrauterine insult, causing loss of neurons, oligodendrocytes and axons, loss of subplate, and functional deficits in adult animals that mimic those observed in children born extremely preterm. Moreover, this model allows for the dissection of inflammation induced by divergent injury types.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico; Department of Neurosciences, University of New Mexico
| | - Jesse L Winer
- Department of Neurosurgery, Boston Children's Hospital
| | | | | | - Shenandoah Robinson
- Department of Neurosurgery, Boston Children's Hospital; Department of Neurology, Harvard Medical School;
| |
Collapse
|
16
|
Placental 11β-Hydroxysteroid dehydrogenase type 2 expression: Correlations with birth weight and placental metal concentrations. Placenta 2015; 36:1212-7. [DOI: 10.1016/j.placenta.2015.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/07/2015] [Accepted: 09/24/2015] [Indexed: 01/22/2023]
|
17
|
Sanders AP, Burris HH, Just AC, Motta V, Svensson K, Mercado-Garcia A, Pantic I, Schwartz J, Tellez-Rojo MM, Wright RO, Baccarelli AA. microRNA expression in the cervix during pregnancy is associated with length of gestation. Epigenetics 2015; 10:221-8. [PMID: 25611922 DOI: 10.1080/15592294.2015.1006498] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Preterm birth is a leading cause of infant mortality and can lead to poor life-long health and adverse neurodevelopmental outcomes. The pathophysiologic mechanisms that precede preterm labor remain elusive, and the role that epigenetic phenomena play is largely unstudied. The objective of this study was to assess the association between microRNA (miRNA) expression levels in cervical cells obtained from swabs collected during pregnancy and the length of gestation. We analyzed cervical samples obtained between 16 and 19 weeks of gestation from 53 women in a prospective cohort from Mexico City, and followed them until delivery. Cervical miRNA was extracted and expression was quantified using the NanoString nCounter Analysis System. Linear regression models were used to examine the association between miRNA expression levels and gestational age at delivery, adjusted for maternal age, education, parity, body mass index, smoke exposure, and inflammation assessed on a Papanicolaou smear. We identified 6 miRNAs that were significantly associated with gestational age at the time of delivery, including miR-21, 30e, 142, 148b, 29b, and 223. Notably, per each doubling in miR-21 expression, gestations were 0.9 (95% CI: 0.2-1.5) days shorter on average (P = 0.009). Per each doubling in miR-30e, 142, 148b, 29b, and 223 expression, gestations were shorter by 1.0 to 1.6 days. The predicted targets of the miRNAs were enriched for molecules involved in DNA replication and inflammatory processes. The levels of specific miRNAs in the human cervix during pregnancy are predictive of gestational age at delivery, and should be validated in future studies as potential biomarkers of preterm birth risk.
Collapse
Affiliation(s)
- Alison P Sanders
- a Department of Preventive Medicine; Icahn School of Medicine at Mount Sinai ; New York , NY USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hoffman Sage Y, Lee L, Thomas AM, Benson CB, Shipp TD. Fetal adrenal gland volume and preterm birth: a prospective third-trimester screening evaluation. J Matern Fetal Neonatal Med 2015; 29:1552-5. [DOI: 10.3109/14767058.2015.1059811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Jantzie LL, Robinson S. Preclinical Models of Encephalopathy of Prematurity. Dev Neurosci 2015; 37:277-88. [PMID: 25722056 DOI: 10.1159/000371721] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
Encephalopathy of prematurity (EoP) encompasses the central nervous system (CNS) abnormalities associated with injury from preterm birth. Although rapid progress is being made, limited understanding exists of how cellular and molecular CNS injury from early birth manifests as the myriad of neurological deficits in children who are born preterm. More importantly, this lack of direct insight into the pathogenesis of these deficits hinders both our ability to diagnose those infants who are at risk in real time and could potentially benefit from treatment and our ability to develop more effective interventions. Current barriers to clarifying the pathophysiology, developmental trajectory, injury timing, and evolution include preclinical animal models that only partially recapitulate the molecular, cellular, histological, and functional abnormalities observed in the mature CNS following EoP. Inflammation from hypoxic-ischemic and/or infectious injury induced in utero in lower mammals, or actual prenatal delivery of more phylogenetically advanced mammals, are likely to be the most clinically relevant EOP models, facilitating translation to benefit infants. Injury timing, type, severity, and pathophysiology need to be optimized to address the specific hypothesis being tested. Functional assays of the mature animal following perinatal injury to mimic EoP should ideally test for the array of neurological deficits commonly observed in preterm infants, including gait, seizure threshold and cognitive and behavioral abnormalities. Here, we review the merits of various preclinical models, identify gaps in knowledge that warrant further study and consider challenges that animal researchers may face in embarking on these studies. While no one model system is perfect, insights relevant to the clinical problem can be gained with interpretation of experimental results within the context of inherent limitations of the chosen model system. Collectively, optimal use of multiple models will address a major challenge facing the field today - to identify the type and severity of CNS injury these vulnerable infants suffer in a safe and timely manner, such that emerging neurointerventions can be tailored to specifically address individual reparative needs.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico, Albuquerque, N. Mex., USA
| | | |
Collapse
|
20
|
Jantzie LL, Corbett CJ, Berglass J, Firl DJ, Flores J, Mannix R, Robinson S. Complex pattern of interaction between in utero hypoxia-ischemia and intra-amniotic inflammation disrupts brain development and motor function. J Neuroinflammation 2014; 11:131. [PMID: 25082427 PMCID: PMC4128546 DOI: 10.1186/1742-2094-11-131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/15/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Infants born preterm commonly suffer from a combination of hypoxia-ischemia (HI) and infectious perinatal inflammatory insults that lead to cerebral palsy, cognitive delay, behavioral issues and epilepsy. Using a novel rat model of combined late gestation HI and lipopolysaccharide (LPS)-induced inflammation, we tested our hypothesis that inflammation from HI and LPS differentially affects gliosis, white matter development and motor impairment during the first postnatal month. METHODS Pregnant rats underwent laparotomy on embryonic day 18 and transient systemic HI (TSHI) and/or intra-amniotic LPS injection. Shams received laparotomy and anesthesia only. Pups were born at term. Immunohistochemistry with stereological estimates was performed to assess regional glial loads, and western blots were performed for protein expression. Erythropoietin ligand and receptor levels were quantified using quantitative PCR. Digigait analysis detected gait deficits. Statistical analysis was performed with one-way analysis of variance and post-hoc Bonferonni correction. RESULTS Microglial and astroglial immunolabeling are elevated in TSHI + LPS fimbria at postnatal day 2 compared to sham (both P < 0.03). At postnatal day 15, myelin basic protein expression is reduced by 31% in TSHI + LPS pups compared to shams (P < 0.05). By postnatal day 28, white matter injury shifts from the acute injury pattern to a chronic injury pattern in TSHI pups only. Both myelin basic protein expression (P < 0.01) and the phosphoneurofilament/neurofilament ratio, a marker of axonal dysfunction, are reduced in postnatal day 28 TSHI pups (P < 0.001). Erythropoietin ligand to receptor ratios differ between brains exposed to TSHI and LPS. Gait analyses reveal that all groups (TSHI, LPS and TSHI + LPS) are ataxic with deficits in stride, paw placement, gait consistency and coordination (all P < 0.001). CONCLUSIONS Prenatal TSHI and TSHI + LPS lead to different patterns of injury with respect to myelination, axon integrity and gait deficits. Dual injury leads to acute alterations in glial response and cellular inflammation, while TSHI alone causes more prominent chronic white matter and axonal injury. Both injuries cause significant gait deficits. Further study will contribute to stratification of injury mechanisms in preterm infants, and guide the use of promising therapeutic interventions.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Axons/pathology
- Brain/embryology
- Brain/growth & development
- Brain/metabolism
- Calcium-Binding Proteins/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Erythropoietin/genetics
- Erythropoietin/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glial Fibrillary Acidic Protein/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/physiopathology
- Inflammation/chemically induced
- Inflammation/pathology
- Leukoencephalopathies/etiology
- Lipopolysaccharides/toxicity
- Microfilament Proteins/metabolism
- Myelin Basic Protein/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/metabolism
Collapse
Affiliation(s)
- Lauren L Jantzie
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Current address: Department of Pediatrics, UNM, Office of Pediatric Research, MSC10 5590, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Christopher J Corbett
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jacqueline Berglass
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel J Firl
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Julian Flores
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rebekah Mannix
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shenandoah Robinson
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
21
|
The fetal inflammatory response syndrome is a risk factor for morbidity in preterm neonates. Am J Obstet Gynecol 2013; 209:542.e1-542.e11. [PMID: 23994220 DOI: 10.1016/j.ajog.2013.08.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/02/2013] [Accepted: 08/26/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to show and discuss an association between fetal inflammatory response syndrome (FIRS) and an adverse neonatal outcome defined as combined severe neonatal morbidity and mortality in preterm neonates hospitalized in our neonatal intensive care unit. STUDY DESIGN This was an observational study including all preterm neonates hospitalized in our neonatal intensive care unit over a 21 month period. FIRS was defined as cord blood interleukin (IL)-6 greater than 11 pg/mL. Main outcome parameter was an adverse neonatal outcome defined as hospital mortality and/or the presence of any of 5 prespecified morbidities (bronchopulmonary dysplasia, periventricular leukomalacia, intraventricular hemorrhage, and early- or late-onset sepsis). RESULTS Fifty-seven of 176 preterm infants hospitalized during the study period (32%) had an adverse neonatal outcome and 62 of these 176 infants (35%) had FIRS with median IL-6 values of 51.8 pg/mL (range, 11.2 to >1000 pg/mL). In a regression analysis, FIRS was significantly associated with adverse neonatal outcome (P < .001) and with the single outcome parameters, intraventricular hemorrhage and early-onset sepsis (P = .006 and P = .018, respectively). In the bivariate analysis, FIRS was associated with death and bronchopulmonary dysplasia (P = .004 and P < .001, respectively). IL-6 correlated with adverse neonatal outcome (r = 0.411, P < .001). When comparing the correlation in neonates less than 32 weeks' gestational age (r = 0.481, P < .001) with neonates 32 weeks or longer (r = 0.233, P = .019), the difference was nearly significant (P = .065). CONCLUSION FIRS is a risk factor for adverse neonatal outcome in preterm infants. In particular, the combination of IL-6 greater than 11 pg/mL and low gestational age increased the risk for severe neonatal morbidity or death.
Collapse
|
22
|
Stampalija T, Chaiworapongsa T, Romero R, Tarca AL, Bhatti G, Chiang PJ, Than NG, Ferrazzi E, Hassan SS, Yeo L. Soluble ST2, a modulator of the inflammatory response, in preterm and term labor. J Matern Fetal Neonatal Med 2013; 27:111-21. [PMID: 23688338 DOI: 10.3109/14767058.2013.806894] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Intra-amniotic infection/inflammation (IAI) is causally linked with spontaneous preterm labor and delivery. The ST2L receptor and its soluble form (sST2) are capable of binding to interleukin (IL)-33, a member of the IL-1 superfamily. Members of this cytokine family have been implicated in the onset of spontaneous preterm labor in the context of infection. Soluble ST2 has anti-inflammatory properties, and plasma concentrations are elevated in systemic inflammation, such as sepsis, acute pyelonephritis in pregnancy and the fetal inflammatory response syndrome. The aims of this study were to examine: (1) whether amniotic fluid concentrations of sST2 change with IAI, preterm, and term parturition; and (2) if mRNA expression of ST2 in the chorioamniotic membranes changes with acute histologic chorioamnionitis in women who deliver preterm. METHOD A cross-sectional study was conducted to determine amniotic fluid concentrations of sST2 in: (1) women with preterm labor (PTL) who delivered at term (n=49); (2) women with PTL who delivered preterm without IAI (n=21); (3) women with PTL who delivered preterm with IAI (n=31); (4) term pregnancies not in labor (n=13); and (5) term pregnancies in labor (n=43). The amniotic fluid concentration of sST2 was determined by ELISA. The mRNA expression of ST2 in the chorioamniotic membranes of women who delivered preterm with (n=24), and without acute histologic chorioamnionitis (n=19) was determined by qRT-PCR. RESULTS (1) Patients with PTL who delivered preterm with IAI had a lower median amniotic fluid concentration of sST2 compared to those with PTL who delivered preterm without IAI [median 410 ng/mL, inter-quartile range (IQR) 152-699 ng/mL versus median 825 ng/mL, IQR 493-1216 ng/mL; p=0.0003] and those with PTL who delivered at term [median 410 ng/mL, IQR 152-699 ng/mL versus median 673 ng/mL, IQR 468-1045 ng/mL; p=0.0003]; (2) no significant differences in the median amniotic fluid concentration of sST2 were observed between patients with PTL who delivered at term and those who delivered preterm without IAI (p=0.4), and between women at term in labor and those at term not in labor (p=0.9); (3) the mean mRNA expression of ST2 was 4-fold lower in women who delivered preterm with acute histologic chorioamnionitis than in those without this lesion (p=0.008). CONCLUSIONS The median sST2 amniotic fluid concentration and mRNA expression of ST2 by chorioamniotic membranes is lower in PTL associated with IAI and acute histologic chorioamnionitis than in PTL without these conditions. Changes in the median amniotic fluid sST2 concentration are not observed in preterm and term parturition without IAI. Thus, amniotic fluid sST2 in the presence of IAI behaves differently when compared to sST2 in the plasma of individuals affected by fetal inflammatory response syndrome, acute pyelonephritis in pregnancy, and adult sepsis. Decreased concentrations of sST2 in IAI are likely to promote a pro-inflammatory response, which is important for parturition in the context of infection.
Collapse
Affiliation(s)
- Tamara Stampalija
- Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, Maryland, and Detroit, Michigan , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
James-Todd TM, Karumanchi SA, Hibert EL, Mason SM, Vadnais MA, Hu FB, Rich-Edwards JW. Gestational age, infant birth weight, and subsequent risk of type 2 diabetes in mothers: Nurses' Health Study II. Prev Chronic Dis 2013; 10:E156. [PMID: 24050526 PMCID: PMC3780709 DOI: 10.5888/pcd10.120336] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Women with a history of gestational diabetes mellitus (GDM) are at higher risk of developing type 2 diabetes (T2DM); however, little is known about the association between other common pregnancy complications (eg, preterm birth, macrosomia) and T2DM risk. We examined the associations between first-pregnancy preterm, postterm birth, low birth weight, and macrosomia with subsequent risk of T2DM. METHODS We conducted a prospective cohort study of Nurses' Health Study II (NHSII) participants; 51,728 women in the study had a single live birth and complete pregnancy history. NHSII confirmed incident diabetes mellitus through supplemental questionnaires. Participants were followed from year of first birth until 2005. We defined gestational age as very preterm (20 to ≤32 weeks), moderate preterm (33 to ≤37 weeks), term (38 to ≤42 weeks), and postterm (≥43 weeks). We defined low birth weight as an infant born at term weighing less than 5.5 pounds, and we defined macrosomia as an infant born at term weighing 10 pounds or more. We used Cox proportional hazards models, adjusting for potential confounders. RESULTS Women with a very preterm birth (2%) had an increased T2DM risk (adjusted hazard ratio, 1.34; 95% confidence interval [CI], 1.05-1.71). This increased risk emerged in the decade following pregnancy. Macrosomia (1.5%) was associated with a 1.61 increased T2DM risk, after adjusting for risk factors, including GDM (95% CI, 1.24-2.08). This association was apparent within the first 5 years after pregnancy. Moderate preterm and term low birth weight did not significantly increase the risk of T2DM over the 35-year follow-up time. CONCLUSION Women who experienced a very preterm birth or had an infant that weighed 10 pounds or more may benefit from lifestyle intervention to reduce T2DM risk. If replicated, these findings could lead to a reduced risk of T2DM through improved primary care for women experiencing a preterm birth or an infant of nonnormal birth weight.
Collapse
Affiliation(s)
- Tamarra M James-Todd
- Brigham and Women's Hospital, Division of Women's Health, 1620 Tremont Street, Boston, MA 02120, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Markovic D, Bari MF, Lu B, Vatish M, Grammatopoulos DK. Corticotropin-releasing hormone interacts with interleukin-1β to regulate prostaglandin H synthase-2 expression in human myometrium during pregnancy and labor. J Clin Endocrinol Metab 2013; 98:2864-75. [PMID: 23666959 PMCID: PMC3877764 DOI: 10.1210/jc.2013-1094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CONTEXT The onset of labor appears to involve the activation of myometrial inflammatory pathways, and transcription factors such as nuclear factor-κB (NF-κB) control expression of the contraction-associated proteins required to induce a procontractile phenotype. These responses might involve CRH, which integrates immune and neuroendocrine systems. OBJECTIVES In human myometrium we investigated cyclooxygenase 2 (PGHS2) expression and regulation by CRH and the proinflammatory cytokine IL-1β before and after labor. DESIGN Myometrial tissues obtained from pregnant women at term before (n = 12) or during labor (n = 10) and pathological cases of choriamnionitis-associated term labor (n = 5) were used to isolate primary myocytes and investigate in vitro, CRH effects on basal and IL-1β regulated p65 activation and PGHS2 expression. RESULTS In nonlaboring myometrial cells, CRH was unable to induce NF-κB nuclear translocation; however, it altered the temporal dynamics of IL-1β-driven NF-κB nuclear entry by initially delaying entry and subsequently prolonging retention. These CRH-R1-driven effects were associated with a modest inhibitory action in the early phase (within 2 hours) of IL-1β stimulated PGHS2 mRNA expression, whereas prolonged stimulation for 6-18 hours augmented the IL-1β effects. The early-phase effect required intact protein kinase A activity and was diminished after the onset of labor. The presence of chorioamnionitis led to exaggerated PGHS2 mRNA responses to IL-1β but diminished effects of CRH. CONCLUSIONS CRH is involved in the inflammatory regulation of PGHS2 expression before and during labor; these actions might be important in priming and preparing the myometrium for labor and cellular adaptive responses to inflammatory mediators.
Collapse
Affiliation(s)
- Danijela Markovic
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Kim SK, Romero R, Savasan ZA, Xu Y, Dong Z, Lee DC, Yeo L, Hassan SS, Chaiworapongsa T. Endoglin in amniotic fluid as a risk factor for the subsequent development of bronchopulmonary dysplasia. Am J Reprod Immunol 2012; 69:105-23. [PMID: 23279628 DOI: 10.1111/aji.12046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/23/2012] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Cross-talk between inflammation and angiogenesis pathways has been recently reported. The objectives of this study were to: (i) examine whether amniotic fluid (AF) concentrations of soluble endoglin (sEng), a protein with anti-angiogenic properties, change during pregnancy, parturition, or intra-amniotic infection and/or inflammation (IAI); (ii) determine whether an increase in sEng in the AF of patients with preterm labor (PTL) and preterm prelabor rupture of membranes (PROM) is associated with adverse neonatal outcomes; and (iii) investigate potential sources of sEng in AF. STUDY DESIGN A cross-sectional study was conducted to include patients in the following groups: (i) mid-trimester (n = 20); (ii) PTL with term delivery (n = 95); (iii) PTL leading to preterm delivery with (n = 40) and without IAI (n = 46); (iv) preterm PROM with (n = 37) and without IAI (n = 37); (v) term in labor (n = 48) and not in labor (n = 44). AF concentrations of sEng were determined by enzyme-linked immunosorbent assay. Chorioamniotic membranes, umbilical cord blood, and AF macrophages were examined for the expression of endoglin. RESULTS (i) Patients with IAI had a higher median AF concentration of sEng than those without IAI (P = 0.02 for PTL and 0.06 for preterm PROM); (ii) AF concentrations of sEng in the 3rd and 4th quartiles were associated with IAI (OR 2.5 and 7.9, respectively); (iii) an AF sEng concentration ≥779.5 pg/mL was associated with bronchopulmonary dysplasia (BPD) (OR 7.9); (iv) endoglin was co-localized with CD14+ macrophages in AF pellets of patients with IAI by immunofluorescence and flow cytometry; and (v) the concentration of sEng in the supernatant was significantly increased after the treatment of macrophages with endotoxin or TNF-α. CONCLUSIONS Soluble endoglin participates in the host response against IAI. Activated macrophages may be a source of sEng concentrations in the AF of patients with IAI. An increase of sEng in the AF is associated with BPD and adverse neonatal outcomes.
Collapse
Affiliation(s)
- Sun K Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD and Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gervasi MT, Romero R, Bracalente G, Chaiworapongsa T, Erez O, Dong Z, Hassan SS, Yeo L, Yoon BH, Mor G, Barzon L, Franchin E, Militello V, Palù G. Viral invasion of the amniotic cavity (VIAC) in the midtrimester of pregnancy. J Matern Fetal Neonatal Med 2012; 25:2002-13. [PMID: 22524157 PMCID: PMC3498469 DOI: 10.3109/14767058.2012.683899] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The prevalence of viral infections in the amniotic fluid (AF) has not yet been ascertained. The aim of this study was to determine the prevalence of specific viral nucleic acids in the AF and its relationship to pregnancy outcome. STUDY DESIGN From a cohort of 847 consecutive women undergoing midtrimester amniocentesis, 729 cases were included in this study after exclusion of documented fetal anomalies, chromosomal abnormalities, unavailability of AF specimens and clinical outcomes. AF specimens were tested by quantitative real-time PCR for the presence of genome sequences of the following viruses: adenoviruses, herpes simplex virus (HSV), varicella zoster virus (VZV), human herpesvirus 6 (HHV6), human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), parvovirus B19 and enteroviruses. Viral nucleic acid testing was also performed in maternal blood and cord blood in the population of women in whom AF was positive for viruses and in a control group of 29 women with AF negative for viral nucleic acids. The relationship between the presence of viruses and pregnancy and neonatal outcome was examined. The correlation between the presence of nucleic acids of viruses in the AF and the concentration of the cytokine interleukin-6 (IL-6) and the T cell chemokine CXCL-10 (or IP-10) in AF and maternal blood were analyzed. RESULTS Viral genome sequences were found in 16 of 729 (2.2%) AF samples. HHV6 was the most commonly detected virus (7 cases, 1.0%), followed by HCMV (6 cases, 0.8%), parvovirus B19 (2 cases, 0.3%) and EBV (1 case, 0.1%), while HSV, VZV, enteroviruses and adenoviruses were not found in this cohort. Corresponding viral DNA was also detected in maternal blood of six out of seven women with HHV6-positive AF and in the umbilical cord plasma, which was available in one case. In contrast, viral DNA was not detected in maternal blood of women with AF positive for parvovirus B19, HCMV, EBV or of women with AF negative for viruses. HHV6 genome copy number in AF and maternal blood was consistent with genomic integration of viral DNA and genetic infection in all women. There was no significant difference in the AF concentration of IL-6 and IP-10 between patients with and without VIAC. However, for HCMV, there was a significant relationship between viral copy number and IP-10 concentration in maternal blood and AF. The group of women with AF positive for viral DNA delivered at term healthy neonates without complications in 14 out of 16 cases. In one case of HHV6 infection in the AF, the patient developed gestational hypertension at term, and in another case of HHV6 infection in the AF, the patient delivered at 33 weeks after preterm premature rupture of membranes (PPROM). CONCLUSION Viral nucleic acids are detectable in 2.2% of AF samples obtained from asymptomatic women in the midtrimester. HHV6 was the most frequently detected virus in AF. Adenoviruses were not detected. Vertical transmission of HHV6 was demonstrated in one case.
Collapse
Affiliation(s)
- Maria-Teresa Gervasi
- Ob/Gyn Unit, Department for Health of Mothers and Children, Azienda Ospedaliera, Padova, Italy
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, and Bethesda, MD, USA
| | - Gabriella Bracalente
- Ob/Gyn Unit, Department for Health of Mothers and Children, ASL 9 Treviso, Italy
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, and Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Offer Erez
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of The Negev, Beer Sheva, Israel
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, and Bethesda, MD, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, and Bethesda, MD, USA
- Ob/Gyn Unit, Department for Health of Mothers and Children, ASL 9 Treviso, Italy
| | - Lami Yeo
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, and Bethesda, MD, USA
- Ob/Gyn Unit, Department for Health of Mothers and Children, ASL 9 Treviso, Italy
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gil Mor
- Department of Obstetrics, Gynecology & Reproductive Sciences, Reproductive Immunology Unit, Yale University School of Medicine, New Haven, CT, USA
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|