1
|
Friot A, Djebali S, Valsesia S, Parroche P, Dubois M, Baude J, Vandenesch F, Marvel J, Leverrier Y. Antigen specific activation of cytotoxic CD8 + T cells by Staphylococcus aureus infected dendritic cells. Front Cell Infect Microbiol 2023; 13:1245299. [PMID: 37953797 PMCID: PMC10639145 DOI: 10.3389/fcimb.2023.1245299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathogen associated with a wide variety of diseases, from minor to life-threatening infections. Antibiotic-resistant strains have emerged, leading to increasing concern about the control of S. aureus infections. The development of vaccines may be one way to overcome these resistant strains. However, S. aureus ability to internalize into cells - and thus to form a reservoir escaping humoral immunity - is a challenge for vaccine development. A role of T cells in the elimination of persistent S. aureus has been established in mice but it remains to be established if CD8+ T cells could display a cytotoxic activity against S. aureus infected cells. We examined in vitro the ability of CD8+ T cells to recognize and kill dendritic cells infected with S. aureus. We first evidenced that both primary mouse dendritic cells and DC2.4 cell line can be infected with S. aureus. We then generated a strain of S. aureus expressing a model CD8 epitope and transgenic F5 CD8+ T cells recognizing this model epitope were used as reporter T cells. In response to S. aureus-infected dendritic cells, F5 CD8+ T cells produced IFN-γ in an antigen-specific manner and displayed an increased ability to kill infected cells. Altogether, these results demonstrate that cells infected by S. aureus display bacteria-derived epitopes at their surface that are recognized by CD8+ T cells. This paves the way for the development of CD8+ T cell-based therapies against S. aureus.
Collapse
|
2
|
Kinetic Characterization of the Immune Response to Methicillin-Resistant Staphylococcus aureus Subcutaneous Skin Infection. Infect Immun 2022; 90:e0006522. [PMID: 35647662 DOI: 10.1128/iai.00065-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTIs). Studies examining the immune response to S. aureus have been conducted, yet our understanding of the kinetic response to S. aureus subcutaneous skin infection remains incomplete. In this study, we used C57BL/6J mice and USA300 S. aureus to examine the host-pathogen interface from 8 h postinfection to 15 days postinfection (dpi), with the following outcomes measured: lesion size, bacterial titers, local cytokine and chemokine levels, phenotype of the responding leukocytes, and histopathology and Gram staining of skin tissue. Lesions were largest at 1 dpi, with peak necrotic tissue areas at 3 dpi, and were largely resolved by 15 dpi. During early infection, bacterial titers were high, neutrophils were the most abundant immune cell type, there was a decrease in most leukocyte populations found in uninfected skin, and many different cytokines were produced. Histopathological analysis demonstrated swift and extensive keratinocyte death and robust and persistent neutrophil infiltration. Gram staining revealed subdermal S. aureus colonization and, later, limited migration into upper skin layers. Interleukin-17A/F (IL-17A/F) was detected only starting at 5 dpi and coincided with an immediate decrease in bacterial numbers in the following days. After 9 days, neutrophils were no longer the most abundant immune cell type present as most other leukocyte subsets returned, and surface wounds resolved coincident with declining bacterial titers. Collectively, these data illustrate a dynamic immune response to S. aureus skin infection and suggest a key role for precisely timed IL-17 production for infection clearance and healthy tissue formation.
Collapse
|
3
|
The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus Infection. Antibiotics (Basel) 2022; 11:antibiotics11050542. [PMID: 35625186 PMCID: PMC9138074 DOI: 10.3390/antibiotics11050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes a broad range of infections and is associated with significant morbidity and mortality. S. aureus produces a diverse range of cellular and extracellular factors responsible for its invasiveness and ability to resist immune attack. In recent years, increasing resistance to last-line anti-staphylococcal antibiotics daptomycin and vancomycin has been observed. Resistant strains of S. aureus are highly efficient in invading a variety of professional and nonprofessional phagocytes and are able to survive inside host cells. Eliciting immune protection against antibiotic-resistant S. aureus infection is a global challenge, requiring both innate and adaptive immune effector mechanisms. Dendritic cells (DC), which sit at the interface between innate and adaptive immune responses, are central to the induction of immune protection against S. aureus. However, it has been observed that S. aureus has the capacity to develop further antibiotic resistance and acquire increased resistance to immunological recognition by the innate immune system. In this article, we review the strategies utilised by S. aureus to circumvent antibiotic and innate immune responses, especially the interaction between S. aureus and DC, focusing on how this relationship is perturbed with the development of antibiotic resistance.
Collapse
|
4
|
Eld HMS, Johnsen PR, Nielsen EM, Jørgensen FZ, Lindstrøm-Svendsen M, Baldry M, Ingmer H, Frøkiær H. Soluble C-Type Lectin-Receptor Ligands Stimulate ROS Production in Dendritic Cells and Potentiate Killing of MRSA as Well as the MRSA Induced IL-12 Production. Front Immunol 2022; 13:845881. [PMID: 35386713 PMCID: PMC8977849 DOI: 10.3389/fimmu.2022.845881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) has developed resistance to most β-lactam antibiotics leaving few treatment options against infections with MRSA. Through mannose receptors, mannan potentiates IL-12 production induced by Gram-positive bacteria, a cytokine crucial in the clearance of S. aureus infection. We investigated the IL-12 potentiating effect of mannan pre-treatment of bone marrow-derived dendritic cells prior to stimulation with clinical MRSA strains. Mannan almost doubled IL-12 as well as IFN-β production in response to USA300, also when USA300 was treated with the β-lactam cefoxitin. The MRSA-induced IL-12 production was dependent on bacterial uptake and reactive oxygen species (ROS). Mannan alone induced ROS production, and in combination with USA300, the ROS produced corresponded to the sum induced by mannan and USA300. Addition of a monoclonal antibody against the mannose receptor likewise enhanced USA300-induced IL-12 and induced ROS production. Mannan addition further increased the endocytosis as well as the rate of endosomal killing of bacteria. Pre-treatment with soluble β-glucans also induced ROS and potentiated the USA300-induced IL-12 indicating that other C-type receptors may play a similar role. In the presence of the pro-inflammatory mediators, GM-CSF or IFN-γ, the mannan-enhanced IL-12 production increased further. The USA300-induced and the mannan-facilitated enhanced IFN-β and IL-12 showed same dependency on MAPK c-Jun N-terminal kinase signaling, suggesting that mannan enhances the signals already induced by the bacteria, rather than changing them. We suggest that the C-type lectin-induced ROS production is a key factor in the IFN-β and IL-12 potentiation.
Collapse
Affiliation(s)
- Helene M S Eld
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter R Johnsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Emilie M Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frederikke Z Jørgensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Mara Baldry
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
5
|
Bacterial Infection-Mimicking Three-Dimensional Phagocytosis and Chemotaxis in Electrospun Poly(ε-caprolactone) Nanofibrous Membrane. MEMBRANES 2021; 11:membranes11080569. [PMID: 34436332 PMCID: PMC8399938 DOI: 10.3390/membranes11080569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023]
Abstract
In this study, we developed a three-dimensional (3D) in vitro infection model to investigate the crosstalk between phagocytes and microbes in inflammation using a nanofibrous membrane (NM). Poly(ε-caprolactone) (PCL)-NMs (PCL-NMs) were generated via electrospinning of PCL in chloroform. Staphylococcus aureus and phagocytes were able to adhere to the nanofibers and phagocytes engulfed S. aureus in the PCL-NM. The migration of phagocytes to S. aureus was evaluated in a two-layer co-culture system using PCL-NM. Neutrophils, macrophages and dendritic cells (DCs) cultured in the upper PCL-NM layer migrated to the lower PCL-NM layer containing bacteria. DCs migrated to neutrophils that cultured with bacteria and then engulfed neutrophils in two-layer system. In addition, phagocytes in the upper PCL-NM layer migrated to bacteria-infected MLE-12 lung epithelial cells in the lower PCL-NM layer. S. aureus-infected MLE-12 cells stimulated the secretion of tumor necrosis factor-α and IL-1α in 3D culture conditions, but not in 2D culture conditions. Therefore, the PCL-NM-based 3D culture system with phagocytes and bacteria mimics the inflammatory response to microbes in vivo and is applicable to the biomimetic study of various microbe infections.
Collapse
|
6
|
Raineri EJM, Altulea D, van Dijl JM. Staphylococcal trafficking and infection - from 'nose to gut' and back. FEMS Microbiol Rev 2021; 46:6321165. [PMID: 34259843 PMCID: PMC8767451 DOI: 10.1093/femsre/fuab041] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an opportunistic human pathogen, which is a leading cause of infections worldwide. The challenge in treating S. aureus infection is linked to the development of multidrug-resistant strains and the mechanisms employed by this pathogen to evade the human immune defenses. In addition, S. aureus can hide asymptomatically in particular ‘protective’ niches of the human body for prolonged periods of time. In the present review, we highlight recently gained insights in the role of the human gut as an endogenous S. aureus reservoir next to the nasopharynx and oral cavity. In addition, we address the contribution of these ecological niches to staphylococcal transmission, including the roles of particular triggers as modulators of the bacterial dissemination. In this context, we present recent advances concerning the interactions between S. aureus and immune cells to understand their possible roles as vehicles of dissemination from the gut to other body sites. Lastly, we discuss the factors that contribute to the switch from colonization to infection. Altogether, we conclude that an important key to uncovering the pathogenesis of S. aureus infection lies hidden in the endogenous staphylococcal reservoirs, the trafficking of this bacterium through the human body and the subsequent immune responses.
Collapse
Affiliation(s)
- Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Eld HMS, Nielsen EM, Johnsen PR, Marengo M, Kamper IW, Frederiksen L, Bonomi F, Frees D, Iametti S, Frøkiær H. Cefoxitin treatment of MRSA leads to a shift in the IL-12/IL-23 production pattern in dendritic cells by a mechanism involving changes in the MAPK signaling. Mol Immunol 2021; 134:1-12. [PMID: 33676343 DOI: 10.1016/j.molimm.2021.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) constitute a serious health care problem worldwide. This study addresses the effect of β-lactam treatment on the ability of clinically relevant MRSA strains to induce IL-12 and IL-23. MRSA strains induced a dose-dependent IL-12 response in murine bone-marrow-derived dendritic cells that was dependent on endocytosis and acidic degradation. Facilitated induction of IL-12 (but not of IL-23) called for activation of the MAP kinase JNK, and was suppressed by p38. Compromised peptidoglycan structure in cefoxitin-treated bacteria - as denoted by increased sensitivity to mutanolysin -caused a shift from IL-12 towards IL-23. Moreover, cefoxitin treatment of MRSA led to a p38 MAPK-dependent early up-regulation of Dual Specificity Phosphatase (DUSP)-1. Compared to common MRSA, characteristics associated with a persister phenotype increased intracellular survival and upon cefoxitin treatment, the peptidoglycan was not equally compromised and the cytokine induction still required phagosomal acidification. Together, these data demonstrate that β-lactam treatment changes the MRSA-induced IL-12/IL-23 pattern determined by the activation of JNK and p38. We suggest that accelerated endosomal degradation of the peptidoglycan in cefoxitin-treated MRSA leads to an early expression of DUSP-1 and accordingly, a reduction in the IL-12/IL-23 ratio in dendritic cells. This may influence the clearance of S. aureus.
Collapse
Affiliation(s)
- Helene M S Eld
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie M Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter R Johnsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mauro Marengo
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Ida W Kamper
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Frederiksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Francesco Bonomi
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Teymournejad O, Montgomery CP. Evasion of Immunological Memory by S. aureus Infection: Implications for Vaccine Design. Front Immunol 2021; 12:633672. [PMID: 33692805 PMCID: PMC7937817 DOI: 10.3389/fimmu.2021.633672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Recurrent S. aureus infections are common, suggesting that natural immune responses are not protective. All candidate vaccines tested thus far have failed to protect against S. aureus infections, highlighting an urgent need to better understand the mechanisms by which the bacterium interacts with the host immune system to evade or prevent protective immunity. Although there is evidence in murine models that both cellular and humoral immune responses are important for protection against S. aureus, human studies suggest that T cells are critical in determining susceptibility to infection. This review will use an “anatomic” approach to systematically outline the steps necessary in generating a T cell-mediated immune response against S. aureus. Through the processes of bacterial uptake by antigen presenting cells, processing and presentation of antigens to T cells, and differentiation and proliferation of memory and effector T cell subsets, the ability of S. aureus to evade or inhibit each step of the T-cell mediated response will be reviewed. We hypothesize that these interactions result in the redirection of immune responses away from protective antigens, thereby precluding the establishment of “natural” memory and potentially inhibiting the efficacy of vaccination. It is anticipated that this approach will reveal important implications for future design of vaccines to prevent these infections.
Collapse
Affiliation(s)
- Omid Teymournejad
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Christopher P Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
9
|
Boff D, Oliveira VLS, Queiroz Junior CM, Galvão I, Batista NV, Gouwy M, Menezes GB, Cunha TM, Verri Junior WA, Proost P, Teixeira MM, Amaral FA. Lipoxin A 4 impairs effective bacterial control and potentiates joint inflammation and damage caused by Staphylococcus aureus infection. FASEB J 2020; 34:11498-11510. [PMID: 32741032 DOI: 10.1096/fj.201802830rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus is the main cause of septic arthritis in humans, a disease associated with high morbidity and mortality. Inflammation triggered in response to infection is fundamental to control bacterial growth but may cause permanent tissue damage. Here, we evaluated the role of Lipoxin A4 (LXA4 ) in S aureus-induced arthritis in mice. Septic arthritis was induced by S aureus injection into tibiofemoral joints. At different time points, we evaluated cell recruitment and bacterial load in the joint, the production of pro-inflammatory molecules, and LXA4 in inflamed tissue and analyzed joint damage and dysfunction. LXA4 was investigated using genetically modified mice or by pharmacological blockade of its synthesis and receptor. CD11c+ cells were evaluated in lymph nodes by confocal microscopy and flow cytometry and dendritic cell chemotaxis using the Boyden chamber. Absence or pharmacological blockade of 5-lipoxygenase (5-LO) reduced joint inflammation and dysfunction and was associated with better control of infection at 4 to 7 days after the infection. There was an increase in LXA4 in joints of S aureus-infected mice and administration of LXA4 reversed the phenotype in 5-LO-/- mice. Blockade or absence of the LXA4 receptor FPR2 has a phenotype similar to 5-LO-/- mice. Mechanistically, LXA4 appeared to control migration and function of dendritic cells, cells shown to be crucial for adequate protective responses in the model. Thus, after the first days of infection when symptoms become evident therapies that inhibit LXA4 synthesis or action could be useful for treatment of S aureus-induced arthritis.
Collapse
Affiliation(s)
- Daiane Boff
- Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vivian Louise Soares Oliveira
- Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz Junior
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nathalia Vieira Batista
- Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Gustavo Batista Menezes
- Departamento de Morfologia, Centro de Biologia Gastrointestinal, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Faculdade de Medicina de Ribeirao Preto, Center for Research in Inflammatory Diseases, Universidade de São Paulo, São Paulo, Brazil
| | | | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mauro Martins Teixeira
- Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Almeida Amaral
- Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Zhang W, Xu L, Zhang X, Xu J, Jin JO. CD8α - conventional dendritic cells control Vβ T-cell immunity in response to Staphylococcus aureus infection in mice. Immunology 2020; 159:404-412. [PMID: 31909831 DOI: 10.1111/imm.13171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are potent immune cells that control innate and adaptive immune responses. Previous studies have shown that the DCs are required for protection against Staphylococcus aureus infection. However, the role of conventional DC (cDC) subsets during S. aureus infection in vivo has not been well investigated. In this study, we examined the function of spleen DC subsets in the activation of immunity against S. aureus infection. C57BL/6 mice were infected intravenously with S. aureus and DC and T-cell activation were analyzed in vivo. We found that the spleen CD8α- cDCs phagocytosed S. aureus more efficiently than type-1 conventional DCs (cDC1s) did. Moreover, the CD8α- cDCs contributed to the production of pro-inflammatory cytokines in response to S. aureus infection, whereas the cDC1s did not. In addition, infection with S. aureus promoted an increase in the number of Vβ T cells. The CD4+ and CD8+ Vβ T cells up-regulated the production of interferon-γ (IFN-γ) and interleukin-17 (IL-17) in response to S. aureus infection. Importantly, the induction of IFN-γ and IL-17 production in CD4+ and CD8+ Vβ T cells was mediated by S. aureus-stimulated CD8α- cDCs, whereas cDC1s failed to promote IFN-γ and IL-17 production in the cells. Therefore, these data suggested that the spleen CD8α- cDCs are the main DC subsets for induction of S. aureus superantigen-specific immunity.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center &, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Xu
- Shanghai Public Health Clinical Center &, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center &, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center &, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center &, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
11
|
Dendritic Cells Internalize Staphylococcus aureus More Efficiently than Staphylococcus epidermidis, but Do Not Differ in Induction of Antigen-Specific T Cell Proliferation. Microorganisms 2019; 8:microorganisms8010019. [PMID: 31861881 PMCID: PMC7022728 DOI: 10.3390/microorganisms8010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are related species which can cause predominantly acute and subacute infections, respectively. Differences in human adaptive immune responses to these two species are not well understood. Dendritic cells (DCs) have an important role in the control and regulation of anti-staphylococcal T cell responses. Therefore, we aimed to compare the ability of S. aureus and S. epidermidis to influence the essential steps in human DC activation and subsequent antigen-specific CD4+ T cell proliferation, and to investigate the underlying mechanisms. Using multiple strains of both species, we observed that S. aureus was internalized more effectively than S. epidermidis by DCs but that both species were equally potent in activating these host cells, as evidenced by similar induction of DC maturation marker expression and antigen loading onto MHC-II molecules. The DCs stimulated by S. aureus strains not harboring superantigen (SAg) genes or by any of the S. epidermidis strains, induced low, likely physiological levels of T cell proliferation. Only DCs stimulated with S. aureus strains harboring SAg genes induced high levels of T cell proliferation. Taken together, S. aureus and S. epidermidis do not differently affect DC activation and ensuing antigen-specific T cell proliferation, unless a strain has the capacity to produce SAgs.
Collapse
|
12
|
The Nature of Antibacterial Adaptive Immune Responses against Staphylococcus aureus Is Dependent on the Growth Phase and Extracellular Peptidoglycan. Infect Immun 2019; 88:IAI.00733-19. [PMID: 31685545 DOI: 10.1128/iai.00733-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus has evolved different strategies to evade the immune response, which play an important role in its pathogenesis. The bacteria express and shed various cell wall components and toxins during different stages of growth that may affect the protective T cell responses to extracellular and intracellular S. aureus However, if and how the dendritic cell (DC)-mediated T cell response against S. aureus changes during growth of the bacterium remain elusive. In this study, we show that exponential-phase (EP) S. aureus bacteria were endocytosed very efficiently by human DCs, and these DCs strongly promoted production of the T cell polarizing factor interleukin-12 (IL-12). In contrast, stationary-phase (SP) S. aureus bacteria were endocytosed less efficiently by DCs, and these DCs produced small amounts of IL-12. The high level of IL-12 production induced by EP S. aureus led to the development of a T helper 1 (Th1) cell response, which was inhibited after neutralization of IL-12. Furthermore, preincubation with the staphylococcal cell wall component peptidoglycan (PGN), characteristically shed during the exponential growth phase, modulated the DC response to EP S. aureus PGN preincubation appeared to inhibit IL-12p35 expression, leading to downregulation of IL-12 and an increase of IL-23 production by DCs, enhancing Th17 cell development. Taken together, our data indicate that exponential-phase S. aureus bacteria induce a stronger IL-12-dependent Th1 cell response than stationary-phase S. aureus and that this Th1 cell response shifted toward a Th17 cell response in the presence of PGN.
Collapse
|
13
|
Patton T, Jiang JH, Lundie RJ, Bafit M, Gao W, Peleg AY, O'Keeffe M. Daptomycin-resistant Staphylococcus aureus clinical isolates are poorly sensed by dendritic cells. Immunol Cell Biol 2019; 98:42-53. [PMID: 31559654 DOI: 10.1111/imcb.12295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/18/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) presents an increasing threat to public health, with antimicrobial resistance on the rise and infections endemic in the hospital setting. Despite a global research effort to understand and combat antimicrobial resistance, less work has focused on understanding the nuances in the immunopathogenesis of clinical strains. In particular, there is a surprising gap of knowledge in the literature pertaining to how clinical strains are recognized by dendritic cells (DCs). Here, we show that the activation of DCs is compromised in response to MRSA strains resistant to the last-line antibiotic daptomycin. We found a significant reduction in the secretion of proinflammatory cytokines including tumor necrosis factor-α, interleukin-6, regulated upon activation, normal T cell expressed, and secreted and macrophage inflammatory protein-1β, as well as decreased expression of CD80 by DCs responding to daptomycin-resistant MRSA. We further demonstrate that this phenotype is coincident with the acquisition of specific point mutations in the cardiolipin synthase gene cls2, and, partly, in the bifunctional lysylphosphatidylglycerol flippase/synthetase gene mprF, which are genes that are often mutated in clinical daptomycin-resistant strains. Therefore, throughout infection and antibiotic therapy, MRSA has the capacity to not only develop further antibiotic resistance, but also develop resistance to immunological recognition by DCs, because of single amino acid point mutations occurring under the selective pressures of both host immunity and antibiotic therapy. Understanding the diversity of clinical MRSA isolates and the nuances in their immune recognition will have important implications for future therapeutics and the treatment of these infections.
Collapse
Affiliation(s)
- Timothy Patton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jhih-Hang Jiang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Rachel J Lundie
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Mariam Bafit
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Wei Gao
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infectious Diseases, Melbourne, VIC, 3000, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia.,Department of Infectious Diseases, The Alfred and Central Clinical School, Monash University, Melbourne, VIC, 3000, Australia
| | - Meredith O'Keeffe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
14
|
Shaabani N, Honke N, Nguyen N, Huang Z, Arimoto KI, Lazar D, Loe TK, Lang KS, Prinz M, Knobeloch KP, Zhang DE, Teijaro JR. The probacterial effect of type I interferon signaling requires its own negative regulator USP18. Sci Immunol 2019; 3:3/27/eaau2125. [PMID: 30266866 DOI: 10.1126/sciimmunol.aau2125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022]
Abstract
Type I interferon (IFN-I) signaling paradoxically impairs host immune responses during many primary and secondary bacterial infections. Lack of IFN-I receptor reduces bacterial replication and/or bacterial persistence during infection with several bacteria. However, the mechanisms that mediate the adverse IFN-I effect are incompletely understood. Here, we show that Usp18, an interferon-stimulated gene that negatively regulates IFN-I signaling, is primarily responsible for the deleterious effect of IFN-I signaling during infection of mice with Listeria monocytogenes or Staphylococcus aureus Mechanistically, USP18 promoted bacterial replication by inhibiting antibacterial tumor necrosis factor-α (TNF-α) signaling. Deleting IFNAR1 or USP18 in CD11c-Cre+ cells similarly reduced bacterial titers in multiple organs and enhanced survival. Our results demonstrate that inhibiting USP18 function can promote control of primary and secondary bacterial infection by enhancing the antibacterial effect of TNF-α, which correlates with induction of reactive oxygen species (ROS). These findings suggest that USP18 could be targeted therapeutically in patients to ameliorate disease caused by serious bacterial infections.
Collapse
Affiliation(s)
- Namir Shaabani
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. .,Institute of Immunology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Nadine Honke
- Institute of Immunology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Nhan Nguyen
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zhe Huang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Lazar
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Taylor K Loe
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karl S Lang
- Institute of Immunology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.,Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.,Division of Biological Science, University of California San Diego, La Jolla, CA 92093, USA
| | - John R Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Darkwah S, Nago N, Appiah MG, Myint PK, Kawamoto E, Shimaoka M, Park EJ. Differential Roles of Dendritic Cells in Expanding CD4 T Cells in Sepsis. Biomedicines 2019; 7:biomedicines7030052. [PMID: 31323786 PMCID: PMC6783955 DOI: 10.3390/biomedicines7030052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Sepsis is a systemically dysregulated inflammatory syndrome, in which dendritic cells (DCs) play a critical role in coordinating aberrant immunity. The aim of this study is to shed light on the differential roles played by systemic versus mucosal DCs in regulating immune responses in sepsis. We identified a differential impact of the systemic and mucosal DCs on proliferating allogenic CD4 T cells in a mouse model of sepsis. Despite the fact that the frequency of CD4 T cells was reduced in septic mice, septic mesenteric lymph node (MLN) DCs proved superior to septic spleen (SP) DCs in expanding allogeneic CD4 T cells. Moreover, septic MLN DCs markedly augmented the surface expression of MHC class II and CD40, as well as the messaging of interleukin-1β (IL-1β). Interestingly, IL-1β-treated CD4 T cells expanded in a dose-dependent manner, suggesting that this cytokine acts as a key mediator of MLN DCs in promoting septic inflammation. Thus, mucosal and systemic DCs were found to be functionally different in the way CD4 T cells respond during sepsis. Our study provides a molecular basis for DC activity, which can be differential in nature depending on location, whereby it induces septic inflammation or immune-paralysis.
Collapse
Affiliation(s)
- Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Nodoka Nago
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Clinical Nutrition, Suzuka University of Medical Science, Suzuka, Mie 510-0293, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
16
|
Richardson JR, Armbruster NS, Günter M, Biljecki M, Klenk J, Heumos S, Autenrieth SE. PSM Peptides From Community-Associated Methicillin-Resistant Staphylococcus aureus Impair the Adaptive Immune Response via Modulation of Dendritic Cell Subsets in vivo. Front Immunol 2019; 10:995. [PMID: 31134074 PMCID: PMC6524657 DOI: 10.3389/fimmu.2019.00995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) are key players of the immune system and thus a target for immune evasion by pathogens. We recently showed that the virulence factors phenol-soluble-modulins (PSMs) produced by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains induce tolerogenic DCs upon Toll-like receptor activation via the p38-CREB-IL-10 pathway in vitro. Here, we addressed the hypothesis that S. aureus PSMs disturb the adaptive immune response via modulation of DC subsets in vivo. Using a systemic mouse infection model we found that S. aureus reduced the numbers of splenic DC subsets, mainly CD4+ and CD8+ DCs independently of PSM secretion. S. aureus infection induced upregulation of the C-C motif chemokine receptor 7 (CCR7) on the surface of all DC subsets, on CD4+ DCs in a PSM-dependent manner, together with increased expression of MHCII, CD86, CD80, CD40, and the co-inhibitory molecule PD-L2, with only minor effects of PSMs. Moreover, PSMs increased IL-10 production in the spleen and impaired TNF production by CD4+ DCs. Besides, S. aureus PSMs reduced the number of CD4+ T cells in the spleen, whereas CD4+CD25+Foxp3+ regulatory T cells (Tregs) were increased. In contrast, Th1 and Th17 priming and IFN-γ production by CD8+ T cells were impaired by S. aureus PSMs. Thus, PSMs from highly virulent S. aureus strains modulate the adaptive immune response in the direction of tolerance by affecting DC functions.
Collapse
Affiliation(s)
| | - Nicole S Armbruster
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Manina Günter
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Michelle Biljecki
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Juliane Klenk
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Simon Heumos
- Quantitative Biology Center, University of Tübingen, Tübingen, Germany
| | - Stella E Autenrieth
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Dang AT, Teles RM, Liu PT, Choi A, Legaspi A, Sarno EN, Ochoa MT, Parvatiyar K, Cheng G, Gilliet M, Bloom BR, Modlin RL. Autophagy links antimicrobial activity with antigen presentation in Langerhans cells. JCI Insight 2019; 4:126955. [PMID: 30996142 PMCID: PMC6538337 DOI: 10.1172/jci.insight.126955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
DC, through the uptake, processing, and presentation of antigen, are responsible for activation of T cell responses to defend the host against infection, yet it is not known if they can directly kill invading bacteria. Here, we studied in human leprosy, how Langerhans cells (LC), specialized DC, contribute to host defense against bacterial infection. IFN-γ treatment of LC isolated from human epidermis and infected with Mycobacterium leprae (M. leprae) activated an antimicrobial activity, which was dependent on the upregulation of the antimicrobial peptide cathelicidin and induction of autophagy. IFN-γ induction of autophagy promoted fusion of phagosomes containing M. leprae with lysosomes and the delivery of cathelicidin to the intracellular compartment containing the pathogen. Autophagy enhanced the ability of M. leprae-infected LC to present antigen to CD1a-restricted T cells. The frequency of IFN-γ labeling and LC containing both cathelicidin and autophagic vesicles was greater in the self-healing lesions vs. progressive lesions, thus correlating with the effectiveness of host defense against the pathogen. These data indicate that autophagy links the ability of DC to kill and degrade an invading pathogen, ensuring cell survival from the infection while facilitating presentation of microbial antigens to resident T cells.
Collapse
Affiliation(s)
- Angeline Tilly Dang
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | | | - Phillip T. Liu
- Division of Dermatology, Department of Medicine, and
- UCLA and Orthopaedic Hospital, Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, USA
| | - Aaron Choi
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | | | - Euzenir N. Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria T. Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | - Michel Gilliet
- Department of Medicine, Dermatology Service, Lausanne University Hospital of Lausanne, Lausanne, Switzerland
| | - Barry R. Bloom
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| |
Collapse
|
18
|
Longitudinal proliferation mapping in vivo reveals NADPH oxidase-mediated dampening of Staphylococcus aureus growth rates within neutrophils. Sci Rep 2019; 9:5703. [PMID: 30952906 PMCID: PMC6450975 DOI: 10.1038/s41598-019-42129-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 01/21/2023] Open
Abstract
Upon the onset of inflammatory responses, bacterial pathogens are confronted with altered tissue microenvironments which can critically impact on their metabolic activity and growth. Changes in these parameters have however remained difficult to analyze over time, which would be critical to dissect the interplay between the host immune response and pathogen physiology. Here, we established an in vivo biosensor for measuring the growth rates of Staphylococcus aureus (S. aureus) on a single cell-level over days in an ongoing cutaneous infection. Using intravital 2-photon imaging and quantitative fluorescence microscopy, we show that upon neutrophil recruitment to the infection site and bacterial uptake, non-lethal dampening of S. aureus proliferation occurred. This inhibition was supported by NADPH oxidase activity. Therefore, reactive oxygen production contributes to pathogen containment within neutrophils not only by killing S. aureus, but also by restricting the growth rate of the bacterium.
Collapse
|
19
|
Dang AT, Teles RM, Weiss DI, Parvatiyar K, Sarno EN, Ochoa MT, Cheng G, Gilliet M, Bloom BR, Modlin RL. IL-26 contributes to host defense against intracellular bacteria. J Clin Invest 2019; 129:1926-1939. [PMID: 30939123 DOI: 10.1172/jci99550] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
IL-26 is an antimicrobial protein secreted by Th17 cells that has the ability to directly kill extracellular bacteria. To ascertain whether IL-26 contributes to host defense against intracellular bacteria, we studied leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, as a model. Analysis of leprosy skin lesions by gene expression profiling and immunohistology revealed that IL-26 was more strongly expressed in lesions from the self-limited tuberculoid compared with expression in progressive lepromatous patients. IL-26 directly bound to M. leprae in axenic culture and reduced bacteria viability. Furthermore, IL-26, when added to human monocyte-derived macrophages infected with M. leprae, entered the infected cell, colocalized with the bacterium, and reduced bacteria viability. In addition, IL-26 induced autophagy via the cytoplasmic DNA receptor stimulator of IFN genes (STING), as well as fusion of phagosomes containing bacilli with lysosomal compartments. Altogether, our data suggest that the Th17 cytokine IL-26 contributes to host defense against intracellular bacteria.
Collapse
Affiliation(s)
- Angeline Tilly Dang
- Division of Dermatology, Department of Medicine.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | - David I Weiss
- Division of Dermatology, Department of Medicine.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Euzenir N Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria T Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michel Gilliet
- Department of Medicine, Dermatology Service, Lausanne University Hospital of Lausanne, Lausanne, Switzerland
| | - Barry R Bloom
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
20
|
Tam K, Torres VJ. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0039-2018. [PMID: 30873936 PMCID: PMC6422052 DOI: 10.1128/microbiolspec.gpp3-0039-2018] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a formidable pathogen capable of causing infections in different sites of the body in a variety of vertebrate animals, including humans and livestock. A major contribution to the success of S. aureus as a pathogen is the plethora of virulence factors that manipulate the host's innate and adaptive immune responses. Many of these immune modulating virulence factors are secreted toxins, cofactors for activating host zymogens, and exoenzymes. Secreted toxins such as pore-forming toxins and superantigens are highly inflammatory and can cause leukocyte cell death by cytolysis and clonal deletion, respectively. Coagulases and staphylokinases are cofactors that hijack the host's coagulation system. Exoenzymes, including nucleases and proteases, cleave and inactivate various immune defense and surveillance molecules, such as complement factors, antimicrobial peptides, and surface receptors that are important for leukocyte chemotaxis. Additionally, some of these secreted toxins and exoenzymes can cause disruption of endothelial and epithelial barriers through cell lysis and cleavage of junction proteins. A unique feature when examining the repertoire of S. aureus secreted virulence factors is the apparent functional redundancy exhibited by the majority of the toxins and exoenzymes. However, closer examination of each virulence factor revealed that each has unique properties that have important functional consequences. This chapter provides a brief overview of our current understanding of the major secreted virulence factors critical for S. aureus pathogenesis.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| |
Collapse
|
21
|
Abstract
Antigen-presenting cells such as dendritic cells (DCs) fulfill an indispensable role in the development of adaptive immunity by producing proinflammatory cytokines and presenting microbial antigens to lymphocytes to trigger a faster, specific, and long-lasting immune response. Here, we studied the effect of Staphylococcus aureus toxins on human DCs. We discovered that the leukocidin LukAB hinders the development of adaptive immunity by targeting human DCs. The ability of S. aureus to blunt the function of DCs could help explain the high frequency of recurrent S. aureus infections. Taken together, the results from this study suggest that therapeutically targeting the S. aureus leukocidins may boost effective innate and adaptive immune responses by protecting innate leukocytes, enabling proper antigen presentation and T cell activation. Staphylococcus aureus is a human pathogen responsible for high morbidity and mortality worldwide. Recurrent infections with this bacterium are common, suggesting that S. aureus thwarts the development of sterilizing immunity. S. aureus strains that cause disease in humans produce up to five different bicomponent toxins (leukocidins) that target and lyse neutrophils, innate immune cells that represent the first line of defense against S. aureus infections. However, little is known about the role of leukocidins in blunting adaptive immunity. Here, we explored the effects of leukocidins on human dendritic cells (DCs), antigen-presenting cells required for the development of adaptive immunity. Using an ex vivo infection model of primary human monocyte-derived dendritic cells, we found that S. aureus, including strains from different clonal complexes and drug resistance profiles, effectively kills DCs despite efficient phagocytosis. Although all purified leukocidins could kill DCs, infections with live bacteria revealed that S. aureus targets and kills DCs primarily via the activity of leukocidin LukAB. Moreover, using coculture experiments performed with DCs and autologous CD4+ T lymphocytes, we found that LukAB inhibits DC-mediated activation and proliferation of primary human T cells. Taken together, the data determined in the study reveal a novel immunosuppressive strategy of S. aureus whereby the bacterium blunts the development of adaptive immunity via LukAB-mediated injury of DCs.
Collapse
|
22
|
Heck J, Rox K, Lünsdorf H, Lückerath T, Klaassen N, Medina E, Goldmann O, Feldmann C. Zirconyl Clindamycinphosphate Antibiotic Nanocarriers for Targeting Intracellular Persisting Staphylococcus aureus. ACS OMEGA 2018; 3:8589-8594. [PMID: 31458988 PMCID: PMC6644946 DOI: 10.1021/acsomega.8b00637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/13/2018] [Indexed: 06/10/2023]
Abstract
[ZrO]2+[CLP]2- (CLP: clindamycinphosphate) inorganic-organic hybrid nanoparticles (IOH-NPs) represent a novel strategy to treat persisting, recurrent infections with multiresistant Staphylococcus aureus. [ZrO]2+[CLP]2- is prepared in water and contains the approved antibiotic with unprecedented high load (82 wt % CLP per nanoparticle). The IOH-NPs result in 70-150-times higher antibiotic concentrations at difficult-to-reach infection sites, offering new options for improved drug delivery for chronic and difficult-to-treat infections.
Collapse
Affiliation(s)
- Joachim
G. Heck
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Katharina Rox
- Helmholtz-Zentrum
für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
- Deutsches
Zentrum für Infektionsforschung, Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Heinrich Lünsdorf
- Helmholtz-Zentrum
für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Thorsten Lückerath
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Nicole Klaassen
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Eva Medina
- Helmholtz-Zentrum
für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Oliver Goldmann
- Helmholtz-Zentrum
für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Claus Feldmann
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| |
Collapse
|
23
|
Platelets Enhance Dendritic Cell Responses against Staphylococcus aureus through CD40-CD40L. Infect Immun 2018; 86:IAI.00186-18. [PMID: 29914928 DOI: 10.1128/iai.00186-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that can cause mild to severe life-threatening infections in many tissues and organs. Platelets are known to participate in protection against S. aureus by direct killing and by enhancing the activities of neutrophils and macrophages in clearing S. aureus infection. Platelets have also been shown to induce monocyte differentiation into dendritic cells and to enhance activation of dendritic cells. Therefore, in the present study, we explored the role of platelets in enhancing bone marrow-derived dendritic cell (BMDC) function against S. aureus We observed a significant increase in dendritic cell phagocytosis and intracellular killing of a methicillin-resistant Staphylococcus aureus (MRSA) strain (USA300) by thrombin-activated platelets or their releasates. Enhancement of bacterial uptake and killing by DCs is mediated by platelet-derived CD40L. Coculture of USA300 and BMDCs in the presence of thrombin-activated platelet releasates invokes upregulation of the maturation marker CD80 on DCs and enhanced production of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 12 (IL-12), and IL-6. Overall, these observations support our hypothesis that platelets play a critical role in the host defense against S. aureus infection. Platelets stimulate DCs, leading to direct killing of S. aureus and enhanced DC maturation, potentially leading to adaptive immune responses against S. aureus.
Collapse
|
24
|
Darisipudi MN, Nordengrün M, Bröker BM, Péton V. Messing with the Sentinels-The Interaction of Staphylococcus aureus with Dendritic Cells. Microorganisms 2018; 6:microorganisms6030087. [PMID: 30111706 PMCID: PMC6163568 DOI: 10.3390/microorganisms6030087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a dangerous pathogen as well as a frequent colonizer, threatening human health worldwide. Protection against S. aureus infection is challenging, as the bacteria have sophisticated strategies to escape the host immune response. To maintain equilibrium with S. aureus, both innate and adaptive immune effector mechanisms are required. Dendritic cells (DCs) are critical players at the interface between the two arms of the immune system, indispensable for inducing specific T cell responses. In this review, we highlight the importance of DCs in mounting innate as well as adaptive immune responses against S. aureus with emphasis on their role in S. aureus-induced respiratory diseases. We also review what is known about mechanisms that S. aureus has adopted to evade DCs or manipulate these cells to its advantage.
Collapse
Affiliation(s)
- Murthy N Darisipudi
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Maria Nordengrün
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Vincent Péton
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| |
Collapse
|
25
|
Prendergast KA, Daniels NJ, Petersen TR, Hermans IF, Kirman JR. Langerin + CD8α + Dendritic Cells Drive Early CD8 + T Cell Activation and IL-12 Production During Systemic Bacterial Infection. Front Immunol 2018; 9:953. [PMID: 29867941 PMCID: PMC5949331 DOI: 10.3389/fimmu.2018.00953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/17/2018] [Indexed: 12/18/2022] Open
Abstract
Bloodstream infections induce considerable morbidity, high mortality, and represent a significant burden of cost in health care; however, our understanding of the immune response to bacteremia is incomplete. Langerin+ CD8α+ dendritic cells (DCs), residing in the marginal zone of the murine spleen, have the capacity to cross-prime CD8+ T cells and produce IL-12, both of which are important components of antimicrobial immunity. Accordingly, we hypothesized that this DC subset may be a key promoter of adaptive immune responses to blood-borne bacterial infections. Utilizing mice that express the diphtheria toxin receptor under control of the langerin promoter, we investigated the impact of depleting langerin+ CD8α+ DCs in a murine model of intravenous infection with Mycobacterium bovis bacille Calmette–Guerin (BCG). In the absence of langerin+ CD8α+ DCs, the immune response to blood-borne BCG infection was diminished: bacterial numbers in the spleen increased, serum IL-12p40 decreased, and delayed CD8+ T cell activation, proliferation, and IFN-γ production was evident. Our data revealed that langerin+ CD8α+ DCs play a pivotal role in initiating CD8+ T cell responses and IL-12 production in response to bacteremia and may influence the early control of systemic bacterial infections.
Collapse
Affiliation(s)
- Kelly A Prendergast
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Naomi J Daniels
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Joanna R Kirman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
26
|
Wu YY, Westwater C, Xiao E, Dias Corrêa J, Xiao WM, Graves DT. Establishment of oral bacterial communities in germ-free mice and the influence of recipient age. Mol Oral Microbiol 2018; 33:38-46. [PMID: 28776953 PMCID: PMC6525632 DOI: 10.1111/omi.12194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 02/05/2023]
Abstract
The acquisition of the oral microbiome is a complex process. We examined how the timing of microbial exposure alters bacterial colonization of the tooth surface. Germ-free mice were conventionalized by exposure to specific pathogen-free (SPF) mice to acquire a commensal microbiome over three distinct 4-week periods, 0-4 weeks of age (Conv0-4w), 4-8 weeks (Conv4-8w), or 8-12 weeks (Conv8-12w). Bacterial DNA was extracted from the tooth surface and analyzed by 16S rDNA sequencing. Total bacteria and inflammatory cytokine expression in gingiva were determined by quantitative real-time polymerase chain reaction. After co-housing with SPF mice, Conv0-4w and Conv4-8w mice had low bacterial diversity, whereas Conv8-12w mice had high bacterial diversity that was similar to that of SPF donor mice, as determined by both operational taxonomic units and the Shannon Index. Cluster analysis with unweighted Unifrac distance also supported these trends. This was surprising as the amount of maturation time, 4 weeks, was equal in all conventionalized mice and tooth eruption was largely completed by 4 weeks. This suggests that host factors that occur after tooth eruption have a significant effect on the microbial tooth colonization.
Collapse
Affiliation(s)
- Y Y Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Westwater
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - E Xiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - J Dias Corrêa
- Dentistry school, Department of Oral Surgery and Pathology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - W M Xiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - D T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev 2017; 41:139-157. [PMID: 27965320 DOI: 10.1093/femsre/fuw042] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2016] [Indexed: 11/14/2022] Open
Abstract
Dysfunction of phagocytes is a relevant risk factor for staphylococcal infection. The most common hereditary phagocyte dysfunction is chronic granulomatous disease (CGD), characterized by impaired generation of reactive oxygen species (ROS) due to loss of function mutations within the phagocyte NADPH oxidase NOX2. Phagocytes ROS generation is fundamental to eliminate pathogens and to regulate the inflammatory response to infection. CGD is characterized by recurrent and severe bacterial and fungal infections, with Staphylococcus aureus as the most frequent pathogen, and skin and lung abscesses as the most common clinical entities. Staphylococcus aureus infection may occur in virtually any human host, presumably because of the many virulence factors of the bacterium. However, in the presence of functional NOX2, staphylococcal infections remain rare and are mainly linked to breaches of the skin barrier. In contrast, in patients with CGD, S. aureus readily survives and frequently causes clinically apparent disease. Astonishingly, little is known why S. aureus, which possesses a wide range of antioxidant enzymes (e.g. catalase, SOD), is particularly sensitive to control through NOX2. In this review, we will evaluate the discovery of CGD and our present knowledge of the role of NOX2 in S. aureus infection.
Collapse
Affiliation(s)
- Helene Buvelot
- Division of General Internal Medicine, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
| | - Klara M Posfay-Barbe
- Paediatric Infectious Diseases Unit, Department of Paediatrics, University Hospitals of Geneva, 1205 Geneva and Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Jacques Schrenzel
- Divisions of Infectious Diseases and Laboratory Medicine, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
| | - Karl-Heinz Krause
- Divisions of Infectious Diseases and Laboratory Medicine, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| |
Collapse
|
28
|
Abstract
Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90024.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509; .,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509.,Los Angeles Biomedical Research Institute, Torrance, California 90502
| | | |
Collapse
|
29
|
EssE Promotes Staphylococcus aureus ESS-Dependent Protein Secretion To Modify Host Immune Responses during Infection. J Bacteriol 2016; 199:JB.00527-16. [PMID: 27795322 DOI: 10.1128/jb.00527-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/06/2016] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus aureus, an invasive pathogen of humans and animals, requires a specialized ESS pathway to secrete proteins (EsxA, EsxB, EsxC, and EsxD) during infection. Expression of ess genes is required for S. aureus establishment of persistent abscess lesions following bloodstream infection; however, the mechanisms whereby effectors of the ESS pathway implement their virulence strategies were heretofore not known. Here, we show that EssE forms a complex with other members of the ESS secretion pathway and its substrates, promoting the secretion of EsxA, EsxB, EsxC, EsxD, and EssD. During bloodstream infection of mice, the S. aureus essE mutant displays defects in host cytokine responses, specifically in the production of interleukin-12 (IL-12) (p40/p70) and the suppression of RANTES (CCL5), activators of TH1 T cell responses and immune cell chemotaxis, respectively. Thus, essE-mediated secretion of protein effectors via the ESS pathway may enable S. aureus to manipulate host immune responses by modifying the production of cytokines. IMPORTANCE Staphylococcus aureus and other firmicutes evolved a specialized ESS (EsxA/ESAT-6-like secretion system) pathway for the secretion of small subsets of proteins lacking canonical signal peptides. The molecular mechanisms for ESS-dependent secretion and their functional purpose are still unknown. We demonstrate here that S. aureus EssE functions as a membrane assembly platform for elements of the secretion machinery and their substrates. Furthermore, S. aureus EssE-mediated secretion contributes to the production or the suppression of specific cytokines during host infection, thereby modifying immune responses toward this pathogen.
Collapse
|
30
|
EssD, a Nuclease Effector of the Staphylococcus aureus ESS Pathway. J Bacteriol 2016; 199:JB.00528-16. [PMID: 27795323 DOI: 10.1128/jb.00528-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/04/2016] [Indexed: 02/07/2023] Open
Abstract
Specialized secretion systems of bacteria evolved for selective advantage, either killing microbial competitors or implementing effector functions during parasitism. Earlier work characterized the ESAT-6 secretion system (ESS) of Staphylococcus aureus and demonstrated its contribution to persistent staphylococcal infection of vertebrate hosts. Here, we identify a novel secreted effector of the ESS pathway, EssD, that functions as a nuclease and cleaves DNA but not RNA. EssI, a protein of the DUF600 family, binds EssD to block its nuclease activity in the staphylococcal cytoplasm. An essD knockout mutant or a variant lacking nuclease activity, essDL546P, elicited a diminished interleukin-12 (IL-12) cytokine response following bloodstream infection of mice, suggesting that the effector function of EssD stimulates immune signaling to support the pathogenesis of S. aureus infections. IMPORTANCE Bacterial type VII or ESAT-6-like secretion systems (ESS) may have evolved to modulate host immune responses during infection, thereby contributing to the pathogenesis of important diseases such as tuberculosis and methicillin-resistant S. aureus (MRSA) infection. The molecular mechanisms whereby type VII secretion systems achieve their goals are not fully elucidated as secreted effectors with biochemical functions have heretofore not been identified. We show here that MRSA infection relies on the secretion of a nuclease effector that cleaves DNA and contributes to the stimulation of IL-12 signaling during infection. These results identify a biological mechanism for the contribution of the ESS pathway toward the establishment of MRSA disease.
Collapse
|
31
|
Männ L, Kochupurakkal N, Martin C, Verjans E, Klingberg A, Sody S, Kraus A, Dalimot J, Bergmüller E, Jung S, Voortman S, Winterhager E, Brandau S, Garbi N, Kurrer M, Eriksson U, Gunzer M, Hasenberg M. CD11c.DTR mice develop a fatal fulminant myocarditis after local or systemic treatment with diphtheria toxin. Eur J Immunol 2016; 46:2028-42. [PMID: 27184067 DOI: 10.1002/eji.201546245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/05/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
Abstract
To assess the role of alveolar macrophages (AMs) during a pulmonary Aspergillus fumigatus infection AMs were depleted by intratracheal application of diphtheria toxin (DTX) to transgenic CD11c.DTR mice prior to fungal infection. Unexpectedly, all CD11c.DTR mice treated with DTX died within 4-5 days, whether being infected with A. fumigatus or not. Despite measurable impact of DTX on lung functional parameters, these constrictions could not explain the high mortality rate. Instead, DTX-treated CD11c.DTR animals developed fulminant myocarditis (FM) characterized by massive leukocyte infiltration and myocardial cell destruction, including central parts of the heart's stimulus transmission system. In fact, standard limb lead ECG recordings of diseased but not healthy mice showed a "Brugada"-like pattern with an abnormally high ST segment pointing to enhanced susceptibility for potential lethal arrhythmias. While CD11c.DTR mice are extensively used for the characterization of CD11c(+) cells, including dendritic cells, several studies have already mentioned adverse side effects following DTX treatment. Our results demonstrate that this limitation is based on severe myocarditis but not on the expected lung constrictions, and has to be taken into consideration if this animal model is used. Based on these properties, however, the CD11c.DTR mouse might serve as useful animal model for FM.
Collapse
Affiliation(s)
- Linda Männ
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Nora Kochupurakkal
- Department of Research, Experimental Critical Care Medicine, University Hospital, Basel, Switzerland
| | - Christian Martin
- Institute of Pharmacology and Toxicology, University Hospital Aachen, Aachen, Germany
| | - Eva Verjans
- Institute of Pediatrics, University Hospital Aachen, Aachen, Germany
| | - Anika Klingberg
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Simon Sody
- Department of Otorhinolaryngology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Andreas Kraus
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Jill Dalimot
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Eileen Bergmüller
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sylvia Voortman
- Imaging Center Essen, Electron Microscopy Unit, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Elke Winterhager
- Imaging Center Essen, Electron Microscopy Unit, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | | | - Urs Eriksson
- Division of Cardioimmunology, Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Medicine, GZO-Zurich Regional Health Center, Wetzikon, Switzerland
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Mike Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
32
|
Zeng WP, McFarland MM, Zhou B, Holtfreter S, Flesher S, Cheung A, Mallick A. Staphylococcal enterotoxin A-activated regulatory T cells promote allergen-specific T H2 response to intratracheal allergen inoculation. J Allergy Clin Immunol 2016; 139:508-518.e4. [PMID: 27394914 DOI: 10.1016/j.jaci.2016.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND TH2 responses are implicated in asthma pathobiology. Epidemiologic studies have found a positive association between asthma and exposure to staphylococcal enterotoxins. OBJECTIVE We used a mouse model of asthma to determine whether staphylococcal enterotoxins promote TH2 differentiation of allergen-specific CD4 conventional T (Tcon) cells and asthma by activating allergen-nonspecific regulatory T (Treg) cells to create a TH2-polarizing cytokine milieu. METHODS Ovalbumin (OVA)-specific, staphylococcal enterotoxin A (SEA)-nonreactive naive CD4 Tcon cells were cocultured with SEA-reactive allergen-nonspecific Treg or CD4 Tcon cells in the presence of OVA and SEA. The OVA-specific CD4 T cells were then analyzed for IL-13 and IFN-γ expression. SEA-activated Treg cells were analyzed for the expression of the TH2-polarizing cytokine IL-4 and the T-cell activation markers CD69 and CD62L. For asthma induction, mice were intratracheally sensitized with OVA or cat dander extract (CDE) alone or together with SEA and then challenged with OVA or CDE. Mice were also subject to transient Treg cell depletion before sensitization with OVA plus SEA. Asthma features and TH2 differentiation in these mice were analyzed. RESULTS SEA-activated Treg cells induced IL-13 but suppressed IFN-γ expression in OVA-specific CD4 Tcon cells. SEA-activated Treg cells expressed IL-4, upregulated CD69, and downregulated CD62L. Sensitization with OVA plus SEA but not OVA alone induced asthma, and SEA exacerbated asthma induced by CDE. Depletion of Treg cells abolished these effects of SEA and IL-13 expression in OVA-specific T cells. CONCLUSION SEA promoted TH2 responses of allergen-specific T cells and asthma pathogenesis by activating Treg cells.
Collapse
Affiliation(s)
- Wei-Ping Zeng
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV; Department of Pediatrics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV; Center for Cell Development and Differentiation, Department of Biology, College of Science, Marshall University, Huntington, WV.
| | - Margaret M McFarland
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Baohua Zhou
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind
| | - Silva Holtfreter
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Susan Flesher
- Department of Pediatrics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Ambrose Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth University, Hanover, NH
| | - Avishek Mallick
- Department of Mathematics, College of Science, Marshall University, Huntington, WV
| |
Collapse
|
33
|
Wu Y, Dong G, Xiao W, Xiao E, Miao F, Syverson A, Missaghian N, Vafa R, Cabrera-Ortega AA, Rossa C, Graves DT. Effect of Aging on Periodontal Inflammation, Microbial Colonization, and Disease Susceptibility. J Dent Res 2016; 95:460-6. [PMID: 26762510 PMCID: PMC4802783 DOI: 10.1177/0022034515625962] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease induced by a biofilm that forms on the tooth surface. Increased periodontal disease is associated with aging. We investigated the effect of aging on challenge by oral pathogens, examining the host response, colonization, and osteoclast numbers in aged versus young mice. We also compared the results with mice with lineage-specific deletion of the transcription factor FOXO1, which reduces dendritic cell (DC) function. Periodontitis was induced by oral inoculation of Porphyromonas gingivalis and Fusobacterium nucleatum in young (4 to 5 mo) and aged (14 to 15 mo) mice. Aged mice as well as mice with reduced DC function had decreased numbers of DCs in lymph nodes, indicative of a diminished host response. In vitro studies suggest that reduced DC numbers in lymph nodes of aged mice may involve the effect of advanced glycation end products on DC migration. Surprisingly, aged mice but not mice with genetically altered DC function had greater production of antibody to P. gingivalis, greater IL-12 expression, and more plasma cells in lymph nodes following oral inoculation as compared with young mice. The greater adaptive immune response in aged versus young mice was linked to enhanced levels of P. gingivalis and reduced bacterial diversity. Thus, reduced bacterial diversity in aged mice may contribute to increased P. gingivalis colonization following inoculation and increased periodontal disease susceptibility, reflected by higher TNF levels and osteoclast numbers in the periodontium of aged versus young mice.
Collapse
Affiliation(s)
- Y Wu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G Dong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - W Xiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - E Xiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - F Miao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA Shanxi Province People's Hospital, Taiyuan, China
| | - A Syverson
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - N Missaghian
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Vafa
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A A Cabrera-Ortega
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara-UNESP, Araraquara, Brazil
| | - C Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara-UNESP, Araraquara, Brazil
| | - D T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Lund LD, Ingmer H, Frøkiær H. D-Alanylation of Teichoic Acids and Loss of Poly-N-Acetyl Glucosamine in Staphylococcus aureus during Exponential Growth Phase Enhance IL-12 Production in Murine Dendritic Cells. PLoS One 2016; 11:e0149092. [PMID: 26872029 PMCID: PMC4752283 DOI: 10.1371/journal.pone.0149092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/27/2016] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen that has evolved very efficient immune evading strategies leading to persistent colonization. During different stages of growth, S. aureus express various surface molecules, which may affect the immune stimulating properties, but very little is known about their role in immune stimulation and evasion. Depending on the growth phase, S. aureus may affect antigen presenting cells differently. Here, the impact of growth phases and the surface molecules lipoteichoic acid, peptidoglycan and poly-N-acetyl glucosamine on the induction of IL-12 imperative for an efficient clearance of S. aureus was studied in dendritic cells (DCs). Exponential phase (EP) S. aureus was superior to stationary phase (SP) bacteria in induction of IL-12, which required actin-mediated endocytosis and endosomal acidification. Moreover, addition of staphylococcal cell wall derived peptidoglycan to EP S. aureus stimulated cells increased bacterial uptake but abrogated IL-12 induction, while addition of lipoteichoic acid increased IL-12 production but had no effect on the bacterial uptake. Depletion of the capability to produce poly-N-acetyl glucosamine increased the IL-12 inducing activity of EP bacteria. Furthermore, the mutant dltA unable to produce D-alanylated teichoic acids failed to induce IL-12 but like peptidoglycan and the toll-like receptor (TLR) ligands LPS and Pam3CSK4 the mutant stimulated increased macropinocytosis. In conclusion, the IL-12 response by DCs against S. aureus is highly growth phase dependent, relies on cell wall D-alanylation, endocytosis and subsequent endosomal degradation, and is abrogated by receptor induced macropinocytosis.
Collapse
Affiliation(s)
- Lisbeth Drozd Lund
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Frøkiær
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
35
|
Deng M, Ma T, Yan Z, Zettel KR, Scott MJ, Liao H, Frank A, Morelli AE, Sodhi CP, Hackam DJ, Billiar TR. Toll-like Receptor 4 Signaling on Dendritic Cells Suppresses Polymorphonuclear Leukocyte CXCR2 Expression and Trafficking via Interleukin 10 During Intra-abdominal Sepsis. J Infect Dis 2015; 213:1280-8. [PMID: 26603204 DOI: 10.1093/infdis/jiv562] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) is a critical receptor involved in the sensing of gram-negative bacterial infection. However, the roles of TLR4 in sepsis are cell-type specific. Dendritic cells (DCs) are known to play a central role in microbial detection, alerting the immune system to the presence of infection and coordinating adaptive immune response. The goal of this study was to investigate the impact of DC-specific TLR4 signaling on host defense against intra-abdominal polymicrobial sepsis. METHODS C57BL/6, global Tlr4 knockout, cell-specific knockout control, and CD11c-specific Tlr4(-/-) mice underwent cecal ligation and puncture (CLP). RESULTS Specific deletion of TLR4 on DCs in mice improved survival and enhanced bacterial clearance. Deletion of TLR4 on DCs was associated with lower levels of circulating interleukin 10 (IL-10), higher polymorphonuclear leukocyte (PMN) accumulation in the peritoneal cavity, and higher expression of chemokine (C-X-C motif) receptor 2 (CXCR2) on PMNs after CLP. In vitro studies of DC and neutrophil cocultures confirmed that TLR4-dependent secretion of IL-10 from DCs regulated neutrophil CXCR2 expression. CONCLUSIONS Our data shed light on a previously unrecognized role for TLR4 signaling on DCs in driving IL-10 secretion during sepsis and, through this pathway, regulates PMN recruitment via suppression of CXCR2 expression.
Collapse
Affiliation(s)
- Meihong Deng
- Department of Surgery, University of Pittsburgh, Pennsylvania
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital
| | - Zhengzheng Yan
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Kent R Zettel
- Department of Surgery, University of Pittsburgh, Pennsylvania
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pennsylvania
| | - Hong Liao
- Department of Surgery, University of Pittsburgh, Pennsylvania
| | - Alicia Frank
- Department of Surgery, University of Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
36
|
Papadopoulos A, Gorvel JP. Subversion of mouse dendritic cell subset function by bacterial pathogens. Microb Pathog 2015; 89:140-9. [PMID: 26453826 DOI: 10.1016/j.micpath.2015.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play an important role as sentinels of the immune system in initiating and controlling the quality of adaptive immune responses. Located at entry points of the host they can sense and alert the body from dangers such as infection by pathogenic bacteria. Considering their strategic localization it is not surprising that DCs have evolved in a series of DC subtypes, which are well adapted to their microenvironment. Nowadays, the advent of the identification of specific DC subtypes has opened the way for the study of pathogen-DCs interactions and the involved mechanisms of these interactions. Due to key aspect of DCs, several bacterial pathogens have taken advantage of these cells and developed mechanisms to subvert DC function and thereby evade the immune system. This review brings recent insights into DC-pathogenic bacteria cross-talk using the mouse model of infection with an emphasis on DC subtypes.
Collapse
Affiliation(s)
- Alexia Papadopoulos
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
37
|
Manipulation of Autophagy in Phagocytes Facilitates Staphylococcus aureus Bloodstream Infection. Infect Immun 2015; 83:3445-57. [PMID: 26099586 PMCID: PMC4534639 DOI: 10.1128/iai.00358-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/06/2015] [Indexed: 01/16/2023] Open
Abstract
The capacity for intracellular survival within phagocytes is likely a critical factor facilitating the dissemination of Staphylococcus aureus in the host. To date, the majority of work on S. aureus-phagocyte interactions has focused on neutrophils and, to a lesser extent, macrophages, yet we understand little about the role played by dendritic cells (DCs) in the direct killing of this bacterium. Using bone marrow-derived DCs (BMDCs), we demonstrate for the first time that DCs can effectively kill S. aureus but that certain strains of S. aureus have the capacity to evade DC (and macrophage) killing by manipulation of autophagic pathways. Strains with high levels of Agr activity were capable of causing autophagosome accumulation, were not killed by BMDCs, and subsequently escaped from the phagocyte, exerting significant cytotoxic effects. Conversely, strains that exhibited low levels of Agr activity failed to accumulate autophagosomes and were killed by BMDCs. Inhibition of the autophagic pathway by treatment with 3-methyladenine restored the bactericidal effects of BMDCs. Using an in vivo model of systemic infection, we demonstrated that the ability of S. aureus strains to evade phagocytic cell killing and to survive temporarily within phagocytes correlated with persistence in the periphery and that this effect is critically Agr dependent. Taken together, our data suggest that strains of S. aureus exhibiting high levels of Agr activity are capable of blocking autophagic flux, leading to the accumulation of autophagosomes. Within these autophagosomes, the bacteria are protected from phagocytic killing, thus providing an intracellular survival niche within professional phagocytes, which ultimately facilitates dissemination.
Collapse
|
38
|
Jung JY, Roberts LL, Robinson CM. The presence of interleukin-27 during monocyte-derived dendritic cell differentiation promotes improved antigen processing and stimulation of T cells. Immunology 2015; 144:649-60. [PMID: 25346485 DOI: 10.1111/imm.12417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/17/2014] [Accepted: 10/19/2014] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells necessary to establish effective adaptive immune responses. The cytokine environment that exists at the time of DC differentiation may be an important but often ignored determinant in the phenotypic and functional properties of DCs. Interleukin-27 (IL-27) is a unique cytokine that has both inflammatory and immune suppressive activities. Although it can both promote and oppose activity of different T-cell subsets, mostly anti-inflammatory activity has been described toward macrophages and DCs. However, the specific effect of IL-27 during DC differentiation and how that may change the nature of the antigen-presenting cell has not been investigated. In this report, we show that IL-27 treatment during monocyte-derived DC differentiation enhanced the ability to process antigens and stimulate T-cell activity. DCs differentiated in the presence of IL-27 showed enhanced acidification of latex bead-containing phagosomes that was consistent with elevated expression of vacuolar-ATPases. This resulted in inhibition of intracellular growth of Staphylococcus aureus. In addition, the levels of MHC class II surface expression were higher in DCs differentiated in the presence of IL-27. Production of IL-12 was also significantly increased during S. aureus infection of IL-27-differentiated DCs. The net effect of these activities was enhanced CD4(+) T-cell proliferation and T helper type 1 cytokine production. These findings are important to a wide number of immunological contexts and should be considered in the development of future vaccines.
Collapse
Affiliation(s)
- Joo-Yong Jung
- Department of Biology, Briar Cliff University, Sioux City, IA, USA
| | | | | |
Collapse
|
39
|
|
40
|
Wu X, Xu F. Dendritic cells during Staphylococcus aureus infection: subsets and roles. J Transl Med 2014; 12:358. [PMID: 25519813 PMCID: PMC4279898 DOI: 10.1186/s12967-014-0358-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that play a crucial role in both innate and adaptive immune responses. DCs orient the immune responses by modulating the balance between protective immunity to pathogens and tolerance to self-antigens. Staphylococcus aureus (S. aureus) is a common member of human skin microbiota and can cause severe infections with significant morbidity and mortality. Protective immunity to pathogens by DCs is required for clearance of S. aureus. DCs sense the presence of the staphylococcal components using pattern recognition receptors (PRRs) and then orchestrate immune systems to resolve infections. This review summarizes the possible roles of DCs, in particular their Toll-like receptors (TLRs) involved in S. aureus infection and strategies by which the pathogen affects activation and function of DCs.
Collapse
Affiliation(s)
- Xuejie Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Feng Xu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
41
|
Bieber K, Autenrieth SE. Insights how monocytes and dendritic cells contribute and regulate immune defense against microbial pathogens. Immunobiology 2014; 220:215-26. [PMID: 25468558 DOI: 10.1016/j.imbio.2014.10.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
Abstract
The immune system protects from infections primarily by detecting and eliminating invading pathogens. Beside neutrophils, monocytes and dendritic cells (DCs) have been recently identified as important sentinels and effectors in combating microbial pathogens. In the steady state mononuclear phagocytes like monocytes and DCs patrol the blood and the tissues. Mammalian monocytes contribute to antimicrobial defense by supplying tissues with macrophage and DC precursors. DCs recognize pathogens and are essential in presenting antigens to initiate antigen-specific adaptive immune responses, thereby bridging the innate and adaptive immune systems. Both, monocytes and DCs play distinct roles in the shaping of immune response. In this review we will focus on the contributions of monocytes and lymphoid organ DCs to immune defense against microbial pathogens in the mouse and their dynamic regulation from steady state to infection.
Collapse
Affiliation(s)
- Kristin Bieber
- Department of Internal Medicine II, University of Tübingen, Germany
| | | |
Collapse
|
42
|
Yeaman MR, Filler SG, Schmidt CS, Ibrahim AS, Edwards JE, Hennessey JP. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus. Front Immunol 2014; 5:463. [PMID: 25309545 PMCID: PMC4176462 DOI: 10.3389/fimmu.2014.00463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/22/2022] Open
Abstract
Recent perspectives forecast a new paradigm for future “third generation” vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S. aureus.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; Division of Molecular Medicine, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | - Scott G Filler
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | | | - Ashraf S Ibrahim
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | - John E Edwards
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | | |
Collapse
|
43
|
BDCA1-positive dendritic cells (DCs) represent a unique human myeloid DC subset that induces innate and adaptive immune responses to Staphylococcus aureus Infection. Infect Immun 2014; 82:4466-76. [PMID: 25114114 DOI: 10.1128/iai.01851-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus bloodstream infection (bacteremia) is a major cause of morbidity and mortality and places substantial cost burdens on health care systems. The role of peripheral blood dendritic cells (PBDCs) in the immune responses against S. aureus infection has not been well characterized. In this study, we demonstrated that BDCA1(+) myeloid DCs (mDCs) represent a unique PBDC subset that can induce immune responses against S. aureus infection. BDCA1(+) mDCs could engulf S. aureus and strongly upregulated the expression of costimulatory molecules and production of proinflammatory cytokines. Furthermore, BDCA1(+) mDCs expressed high levels of major histocompatibility complex (MHC) class I and II molecules in response to S. aureus and greatly promoted proliferation and gamma interferon (IFN-γ) production in CD4 and CD8 T cells. Moreover, BDCA1(+) mDCs expressed higher levels of Toll-like receptor 2 (TLR-2) and scavenger receptor A (SR-A) than those on CD16(+) and BDCA3(+) mDCs, and these two receptors were both required for the recognition of S. aureus and the subsequent activation of BDCA1(+) mDCs. Finally, BDCA1(+) mDC-mediated immune responses against S. aureus were dependent on MyD88 signaling pathways. These results demonstrate that human BDCA1(+) mDCs represent a unique subset of mDCs that can respond to S. aureus to undergo maturation and activation and to induce Th1 and Tc1 immune responses.
Collapse
|
44
|
Roquilly A, Braudeau C, Cinotti R, Dumonte E, Motreul R, Josien R, Asehnoune K. Impaired blood dendritic cell numbers and functions after aneurysmal subarachnoid hemorrhage. PLoS One 2013; 8:e71639. [PMID: 23951210 PMCID: PMC3739744 DOI: 10.1371/journal.pone.0071639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/02/2013] [Indexed: 12/22/2022] Open
Abstract
Previous Presentation Portions of this study were presented at the Annual Congress of Société Française d’Anesthésie et de Réanimation in Paris, September 2012. Background Toll-like receptor (TLR) agonists are promising therapy for the prevention of nosocomial infections in critical ill patients. We aimed to analyze the TLR-reactivity of circulating dendritic cells (DC) as assessed by cytokine production after an ex vivo challenge with TLR agonists in aneurysmal subarachnoid hemorrhage (SAH) patients. Methods and Findings A single-center prospective observational study took place in one intensive care unit of a teaching hospital. Blood samples were harvested on days 2, 5 and 10 in 21 severe SAH patients requiring mechanical ventilation and 17 healthy controls. DC production of cytokines (Tumour Necrosis Factor, TNF-α; Interleukin, IL-12; and Interferon, IFN-α) was assessed by intracellular immunostaining on TLR-3, 4, 7/8 and 9 stimulations. SAH patients had decreased numbers of blood myeloid (mDCs) and plasmacytoid DCs (pDCs) on days 2, 5 and 10. Compared with the healthy controls, the frequency of mDCs producing TNF-α after TLR-3 stimulation was decreased in the SAH patients. The frequency of myeloid DCs producing IL-12 after TLR-3 and 4 stimulations was also decreased in the SAH patients. In contrast, the mDCs response to TLR-7/8 was not impaired in the SAH patients. The frequency of pDCs producing TNF-α+ and IFN-α+ on TLR-7/8 stimulation were reduced at all of the tested times in the SAH patients, whereas reactivity to TLR-9 was preserved. On day 2, the pDCs from non-survivor patients (n = 8) had a decreased ability to produce IFN-α on TLR-9 stimulation compared with the survivors. Conclusions These data suggest functional abnormalities of circulating pDCs and mDCs that could be important for immunomodulation after SAH.
Collapse
Affiliation(s)
- Antoine Roquilly
- Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculté de Médecine, Université de Nantes, Nantes, France
- Service d’Anesthésie Réanimation chirurgicale - Hôtel Dieu, Centre Hospitalier Universitaire, Nantes, France
| | - Cécile Braudeau
- INSERM Unité Mixte de Recherche 1064 “Centre de Recherche en Transplantation et Immunologie”, Nantes, France
- Institut de Transplantation –Urologie – Néphrologie, Centre Hospitalier Universitaire, Nantes, France
- Laboratoire d’Immunologie, Centre d’Immunomonitorage Nantes Atlantique, Centre Hospitalier Universitaire, Nantes, France
| | - Raphael Cinotti
- Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculté de Médecine, Université de Nantes, Nantes, France
- Service d’Anesthésie Réanimation chirurgicale, Hôpital Guillaume et René Laennec, Centre Hospitalier Universitaire, Nantes, France
| | - Erwan Dumonte
- Laboratoire d’Immunologie, Centre d’Immunomonitorage Nantes Atlantique, Centre Hospitalier Universitaire, Nantes, France
| | - Rémi Motreul
- Service d’Anesthésie Réanimation chirurgicale, Hôpital Guillaume et René Laennec, Centre Hospitalier Universitaire, Nantes, France
| | - Régis Josien
- INSERM Unité Mixte de Recherche 1064 “Centre de Recherche en Transplantation et Immunologie”, Nantes, France
- Institut de Transplantation –Urologie – Néphrologie, Centre Hospitalier Universitaire, Nantes, France
- Laboratoire d’Immunologie, Centre d’Immunomonitorage Nantes Atlantique, Centre Hospitalier Universitaire, Nantes, France
| | - Karim Asehnoune
- Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculté de Médecine, Université de Nantes, Nantes, France
- Service d’Anesthésie Réanimation chirurgicale - Hôtel Dieu, Centre Hospitalier Universitaire, Nantes, France
- * E-mail:
| |
Collapse
|