1
|
Jia S, Zhao F. Single-cell transcriptomic profiling of the neonatal oviduct and uterus reveals new insights into upper Müllerian duct regionalization. FASEB J 2024; 38:e23632. [PMID: 38686936 DOI: 10.1096/fj.202400303r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
The upper Müllerian duct (MD) is patterned and specified into two morphologically and functionally distinct organs, the oviduct and uterus. It is known that this regionalization process is instructed by inductive signals from the adjacent mesenchyme. However, the interaction landscape between epithelium and mesenchyme during upper MD development remains largely unknown. Here, we performed single-cell transcriptomic profiling of mouse neonatal oviducts and uteri at the initiation of MD epithelial differentiation (postnatal day 3). We identified major cell types including epithelium, mesenchyme, pericytes, mesothelium, endothelium, and immune cells in both organs with established markers. Moreover, we uncovered region-specific epithelial and mesenchymal subpopulations and then deduced region-specific ligand-receptor pairs mediating mesenchymal-epithelial interactions along the craniocaudal axis. Unexpectedly, we discovered a mesenchymal subpopulation marked by neurofilaments with specific localizations at the mesometrial pole of both the neonatal oviduct and uterus. Lastly, we analyzed and revealed organ-specific signature genes of pericytes and mesothelial cells. Taken together, our study enriches our knowledge of upper MD development, and provides a manageable list of potential genes, pathways, and region-specific cell subtypes for future functional studies.
Collapse
Affiliation(s)
- Shuai Jia
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Bigger-Allen A, Gheinani AH, Adam RM. Investigation of the impact of bromodomain inhibition on cytoskeleton stability and contraction. Cell Commun Signal 2024; 22:184. [PMID: 38493137 PMCID: PMC10944605 DOI: 10.1186/s12964-024-01553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Injury to contractile organs such as the heart, vasculature, urinary bladder and gut can stimulate a pathological response that results in loss of normal contractility. PDGF and TGFβ are among the most well studied initiators of the injury response and have been shown to induce aberrant contraction in mechanically active cells of hollow organs including smooth muscle cells (SMC) and fibroblasts. However, the mechanisms driving contractile alterations downstream of PDGF and TGFβ in SMC and fibroblasts are incompletely understood, limiting therapeutic interventions. METHODS To identify potential molecular targets, we have leveraged the analysis of publicly available data, comparing transcriptomic changes in mechanically active cells stimulated with PDGF and TGFβ. Additional Analysis of publicly available data sets were performed on SMC and fibroblasts treated in the presence or absence of the MYC inhibitor JQ1. Validation of in silico findings were performed with qPCR, immunoblots, and collagen gel contraction assays measure the effect of JQ1 on cytoskeleton associated genes, proteins and contractility in mechanically active cells. Likelihood ratio test and FDR adjusted p-values were used to determine significant differentially expressed genes. Student ttest were used to calculate statistical significance of qPCR and contractility analyses. RESULTS Comparing PDGF and TGFβ stimulated SMC and fibroblasts identified a shared molecular profile regulated by MYC and members of the AP-1 transcription factor complex. Additional in silico analysis revealed a unique set of cytoskeleton-associated genes that were sensitive to MYC inhibition with JQ1. In vitro validation demonstrated JQ1 was also able to attenuate TGFβ and PDGF induced changes to the cytoskeleton and contraction of smooth muscle cells and fibroblasts in vitro. CONCLUSIONS These findings identify MYC as a key driver of aberrant cytoskeletal and contractile changes in fibroblasts and SMC, and suggest that JQ1 could be used to restore normal contractile function in hollow organs.
Collapse
Affiliation(s)
- Alexander Bigger-Allen
- Urological Diseases Research Center, Boston Children's Hospital, Enders Bldg 1061.4, 300 Longwood Avenue, Boston, MA, 02115, USA
- Biological & Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children's Hospital, Enders Bldg 1061.4, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010, Bern, Switzerland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Enders Bldg 1061.4, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Jia S, Zhao F. Single-cell transcriptomic profiling of the neonatal oviduct and uterus reveals new insights into upper Müllerian duct regionalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572607. [PMID: 38187777 PMCID: PMC10769252 DOI: 10.1101/2023.12.20.572607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The upper Müllerian duct (MD) is patterned and specified into two morphologically and functionally distinct organs, the oviduct and uterus. It is known that this regionalization process is instructed by inductive signals from the adjacent mesenchyme. However, the interaction landscape between epithelium and mesenchyme during upper MD development remains largely unknown. Here, we performed single-cell transcriptomic profiling of mouse neonatal oviducts and uteri at the initiation of MD epithelial differentiation (postnatal day 3). We identified major cell types including epithelium, mesenchyme, pericytes, mesothelium, endothelium, and immune cells in both organs with established markers. Moreover, we uncovered region-specific epithelial and mesenchymal subpopulations and then deduced region-specific ligand-receptor pairs mediating mesenchymal-epithelial interactions along the craniocaudal axis. Unexpectedly, we discovered a mesenchymal subpopulation marked by neurofilaments with specific localizations at the mesometrial pole of both the neonatal oviduct and uterus. Lastly, we analyzed and revealed organ-specific signature genes of pericytes and mesothelial cells. Taken together, our study enriches our knowledge of upper Müllerian duct development, and provides a manageable list of potential genes, pathways, and region-specific cell subtypes for future functional studies.
Collapse
|
4
|
Bigger-Allen A, Gheinani AH, Adam RM. Investigation of the impact of bromodomain inhibition on cytoskeleton stability and contraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567076. [PMID: 38014184 PMCID: PMC10680757 DOI: 10.1101/2023.11.14.567076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Injury to contractile organs such as the heart, vasculature, urinary bladder and gut can stimulate a pathological response that results in loss of normal contractility. PDGF and TGFβ are among the most well studied initiators of the injury response and have been shown to induce aberrant contraction in mechanically active cells of hollow organs including smooth muscle cells (SMC) and fibroblasts. However the mechanisms driving contractile alterations downstream of PDGF and TGFβ in SMC and fibroblasts are incompletely understood, limiting therapeutic interventions. To identify potential molecular targets, we have leveraged the analysis of publicly available data, comparing transcriptomic changes in mechanically active cells stimulated with PDGF and TGFβ and identified a shared molecular profile regulated by MYC and members of the AP-1 transcription factor complex. We also analyzed data sets from SMC and fibroblasts treated in the presence or absence of the MYC inhibitor JQ1. This analysis revealed a unique set of cytoskeleton-associated genes that were sensitive to MYC inhibition. JQ1 was also able to attenuate TGFβ and PDGF induced changes to the cytoskeleton and contraction of smooth muscle cells and fibroblasts in vitro. These findings identify MYC as a key driver of aberrant cytoskeletal and contractile changes in fibroblasts and SMC, and suggest that JQ1 could be used to restore normal contractile function in hollow organs.
Collapse
Affiliation(s)
- Alexander Bigger-Allen
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA
- Biological & Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rosalyn M. Adam
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
5
|
Lambrinos G, Cristofaro V, Pelton K, Bigger-Allen A, Doyle C, Vasquez E, Bielenberg DR, Sullivan MP, Adam RM. Neuropilin 2 Is a Novel Regulator of Distal Colon Contractility. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1592-1603. [PMID: 35985479 PMCID: PMC9667714 DOI: 10.1016/j.ajpath.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 06/05/2023]
Abstract
Appropriate coordination of smooth muscle contraction and relaxation is essential for normal colonic motility. The impact of perturbed motility ranges from moderate, in conditions such as colitis, to potentially fatal in the case of pseudo-obstruction. The mechanisms underlying aberrant motility and the extent to which they can be targeted pharmacologically are incompletely understood. This study identified colonic smooth muscle as a major site of expression of neuropilin 2 (Nrp2) in mice and humans. Mice with inducible smooth muscle-specific knockout of Nrp2 had an increase in evoked contraction of colonic rings in response to carbachol at 1 and 4 weeks following initiation of deletion. KCl-induced contractions were also increased at 4 weeks. Colonic motility was similarly enhanced, as evidenced by faster bead expulsion in Nrp2-deleted mice versus Nrp2-intact controls. In length-tension analysis of the distal colon, passive tension was similar in Nrp2-deficient and Nrp2-intact mice, but at low strains, active stiffness was greater in Nrp2-deficient animals. Consistent with the findings in conditional Nrp2 mice, Nrp2-null mice showed increased contractility in response to carbachol and KCl. Evaluation of selected proteins implicated in smooth muscle contraction revealed no significant differences in the level of α-smooth muscle actin, myosin light chain, calponin, or RhoA. Together, these findings identify Nrp2 as a novel regulator of colonic contractility that may be targetable in conditions characterized by dysmotility.
Collapse
Affiliation(s)
- George Lambrinos
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts
| | - Vivian Cristofaro
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Division of Urology, VA Boston Healthcare System, Boston, Massachusetts
| | - Kristine Pelton
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts
| | - Alexander Bigger-Allen
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts; Biological and Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts
| | - Claire Doyle
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts
| | - Evalynn Vasquez
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts
| | - Diane R Bielenberg
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Maryrose P Sullivan
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Division of Urology, VA Boston Healthcare System, Boston, Massachusetts.
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Sawma T, Shaito A, Najm N, Sidani M, Orekhov A, El-Yazbi AF, Iratni R, Eid AH. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: Implications for vascular function. Atherosclerosis 2022; 358:12-28. [DOI: 10.1016/j.atherosclerosis.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
|
7
|
Benwell CJ, Taylor JAGE, Robinson SD. Endothelial neuropilin-2 influences angiogenesis by regulating actin pattern development and α5-integrin-p-FAK complex recruitment to assembling adhesion sites. FASEB J 2021; 35:e21679. [PMID: 34314542 DOI: 10.1096/fj.202100286r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
The ability to form a variety of cell-matrix connections is crucial for angiogenesis to take place. Without stable anchorage to the extracellular matrix (ECM), endothelial cells (ECs) are unable to sense, integrate and disseminate growth factor stimulated responses that drive growth of a vascular bed. Neuropilin-2 (NRP2) is a widely expressed membrane-bound multifunctional non-tyrosine kinase receptor, which has previously been implicated in influencing cell adhesion and migration by interacting with α5-integrin and regulating adhesion turnover. α5-integrin, and its ECM ligand fibronectin (FN) are both known to be upregulated during the formation of neo-vasculature. Despite being descriptively annotated as a candidate biomarker for aggressive cancer phenotypes, the EC-specific roles for NRP2 during developmental and pathological angiogenesis remain unexplored. The data reported here support a model whereby NRP2 actively promotes EC adhesion and migration by regulating dynamic cytoskeletal remodeling and by stimulating Rab11-dependent recycling of α5-integrin-p-FAK complexes to newly assembling adhesion sites. Furthermore, temporal depletion of EC-NRP2 in vivo impairs primary tumor growth by disrupting vessel formation. We also demonstrate that EC-NRP2 is required for normal postnatal retinal vascular development, specifically by regulating cell-matrix adhesion. Upon loss of endothelial NRP2, vascular outgrowth from the optic nerve during superficial plexus formation is disrupted, likely due to reduced FAK phosphorylation within sprouting tip cells.
Collapse
Affiliation(s)
- Christopher J Benwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - James A G E Taylor
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Stephen D Robinson
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
8
|
Harman JL, Sayers J, Chapman C, Pellet-Many C. Emerging Roles for Neuropilin-2 in Cardiovascular Disease. Int J Mol Sci 2020; 21:E5154. [PMID: 32708258 PMCID: PMC7404143 DOI: 10.3390/ijms21145154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease, the leading cause of death worldwide, is predominantly associated with atherosclerosis. Atherosclerosis is a chronic inflammatory disease characterised by the narrowing of large to medium-sized arteries due to a build-up of plaque. Atherosclerotic plaque is comprised of lipids, extracellular matrix, and several cell types, including endothelial, immune, and vascular smooth muscle cells. Such narrowing of the blood vessels can itself restrict blood flow to vital organs but most severe clinical complications, including heart attacks and strokes, occur when lesions rupture, triggering the blood to clot and obstructing blood flow further down the vascular tree. To circumvent such obstructions, percutaneous coronary intervention or bypass grafts are often required; however, re-occlusion of the treated artery frequently occurs. Neuropilins (NRPs), a multifunctional family of cell surface co-receptors, are expressed by endothelial, immune, and vascular smooth muscle cells and are regulators of numerous signalling pathways within the vasculature. Here, we review recent studies implicating NRP2 in the development of occlusive vascular diseases and discuss how NRP2 could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer L Harman
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Jacob Sayers
- University College London, Division of Medicine, Rayne Building, University Street, London WC1E 6JF, UK
| | - Chey Chapman
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Caroline Pellet-Many
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| |
Collapse
|
9
|
Tan G. Inhibitory effects of Semaphorin 3F as an alternative candidate to anti-VEGF monoclonal antibody on angiogenesis. In Vitro Cell Dev Biol Anim 2019; 55:756-765. [DOI: 10.1007/s11626-019-00392-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
|
10
|
Finney AC, Orr AW. Guidance Molecules in Vascular Smooth Muscle. Front Physiol 2018; 9:1311. [PMID: 30283356 PMCID: PMC6157320 DOI: 10.3389/fphys.2018.01311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Several highly conserved families of guidance molecules, including ephrins, Semaphorins, Netrins, and Slits, play conserved and distinct roles in tissue remodeling during tissue patterning and disease pathogenesis. Primarily, these guidance molecules function as either secreted or surface-bound ligands that interact with their receptors to activate a variety of downstream effects, including cell contractility, migration, adhesion, proliferation, and inflammation. Vascular smooth muscle cells, contractile cells comprising the medial layer of the vessel wall and deriving from the mural population, regulate vascular tone and blood pressure. While capillaries lack a medial layer of vascular smooth muscle, mural-derived pericytes contribute similarly to capillary tone to regulate blood flow in various tissues. Furthermore, pericyte coverage is critical in vascular development, as perturbations disrupt vascular permeability and viability. During cardiovascular disease, smooth muscle cells play a more dynamic role in which suppression of contractile markers, enhanced proliferation, and migration lead to the progression of aberrant vascular remodeling. Since many types of guidance molecules are expressed in vascular smooth muscle and pericytes, these may contribute to blood vessel formation and aberrant remodeling during vascular disease. While vascular development is a large focus of the existing literature, studies emerged to address post-developmental roles for guidance molecules in pathology and are of interest as novel therapeutic targets. In this review, we will discuss the roles of guidance molecules in vascular smooth muscle and pericyte function in development and disease.
Collapse
Affiliation(s)
- Alexandra Christine Finney
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
11
|
Tumor Necrosis Factor-α Initiates miRNA-mRNA Signaling Cascades in Obstruction-Induced Bladder Dysfunction. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1847-1864. [DOI: 10.1016/j.ajpath.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/03/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023]
|
12
|
Human airway smooth muscle cell proliferation from asthmatics is negatively regulated by semaphorin3A. Oncotarget 2018; 7:80238-80251. [PMID: 27791986 PMCID: PMC5348316 DOI: 10.18632/oncotarget.12884] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022] Open
Abstract
Airway smooth muscle (ASM) hyperplasia is a key feature of airway remodeling in development of lung diseases such as asthma. Anomalous proliferation of ASM cells directly contributes to ASM hyperplasia. However, the molecular mechanisms controlling ASM cell proliferation are not completely understood. Semaphorins are versatile regulators of various cellular processes including cell growth and proliferation. The role of semaphorins in ASM cell proliferation has remained to be addressed. Here, we report that semaphorin 3A (Sema3A) receptor, neuropilin 1 (Nrp1), is expressed on human ASM cells (HASMC) isolated from healthy and asthmatic donors and treatment of these cells with exogenous Sema3A inhibits growth factor-induced proliferation. Sema3A inhibitory effect on HASMC proliferation is associated with decreased tyrosine phosphorylation of PDGFR, downregulation of Rac1 activation, STAT3 and GSK-3β phosphorylation. Bronchial sections from severe asthmatics displayed immunoreactivity of Nrp1, suggestive of functional contribution of Sema3A-Nrp1 axis in airway remodeling. Together, our data suggest Sema3A-Nrp1 signaling as a novel regulatory pathway of ASM hyperplasia.
Collapse
|
13
|
Suzuki HI, Katsura A, Mihira H, Horie M, Saito A, Miyazono K. Regulation of TGF-β-mediated endothelial-mesenchymal transition by microRNA-27. J Biochem 2017; 161:417-420. [PMID: 28338957 PMCID: PMC5412016 DOI: 10.1093/jb/mvx017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 12/30/2022] Open
Abstract
Multiple microRNAs (miRNAs) regulate epithelial-mesenchymal transition and endothelial-mesenchymal transition (EndMT). Here we report that microRNA-27b (miR-27b) positively regulates transforming growth factor-β (TGF-β)-induced EndMT of MS-1 mouse pancreatic microvascular endothelial cells. TGF-β induced miR-23b/24-1/27b expression, and inhibition of miR-27 suppressed TGF-β-mediated induction of mesenchymal genes. Genome-wide miRNA target analysis revealed that miR-27 targets Elk1, which acts as a competitive inhibitor of myocardin-related transcription factor-serum response factor signalling and as a myogenic repressor. miR-27b was also found to regulate several semaphorin receptors including Neuropilin 2, Plexin A2 and Plexin D1. These results suggest important roles of miR-27 in TGF-β-driven EndMT.
Collapse
Affiliation(s)
- Hiroshi I Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, 76-417, Cambridge, MA 02139, USA
| | - Akihiro Katsura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hajime Mihira
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Vasquez E, Cristofaro V, Lukianov S, Burkhard FC, Gheinani AH, Monastyrskaya K, Bielenberg DR, Sullivan MP, Adam RM. Deletion of neuropilin 2 enhances detrusor contractility following bladder outlet obstruction. JCI Insight 2017; 2:e90617. [PMID: 28194441 DOI: 10.1172/jci.insight.90617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic urethral obstruction and the ensuing bladder wall remodeling can lead to diminished bladder smooth muscle (BSM) contractility and debilitating lower urinary tract symptoms. No effective pharmacotherapy exists to restore BSM contractile function. Neuropilin 2 (Nrp2) is a transmembrane protein that is highly expressed in BSM. Nrp2 deletion in mice leads to increased BSM contraction. We determined whether genetic ablation of Nrp2 could restore BSM contractility following obstruction. Partial bladder outlet obstruction (pBOO) was created by urethral occlusion in mice with either constitutive and ubiquitous, or inducible smooth muscle-specific deletion of Nrp2, and Nrp2-intact littermates. Mice without obstruction served as additional controls. Contractility was measured by isometric tension testing. Nrp2 deletion prior to pBOO increased force generation in BSM 4 weeks following surgery. Deletion of Nrp2 in mice already subjected to pBOO for 4 weeks showed increased contractility of tissues tested 6 weeks after surgery compared with nondeleted controls. Assessment of tissues from patients with urodynamically defined bladder outlet obstruction revealed reduced NRP2 levels in obstructed bladders with compensated compared with decompensated function, relative to asymptomatic controls. We conclude that downregulation of Nrp2 promotes BSM force generation. Neuropilin 2 may represent a novel target to restore contractility following obstruction.
Collapse
Affiliation(s)
- Evalynn Vasquez
- Urological Diseases Research Center, Boston Children's Hospital.,Department of Surgery, Harvard Medical School
| | - Vivian Cristofaro
- Department of Surgery, Harvard Medical School.,Division of Urology, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
| | - Stefan Lukianov
- Urological Diseases Research Center, Boston Children's Hospital
| | - Fiona C Burkhard
- Urology Research Laboratory, Department of Clinical Research, Universität Bern, Bern, Switzerland
| | - Ali Hashemi Gheinani
- Urology Research Laboratory, Department of Clinical Research, Universität Bern, Bern, Switzerland
| | - Katia Monastyrskaya
- Urology Research Laboratory, Department of Clinical Research, Universität Bern, Bern, Switzerland
| | - Diane R Bielenberg
- Department of Surgery, Harvard Medical School.,Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Maryrose P Sullivan
- Department of Surgery, Harvard Medical School.,Division of Urology, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital.,Department of Surgery, Harvard Medical School
| |
Collapse
|
15
|
Mucka P, Levonyak N, Geretti E, Zwaans BMM, Li X, Adini I, Klagsbrun M, Adam RM, Bielenberg DR. Inflammation and Lymphedema Are Exacerbated and Prolonged by Neuropilin 2 Deficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2803-2812. [PMID: 27751443 DOI: 10.1016/j.ajpath.2016.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Abstract
The vasculature influences the progression and resolution of tissue inflammation. Capillaries express vascular endothelial growth factor (VEGF) receptors, including neuropilins (NRPs), which regulate interstitial fluid flow. NRP2, a receptor of VEGFA and semaphorin (SEMA) 3F ligands, is expressed in the vascular and lymphatic endothelia. Previous studies have demonstrated that blocking VEGF receptor 2 attenuates VEGFA-induced vascular permeability. The inhibition of NRP2 was hypothesized to decrease vascular permeability as well. Unexpectedly, massive tissue swelling and edema were observed in Nrp2-/- mice compared with wild-type littermates after delayed-type hypersensitivity reactions. Vascular permeability was twofold greater in inflamed blood vessels in Nrp2-deficient mice compared to those in Nrp2-intact littermates. The addition of exogenous SEMA3F protein inhibited vascular permeability in Balb/cJ mice, suggesting that the loss of endogenous Sema3F activity in the Nrp2-deficient mice was responsible for the enhanced vessel leakage. Functional lymphatic capillaries are necessary for draining excess fluid after inflammation; however, Nrp2-mutant mice lacked superficial lymphatic capillaries, leading to 2.5-fold greater fluid retention and severe lymphedema after inflammation. In conclusion, Nrp2 deficiency increased blood vessel permeability and decreased lymphatic vessel drainage during inflammation, highlighting the importance of the NRP2/SEMA3F pathway in the modulation of tissue swelling and resolution of postinflammatory edema.
Collapse
Affiliation(s)
- Patrick Mucka
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Nicholas Levonyak
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Elena Geretti
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | | | - Xiaoran Li
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Irit Adini
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Michael Klagsbrun
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Rosalyn M Adam
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
16
|
Ehrhardt A, Wang B, Yung AC, Wang Y, Kozlowski P, van Breemen C, Schrader JW. Urinary Retention, Incontinence, and Dysregulation of Muscarinic Receptors in Male Mice Lacking Mras. PLoS One 2015; 10:e0141493. [PMID: 26516777 PMCID: PMC4627820 DOI: 10.1371/journal.pone.0141493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022] Open
Abstract
Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras-/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly ‘layered’ with age in Mras-/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras-/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras-/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras-/- males were increased, and Mras-/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras-/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice.
Collapse
MESH Headings
- Acetylcholine/physiology
- Aging/genetics
- Aging/physiology
- Animals
- Female
- Gene Expression Regulation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monomeric GTP-Binding Proteins/deficiency
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/physiology
- Muscle Contraction
- Muscle, Smooth/metabolism
- Phenotype
- Proteinuria/genetics
- Proteinuria/physiopathology
- RNA, Messenger/biosynthesis
- Receptor, Muscarinic M2/biosynthesis
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/physiology
- Receptor, Muscarinic M3/biosynthesis
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/physiology
- Sex Characteristics
- Urinary Bladder/metabolism
- Urinary Bladder/pathology
- Urinary Bladder, Overactive/genetics
- Urinary Bladder, Overactive/physiopathology
- Urinary Incontinence/genetics
- Urinary Incontinence/physiopathology
- Urinary Retention/genetics
- Urinary Retention/physiopathology
- Urination/physiology
- ras Proteins
Collapse
Affiliation(s)
- Annette Ehrhardt
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Bin Wang
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Andrew C. Yung
- The University of British Columbia MRI Research Centre, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Yanni Wang
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- The University of British Columbia MRI Research Centre, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
- The University of British Columbia, Departments of Radiology and Urologic Sciences, 818 West 10th Ave., Vancouver, British Columbia, Canada
| | - Cornelis van Breemen
- The University of British Columbia, Department of Pharmacology and Therapeutics, 2176 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - John W. Schrader
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
17
|
Regulation of mTOR Signaling by Semaphorin 3F-Neuropilin 2 Interactions In Vitro and In Vivo. Sci Rep 2015; 5:11789. [PMID: 26156437 PMCID: PMC4496725 DOI: 10.1038/srep11789] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022] Open
Abstract
Semaphorin 3F (SEMA3F) provides neuronal guidance cues via its ability to bind neuropilin 2 (NRP2) and Plexin A family molecules. Recent studies indicate that SEMA3F has biological effects in other cell types, however its mechanism(s) of function is poorly understood. Here, we analyze SEMA3F-NRP2 signaling responses in human endothelial, T cell and tumor cells using phosphokinase arrays, immunoprecipitation and Western blot analyses. Consistently, SEMA3F inhibits PI-3K and Akt activity, and responses are associated with the disruption of mTOR/rictor assembly and mTOR-dependent activation of the RhoA GTPase. We also find that the expression of vascular endothelial growth factor, as well as mTOR-inducible cellular activation responses and cytoskeleton stability are inhibited by SEMA3F-NRP2 interactions in vitro. In vivo, local and systemic overproduction of SEMA3F reduces tumor growth in NRP2-expressing xenografts. Taken together, SEMA3F regulates mTOR signaling in diverse human cell types, suggesting that it has broad therapeutic implications.
Collapse
|
18
|
Regulation of soluble neuropilin 1, an endogenous angiogenesis inhibitor, in liver development and regeneration. Pathology 2015; 46:416-23. [PMID: 24977735 DOI: 10.1097/pat.0000000000000121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuropilin-1 (NRP1) is a receptor for vascular endothelial growth factor (VEGF). A soluble isoform of Nrp1 (sNrp1) has not been described in the mouse. Our goal was to examine the expression of mouse sNrp1 during liver development and regeneration.sNrp1 was cloned from mouse liver. The expression of sNrp1 and VEGF was examined in mouse liver during post-natal development and regeneration using northern blot, western blot, in situ hybridisation, and immunohistochemical analyses. HGF/NRP1 binding was examined in vitro.A novel 588-amino acid sNrp1 isoform was found to contain the ligand binding regions of Nrp1. The adult liver expressed more sNrp1 than full-length Nrp1. In vivo, hepatocytes constitutively expressed VEGF and sNrp1 in the quiescent state. sNrp1 was highly up-regulated at P20, a time point coinciding with a plateau in liver and body weights. Following hepatectomy, endogenous levels of sNrp1 decreased during the rapid growth phase, and VEGF levels were highest just prior to and during the angiogenic phase. sNrp1 levels again rose 5-10 days post-hepatectomy, presumably to control regeneration. HGF protein bound NRP1 and binding was competed with sNRP1.We cloned a novel mouse sNrp1 isoform from liver and provide evidence that this endogenous angiogenesis inhibitor may regulate VEGF or HGF bioavailability during normal physiological growth and development as well as during liver regeneration.
Collapse
|
19
|
Yamaji M, Mahmoud M, Evans IM, Zachary IC. Neuropilin 1 is essential for gastrointestinal smooth muscle contractility and motility in aged mice. PLoS One 2015; 10:e0115563. [PMID: 25659123 PMCID: PMC4319892 DOI: 10.1371/journal.pone.0115563] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022] Open
Abstract
Background and Aims Neuropilin 1 (NRP1) is a non-tyrosine kinase receptor for vascular endothelial growth factor (VEGF) and class 3 semaphorins, playing a role in angiogenesis and neuronal axon guidance, respectively. NRP1 is expressed in smooth muscle cells (SMC) but the functional role of NRP1 in SMC has not been elucidated. We therefore investigated the biological relevance of NRP1 in SMC in vivo by generating mice with SMC-specific Nrp1 deficiency. Methods Conditional gene targeting generated SMC-specific Nrp1 knockout mice (Nrp1SMKO) in which Cre recombinase is driven by the smooth muscle-specific myosin heavy chain (smMHC) promoter. Results SMC-specific Nrp1 deficiency resulted in a significant reduction in intestinal length by 6 months, and, by 18 months, in severe constipation, and enlargement of the intestine consistent with chronic intestinal pseudo-obstruction. These effects were associated with significant thinning of the intestinal smooth muscle, and decreased intestinal contractility. Expression of contractile proteins was reduced in Nrp1SMKO mice, including the smMHC isoform, SMB, whereas we observed a significant increase in the expression of the small-conductance calcium-activated potassium channel 3 (SK3/KCa2.3), implicated in negative regulation of smooth muscle contraction. Conclusions Nrp1 deficiency in visceral SMC results in adult-onset defects in gastrointestinal contractility and motility and causes a shift to a less contractile SMC phenotype. These findings indicate a new role for Nrp1 in the maintenance of the visceral SMC contractile phenotype required for normal GI motility in aged mice.
Collapse
Affiliation(s)
- Maiko Yamaji
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, the Rayne Building, University College London, London, WC1E 6JJ, United Kingdom
| | - Marwa Mahmoud
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, the Rayne Building, University College London, London, WC1E 6JJ, United Kingdom
| | - Ian M. Evans
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, the Rayne Building, University College London, London, WC1E 6JJ, United Kingdom
| | - Ian C. Zachary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, the Rayne Building, University College London, London, WC1E 6JJ, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Migliozzi MT, Mucka P, Bielenberg DR. Lymphangiogenesis and metastasis--a closer look at the neuropilin/semaphorin3 axis. Microvasc Res 2014; 96:68-76. [PMID: 25087623 DOI: 10.1016/j.mvr.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/13/2023]
Abstract
Metastasis is the leading cause of cancer-related deaths. Understanding how the lymphatic system responds to its environment and local stimuli may lead to therapies to combat metastasis and other lymphatic-associated diseases. This review compares lymphatic vessels and blood vessels, discusses markers of lymphatic vasculature, and elucidates some of the signaling motifs involved in lymphangiogenesis. Recent progress implicating the neuropilin and semaphorin axes in this process is discussed.
Collapse
Affiliation(s)
- Matthew T Migliozzi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Mucka
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Neuropilin 1 expression correlates with differentiation status of epidermal cells and cutaneous squamous cell carcinomas. J Transl Med 2014; 94:752-65. [PMID: 24791743 PMCID: PMC4074450 DOI: 10.1038/labinvest.2014.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 03/28/2014] [Indexed: 12/18/2022] Open
Abstract
Neuropilins (NRPs) are cell surface receptors for vascular endothelial growth factor (VEGF) and SEMA3 (class 3 semaphorin) family members. The role of NRPs in neurons and endothelial cells has been investigated, but the expression and role of NRPs in epithelial cells is much less clear. Herein, the expression and localization of NRP1 was investigated in human and mouse skin and squamous cell carcinomas (SCCs). Results indicated that NRP1 mRNA and protein was expressed in the suprabasal epithelial layers of the skin sections. NRP1 staining did not overlap with that of keratin 14 (K14) or proliferating cell nuclear antigen, but did co-localize with staining for keratin 1, indicating that differentiated keratinocytes express NRP1. Similar to the expression of NRP1, VEGF-A was expressed in suprabasal epithelial cells, whereas Nrp2 and VEGFR2 were not detectable in the epidermis. The expression of NRP1 correlated with a high degree of differentiation in human SCC specimens, human SCC xenografts, and mouse K14-HPV16 transgenic SCC. UVB irradiation of mouse skin induced Nrp1 upregulation. In vitro, Nrp1 was upregulated in primary keratinocytes in response to differentiating media or epidermal growth factor-family growth factors. In conclusion, the expression of NRP1 is regulated in the skin and is selectively produced in differentiated epithelial cells. NRP1 may function as a reservoir to sequester VEGF ligand within the epithelial compartment, thereby modulating its bioactivity.
Collapse
|
22
|
Goulopoulou S, Webb RC. Symphony of vascular contraction: how smooth muscle cells lose harmony to signal increased vascular resistance in hypertension. Hypertension 2014; 63:e33-9. [PMID: 24470463 DOI: 10.1161/hypertensionaha.113.02444] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Styliani Goulopoulou
- Department of Physiology, Georgia Regents University, 1120 Fifteenth St, Augusta, GA 30912.
| | | |
Collapse
|