1
|
Obeid S, Berbel-Manaia E, Nicolas V, Dennemont I, Barbier J, Cintrat JC, Gillet D, Loiseau PM, Pomel S. Deciphering the mechanism of action of VP343, an antileishmanial drug candidate, in Leishmania infantum. iScience 2023; 26:108144. [PMID: 37915600 PMCID: PMC10616420 DOI: 10.1016/j.isci.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Antileishmanial chemotherapy is currently limited due to severe toxic side effects and drug resistance. Hence, new antileishmanial compounds based on alternative approaches, mainly to avoid the emergence of drug resistance, are needed. The present work aims to decipher the mechanism of action of an antileishmanial drug candidate, named VP343, inhibiting intracellular Leishmania infantum survival via the host cell. Cell imaging showed that VP343 interferes with the fusion of parasitophorous vacuoles and host cell late endosomes and lysosomes, leading to lysosomal cholesterol accumulation and ROS overproduction within host cells. Proteomic analyses showed that VP343 perturbs host cell vesicular trafficking as well as cholesterol synthesis/transport pathways. Furthermore, a knockdown of two selected targets involved in vesicle-mediated transport, Pik3c3 and Sirt2, resulted in similar antileishmanial activity to VP343 treatment. This work revealed potential host cell pathways and targets altered by VP343 that would be of interest for further development of host-directed antileishmanial drugs.
Collapse
Affiliation(s)
- Sameh Obeid
- Université Paris-Saclay, CNRS BioCIS, 91400 Orsay, France
| | | | - Valérie Nicolas
- Université Paris-Saclay, UMS-IPSIT, Microscopy Facility, 92019 Châtenay-Malabry, France
| | | | - Julien Barbier
- Université Paris-Saclay, UMS-IPSIT, Microscopy Facility, 92019 Châtenay-Malabry, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
2
|
In Vivo Sustained Release of the Retrograde Transport Inhibitor Retro-2.1 Formulated in a Thermosensitive Hydrogel. Int J Mol Sci 2022; 23:ijms232314611. [PMID: 36498939 PMCID: PMC9735573 DOI: 10.3390/ijms232314611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
A recently developed inhibitor of retrograde transport, namely Retro-2.1, proved to be a potent and broad-spectrum lead in vitro against intracellular pathogens, such as toxins, parasites, intracellular bacteria and viruses. To circumvent its low aqueous solubility, a formulation in poly(ethylene glycol)-block-poly(D,L)lactide micelle nanoparticles was developed. This formulation enabled the study of the pharmacokinetic parameters of Retro-2.1 in mice following intravenous and intraperitoneal injections, revealing a short blood circulation time, with an elimination half-life of 5 and 6.7 h, respectively. To explain the poor pharmacokinetic parameters, the metabolic stability of Retro-2.1 was studied in vitro and in vivo, revealing fast cytochrome-P-450-mediated metabolism into a less potent hydroxylated analogue. Subcutaneous injection of Retro-2.1 formulated in a biocompatible and bioresorbable polymer-based thermosensitive hydrogel allowed for sustained release of the drug, with an elimination half-life of 19 h, and better control of its metabolism. This study provides a guideline on how to administer this promising lead in vivo in order to study its efficacy.
Collapse
|
3
|
Guay-Vincent MM, Matte C, Berthiaume AM, Olivier M, Jaramillo M, Descoteaux A. Revisiting Leishmania GP63 host cell targets reveals a limited spectrum of substrates. PLoS Pathog 2022; 18:e1010640. [PMID: 36191034 PMCID: PMC9560592 DOI: 10.1371/journal.ppat.1010640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/13/2022] [Accepted: 09/25/2022] [Indexed: 11/18/2022] Open
Abstract
Colonization of host phagocytic cells by Leishmania metacyclic promastigotes involves several parasite effectors, including the zinc-dependent metalloprotease GP63. The major mode of action of this virulence factor entails the cleavage/degradation of host cell proteins. Given the potent proteolytic activity of GP63, identification of its substrates requires the adequate preparation of cell lysates to prevent artefactual degradation during cell processing. In the present study, we re-examined the cleavage/degradation of reported GP63 substrates when GP63 activity was efficiently neutralized during the preparation of cell lysates. To this end, we infected bone marrow-derived macrophages with either wild type, Δgp63, and Δgp63+GP63 L. major metacyclic promastigotes for various time points. We prepared cell lysates in the absence or presence of the zinc-metalloprotease inhibitor 1,10-phenanthroline and examined the levels and integrity of ten previously reported host cell GP63 substrates. Inhibition of GP63 activity with 1,10-phenanthroline during the processing of macrophages prevented the cleavage/degradation of several previously described GP63 targets, including PTP-PEST, mTOR, p65RelA, c-Jun, VAMP3, and NLRP3. Conversely, we confirmed that SHP-1, Synaptotagmin XI, VAMP8, and Syntaxin-5 are bona fide GP63 substrates. These results point to the importance of efficiently inhibiting GP63 activity during the preparation of Leishmania-infected host cell lysates. In addition, our results indicate that the role of GP63 in Leishmania pathogenesis must be re-evaluated.
Collapse
Affiliation(s)
- Marie-Michèle Guay-Vincent
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Christine Matte
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Anne-Marie Berthiaume
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Maritza Jaramillo
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Albert Descoteaux
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
4
|
Wu Y, Mahtal N, Paillares E, Swistak L, Sagadiev S, Acharya M, Demeret C, Werf SVD, Guivel-Benhassine F, Schwartz O, Petracchini S, Mettouchi A, Caramelle L, Couvineau P, Thai R, Barbe P, Keck M, Brodin P, Machelart A, Sencio V, Trottein F, Sachse M, Chicanne G, Payrastre B, Ville F, Kreis V, Popoff MR, Johannes L, Cintrat JC, Barbier J, Gillet D, Lemichez E. C910 chemical compound inhibits the traffiking of several bacterial AB toxins with cross-protection against influenza virus. iScience 2022; 25:104537. [PMID: 35769882 PMCID: PMC9234246 DOI: 10.1016/j.isci.2022.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The development of anti-infectives against a large range of AB-like toxin-producing bacteria includes the identification of compounds disrupting toxin transport through both the endolysosomal and retrograde pathways. Here, we performed a high-throughput screening of compounds blocking Rac1 proteasomal degradation triggered by the Cytotoxic Necrotizing Factor-1 (CNF1) toxin, which was followed by orthogonal screens against two toxins that hijack the endolysosomal (diphtheria toxin) or retrograde (Shiga-like toxin 1) pathways to intoxicate cells. This led to the identification of the molecule C910 that induces the enlargement of EEA1-positive early endosomes associated with sorting defects of CNF1 and Shiga toxins to their trafficking pathways. C910 protects cells against eight bacterial AB toxins and the CNF1-mediated pathogenic Escherichia coli invasion. Interestingly, C910 reduces influenza A H1N1 and SARS-CoV-2 viral infection in vitro. Moreover, parenteral administration of C910 to mice resulted in its accumulation in lung tissues and a reduction in lethal influenza infection.
Collapse
Affiliation(s)
- Yu Wu
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Nassim Mahtal
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SCBM, 91191 Gif-sur-Yvette, France
| | - Eléa Paillares
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Léa Swistak
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Sara Sagadiev
- Seattle Children’s Research Institute, Jack R MacDonald Building, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Mridu Acharya
- Seattle Children’s Research Institute, Jack R MacDonald Building, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Caroline Demeret
- Unité Génétique Moléculaire des Virus à ARN, UMR 3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Sylvie Van Der Werf
- Unité Génétique Moléculaire des Virus à ARN, UMR 3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Florence Guivel-Benhassine
- Unité virus et immunité, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Olivier Schwartz
- Unité virus et immunité, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Serena Petracchini
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Amel Mettouchi
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Lucie Caramelle
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Pierre Couvineau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Peggy Barbe
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Mathilde Keck
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Priscille Brodin
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Arnaud Machelart
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Valentin Sencio
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - François Trottein
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Gaëtan Chicanne
- Inserm, UMR1297 and Université Toulouse III Paul Sabatier, I2MC, 31024 Toulouse, France
| | - Bernard Payrastre
- Inserm, UMR1297 and Université Toulouse III Paul Sabatier, I2MC, 31024 Toulouse, France
| | - Florian Ville
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SCBM, 91191 Gif-sur-Yvette, France
| | - Victor Kreis
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Michel-Robert Popoff
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology unit, Endocytic Trafficking and Intracellular Delivery team, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SCBM, 91191 Gif-sur-Yvette, France
| | - Julien Barbier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Emmanuel Lemichez
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| |
Collapse
|
5
|
VAMP3 and VAMP8 regulate the development and functionality of parasitophorous vacuoles housing Leishmania amazonensis. Infect Immun 2022; 90:e0018321. [PMID: 35130453 DOI: 10.1128/iai.00183-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To colonize mammalian phagocytic cells, the parasite Leishmania remodels phagosomes into parasitophorous vacuoles that can be either tight-fitting individual or communal. The molecular and cellular bases underlying the biogenesis and functionality of these two types of vacuoles are poorly understood. In this study, we investigated the contribution of host cell Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor proteins to the expansion and functionality of communal vacuoles as well as on the replication of the parasite. The differential recruitment patterns of Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor to communal vacuoles harboring L. amazonensis and to individual vacuoles housing L. major led us to further investigate the roles of VAMP3 and VAMP8 in the interaction of Leishmania with its host cell. We show that whereas VAMP8 contributes to optimal expansion of communal vacuoles, VAMP3 negatively regulates L. amazonensis replication, vacuole size, as well as antigen cross-presentation. In contrast, neither proteins has an impact on the fate of L. major. Collectively, our data support a role for both VAMP3 and VAMP8 in the development and functionality of L. amazonensis-harboring communal parasitophorous vacuoles.
Collapse
|
6
|
Craig E, Calarco A, Conte R, Ambrogi V, d'Ayala GG, Alabi P, Sello JK, Cerruti P, Kima PE. Thermoresponsive Copolymer Nanovectors Improve the Bioavailability of Retrograde Inhibitors in the Treatment of Leishmania Infections. Front Cell Infect Microbiol 2021; 11:702676. [PMID: 34490142 PMCID: PMC8417477 DOI: 10.3389/fcimb.2021.702676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Clinical manifestations of leishmaniasis range from self-healing, cutaneous lesions to fatal infections of the viscera. With no preventative Leishmania vaccine available, the frontline option against leishmaniasis is chemotherapy. Unfortunately, currently available anti-Leishmania drugs face several obstacles, including toxicity that limits dosing and emergent drug resistant strains in endemic regions. It is, therefore, imperative that more effective drug formulations with decreased toxicity profiles are developed. Previous studies had shown that 2-(((5-Methyl-2-thienyl)methylene)amino)-N-phenylbenzamide (also called Retro-2) has efficacy against Leishmania infections. Structure–activity relationship (SAR) analogs of Retro-2, using the dihydroquinazolinone (DHQZ) base structure, were subsequently described that are more efficacious than Retro-2. However, considering the hydrophobic nature of these compounds that limits their solubility and uptake, the current studies were initiated to determine whether the solubility of Retro-2 and its SAR analogs could be enhanced through encapsulation in amphiphilic polymer nanoparticles. We evaluated encapsulation of these compounds in the amphiphilic, thermoresponsive oligo(ethylene glycol) methacrylate-co-pentafluorostyrene (PFG30) copolymer that forms nanoparticle aggregates upon heating past temperatures of 30°C. The hydrophobic tracer, coumarin 6, was used to evaluate uptake of a hydrophobic molecule into PFG30 aggregates. Mass spectrometry analysis showed considerably greater delivery of encapsulated DHQZ analogs into infected cells and more rapid shrinkage of L. amazonensis communal vacuoles. Moreover, encapsulation in PFG30 augmented the efficacy of Retro-2 and its SAR analogs to clear both L. amazonensis and L. donovani infections. These studies demonstrate that encapsulation of compounds in PFG30 is a viable approach to dramatically increase bioavailability and efficacy of anti-Leishmania compounds.
Collapse
Affiliation(s)
- Evan Craig
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Napoli, Italy
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Napoli, Italy
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering (DICMaPI) - University of Naples Federico II, Napoli, Italy
| | | | - Philip Alabi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Jason K Sello
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | | | - Peter E Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Pomel S, Cojean S, Pons V, Cintrat JC, Nguyen L, Vacus J, Pruvost A, Barbier J, Gillet D, Loiseau PM. An adamantamine derivative as a drug candidate for the treatment of visceral leishmaniasis. J Antimicrob Chemother 2021; 76:2640-2650. [PMID: 34212184 DOI: 10.1093/jac/dkab226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study aimed to investigate compounds acting on the host cell machinery to impair parasite installation with the possible advantage of limiting drug resistance. The strategy therefore consisted of selecting compounds that are poorly active on the axenic parasite, but very active on the intramacrophage form of Leishmania. OBJECTIVES To identify a drug candidate from focused screening of adamantamine derivatives that can inhibit the development of Leishmania infantum in macrophages. METHODS In vitro screening was performed on a library of 142 adamantamine derivatives with axenic and intramacrophage forms of L. infantum, as well as cytotoxicity assays, allowing selection of the most promising compound. Absorption, distribution, metabolism and excretion (ADME) experiments, including pharmacokinetics and microsomal stability, were performed and finally the physicochemical stability of the compound was investigated to assess its suitability for further drug development. RESULTS VP343 was identified first in vitro, with a CC50 value of 63.7 μM and an IC50 value of 0.32 μM for L. infantum intramacrophage amastigotes and then in vivo, with a 59% reduction of the liver parasite burden after oral administration at 10 mg/kg/day for 5 days. In addition, the ADME data were compatible with moving this compound further through the antileishmanial drug candidate pipeline. CONCLUSIONS VP343 has the properties of a good drug candidate and merits further investigations.
Collapse
Affiliation(s)
- Sébastien Pomel
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Sandrine Cojean
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Valérie Pons
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France
| | - Laetitia Nguyen
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Joël Vacus
- Drugabilis, 7, Allée de Londres, 91140, Villejust, France
| | - Alain Pruvost
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Julien Barbier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France
| | | |
Collapse
|
8
|
The macrophage microtubule network acts as a key cellular controller of the intracellular fate of Leishmania infantum. PLoS Negl Trop Dis 2020; 14:e0008396. [PMID: 32722702 PMCID: PMC7386624 DOI: 10.1371/journal.pntd.0008396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/16/2020] [Indexed: 11/19/2022] Open
Abstract
The parasitophorous vacuoles (PVs) that insulate Leishmania spp. in host macrophages are vacuolar compartments wherein promastigote forms differentiate into amastigote that are the replicative form of the parasite and are also more resistant to host responses. We revisited the biogenesis of tight-fitting PVs that insulate L. infantum in promastigote-infected macrophage-like RAW 264.7 cells by time-dependent confocal laser multidimensional imaging analysis. Pharmacological disassembly of the cellular microtubule network and silencing of the dynein gene led to an impaired interaction of L. infantum-containing phagosomes with late endosomes and lysosomes, resulting in the tight-fitting parasite-containing phagosomes never transforming into mature PVs. Analysis of the shape of the L. infantum parasite within PVs, showed that factors that impair promastigote-amastigote differentiation can also result in PVs whose maturation is arrested. These findings highlight the importance of the MT-dependent interaction of L. infantum-containing phagosomes with the host macrophage endolysosomal pathway to secure the intracellular fate of the parasite. Kinetoplastid parasites of the genus Leishmania are responsible for a diverse spectrum of mammalian infectious diseases, the leishmaniases, including cutaneous, mucocutaneous, and mucosal pathologies. Infectious metacyclic promastigotes of infected female Phlebotomus sandflies are injected into the host at the site of the bite during the sandfly blood meal, after which they are internalized by host professional phagocytic neutrophils and macrophages. Leishmania infantum is an etiological agent of potentially fatal visceral pathology. This study molecularly dissects the maturation of L. infantum-containing phagosomes/parasitophorous vacuoles (PVs) in host macrophages. We reveal the requirement of vacuolar movement along macrophage microtubule tracks for the phagosome trafficking toward the endolysosomal pathway necessary for the development of the mature tight-fitting PV crucial for L. infantum survival and proliferation.
Collapse
|
9
|
Nicolas V, Lievin-Le Moal V. Small Trafficking Inhibitor Retro-2 Disrupts the Microtubule-Dependent Trafficking of Autophagic Vacuoles. Front Cell Dev Biol 2020; 8:464. [PMID: 32626708 PMCID: PMC7314991 DOI: 10.3389/fcell.2020.00464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a catabolic recycling process by which a cell degrades its own constituents to contribute to cell homeostasis or survival. We report that the small trafficking inhibitor Retro-2 impairs microtubule-dependent vacuolar trafficking in autophagy. Retro-2 induced autophagy and promoted the dramatic cytoplasmic accumulation of large autophagosomes. Moreover, Retro-2 decreased the spreading of autophagosomes within the cytoplasm of nutrient-starved cells. In addition, Retro-2 abolished autolysosomes formation. We show that these effects arise from hitherto unsuspected disassembly activity of the small molecule on the cellular microtubule network, which is known to act as a key regulator of vacuolar trafficking of the autophagy pathway.
Collapse
Affiliation(s)
- Valérie Nicolas
- Université Paris-Saclay, Institut Paris-Saclay d'Innovation Thérapeutique (IPSIT), Microscope Facility (MIPSIT), UMS-US31-UMS3679, Châtenay-Malabry, France
| | - Vanessa Lievin-Le Moal
- University Paris-Saclay, Inserm, UMR-S 996 Inflammation, Microbiome and Immunosurveillance, Clamart, France
| |
Collapse
|
10
|
Batista MF, Nájera CA, Meneghelli I, Bahia D. The Parasitic Intracellular Lifestyle of Trypanosomatids: Parasitophorous Vacuole Development and Survival. Front Cell Dev Biol 2020; 8:396. [PMID: 32587854 PMCID: PMC7297907 DOI: 10.3389/fcell.2020.00396] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
The trypanosomatid (protozoan) parasites Trypanosoma cruzi and Leishmania spp. are causative agents of Chagas disease and Leishmaniasis, respectively. They display high morphological plasticity, are capable of developing in both invertebrate and vertebrate hosts, and are the only trypanosomatids that can survive and multiply inside mammalian host cells. During internalization by host cells, these parasites are lodged in "parasitophorous vacuoles" (PVs) comprised of host cell endolysosomal system components. PVs effectively shelter parasites within the host cell. PV development and maturation (acidification, acquisition of membrane markers, and/or volumetric expansion) precede parasite escape from the vacuole and ultimately from the host cell, which are key determinants of infective burden and persistence. PV biogenesis varies, depending on trypanosomatid species, in terms of morphology (e.g., size), biochemical composition, and parasite-mediated processes that coopt host cell machinery. PVs play essential roles in the intracellular development (i.e., morphological differentiation and/or multiplication) of T. cruzi and Leishmania spp. They are of great research interest as potential gateways for drug delivery systems and other therapeutic strategies for suppression of parasite multiplication and control of the large spectrum of diseases caused by these trypanosomatids. This mini-review focuses on mechanisms of PV biogenesis, and processes whereby PVs of T. cruzi and Leishmania spp. promote parasite persistence within and dissemination among mammalian host cells.
Collapse
Affiliation(s)
| | | | | | - Diana Bahia
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Cojean S, Nicolas V, Lievin-Le Moal V. Key role of the macrophage microtubule network in the intracellular lifestyle of Leishmania amazonensis. Cell Microbiol 2020; 22:e13218. [PMID: 32406568 DOI: 10.1111/cmi.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
We conducted a study to decipher the mechanism of the formation of the large communal Leishmania amazonensis-containing parasitophorous vacuole (PV) and found that the macrophage microtubule (MT) network dynamically orchestrates the intracellular lifestyle of this intracellular parasite. Physical disassembly of the MT network of macrophage-like RAW 264.7 cells or silencing of the dynein gene, encoding the MT-associated molecular motor that powers MT-dependent vacuolar movement, by siRNA resulted in most of the infected cells hosting only tight parasite-containing phagosome-like vacuoles randomly distributed throughout the cytoplasm, each insulating a single parasite. Only a minority of the infected cells hosted both isolated parasite-containing phagosome-like vacuoles and a small communal PV, insulating a maximum of two to three parasites. The tight parasite-containing phagosome-like vacuoles never matured, whereas the small PVs only matured to a small degree, shown by the absence or faint acquisition of host-cell endolysosomal characteristics. As a consequence, the parasites were unable to successfully complete promastigote-to-amastigote differentiation and died, regardless of the type of insulation.
Collapse
Affiliation(s)
- Sandrine Cojean
- CNRS, UMR 8076 BioCis, University Paris-Saclay, Châtenay-Malabry, France
| | - Valérie Nicolas
- Institut Paris-Saclay d'Innovation Thérapeutique (IPSIT), UMS -US31 -UMS3679, Microscopy facility (MIPSIT), University Paris-Saclay, Châtenay-Malabry, France
| | - Vanessa Lievin-Le Moal
- Inserm, UMR-S 996 Inflammation, Microbiome and Immunosurveillance, University Paris-Saclay, Clamart, France
| |
Collapse
|
12
|
Batty MB, Schittenhelm RB, Dorin-Semblat D, Doerig C, Garcia-Bustos JF. Interaction of Plasmodium falciparum casein kinase 1 with components of host cell protein trafficking machinery. IUBMB Life 2020; 72:1243-1249. [PMID: 32356940 DOI: 10.1002/iub.2294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
A pool of Plasmodium falciparum casein kinase 1 (PfCK1) has been shown to localize to the host red blood cell (RBC) membrane and be secreted to the extracellular medium during trophozoite stage of development. We attempted to identify mechanisms for secretion of PfCK1 and its appearance on the RBC membrane. We found that two host proteins with established functions in membrane trafficking in higher eukaryotes, GTPase-activating protein and Vps9 domain-containing protein 1 (GAPVD1), and Sorting nexin 22, consistently co-purify with PfCK1, suggesting that the parasite utilizes trafficking pathways previously thought to be inactive in RBCs. Furthermore, reciprocal immunoprecipitation experiments with GAPVD1 identified parasite proteins suggestive of a protein recycling pathway hitherto only described in higher eukaryotes. Thus, we have identified components of a trafficking pathway involving parasite proteins that act in concert with host proteins, and which we hypothesize mediates trafficking of PfCK1 to the RBC during infection.
Collapse
Affiliation(s)
- Mitchell B Batty
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Dominique Dorin-Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Christian Doerig
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Centre for Chronic, Inflammatory and Infectious Diseases, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Jose F Garcia-Bustos
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Functional dissection of the retrograde Shiga toxin trafficking inhibitor Retro-2. Nat Chem Biol 2020; 16:327-336. [PMID: 32080624 PMCID: PMC7039708 DOI: 10.1038/s41589-020-0474-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/10/2020] [Indexed: 11/29/2022]
Abstract
The retrograde transport inhibitor Retro-2 has a protective effect on cells and in mice against Shiga-like toxins and ricin. Retro-2 causes toxin accumulation in early endosomes, and relocalization of the Golgi SNARE protein syntaxin-5 to the endoplasmic reticulum. The molecular mechanisms by which this is achieved remain unknown. Here, we show that Retro-2 targets the endoplasmic reticulum exit site component Sec16A, affecting anterograde transport of syntaxin-5 from the endoplasmic reticulum to the Golgi. The formation of canonical SNARE complexes involving syntaxin-5 is not affected in Retro-2-treated cells. In contrast, the interaction of syntaxin-5 with a newly discovered binding partner, the retrograde trafficking chaperone GPP130, is abolished, and we show that GPP130 must indeed bind to syntaxin-5 to drive Shiga toxin transport from endosomes to the Golgi. We thereby identify Sec16A as a druggable target, and provide evidence for a non-SNARE function for syntaxin-5 in interaction with the GPP130.
Collapse
|
14
|
da Silva Vieira T, Arango Duque G, Ory K, Gontijo CM, Soares RP, Descoteaux A. Leishmania braziliensis: Strain-Specific Modulation of Phagosome Maturation. Front Cell Infect Microbiol 2019; 9:319. [PMID: 31555609 PMCID: PMC6743224 DOI: 10.3389/fcimb.2019.00319] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Leishmania (Viannia) braziliensis is responsible for the largest number of American tegumentary leishmaniasis (ATL) in Brazil. ATL can present several clinical forms including typical (TL) and atypical (AL) cutaneous and mucocutaneous (ML) lesions. To identify parasite and host factors potentially associated with these diverse clinical manifestations, we first surveyed the expression of two virulence-associated glycoconjugates, lipophosphoglycan (LPG) and the metalloprotease GP63 by a panel of promastigotes of Leishmania braziliensis (L. braziliensis) strains isolated from patients with different clinical manifestations of ATL and from the sand fly vector. We observed a diversity of expression patterns for both LPG and GP63, which may be related to strain-specific polymorphisms. Interestingly, we noted that GP63 activity varies from strain to strain, including the ability to cleave host cell molecules. We next evaluated the ability of promastigotes from these L. braziliensis strains to modulate phagolysosome biogenesis in bone marrow-derived macrophages (BMM), by assessing phagosomal recruitment of the lysosome-associated membrane protein 1 (LAMP-1) and intraphagosomal acidification. Whereas, three out of six L. braziliensis strains impaired the phagosomal recruitment of LAMP-1, only the ML strain inhibited phagosome acidification to the same extent as the L. donovani strain that was used as a positive control. While decreased phagosomal recruitment of LAMP-1 correlated with higher LPG levels, decreased phagosomal acidification correlated with higher GP63 levels. Finally, we observed that the ability to infect and replicate within host cells did not fully correlate with the inhibition of phagosome maturation. Collectively, our results revealed a diversity of strain-specific phenotypes among L. braziliensis isolates, consistent with the high genetic diversity within Leishmania populations.
Collapse
Affiliation(s)
- Tamara da Silva Vieira
- Fundação Oswaldo Cruz - FIOCRUZ, Centro de Pesquisas René Rachou, Belo Horizonte, Brazil.,INRS - Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Guillermo Arango Duque
- INRS - Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Kévin Ory
- INRS - Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.,Université de Rennes 1, CHU Rennes, INSERM, Rennes, France
| | - Celia Maria Gontijo
- Fundação Oswaldo Cruz - FIOCRUZ, Centro de Pesquisas René Rachou, Belo Horizonte, Brazil
| | - Rodrigo Pedro Soares
- Fundação Oswaldo Cruz - FIOCRUZ, Centro de Pesquisas René Rachou, Belo Horizonte, Brazil
| | - Albert Descoteaux
- INRS - Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| |
Collapse
|
15
|
Linders PT, Horst CVD, Beest MT, van den Bogaart G. Stx5-Mediated ER-Golgi Transport in Mammals and Yeast. Cells 2019; 8:cells8080780. [PMID: 31357511 PMCID: PMC6721632 DOI: 10.3390/cells8080780] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 5 (Stx5) in mammals and its ortholog Sed5p in Saccharomyces cerevisiae mediate anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking. Stx5 and Sed5p are structurally highly conserved and are both regulated by interactions with other ER-Golgi SNARE proteins, the Sec1/Munc18-like protein Scfd1/Sly1p and the membrane tethering complexes COG, p115, and GM130. Despite these similarities, yeast Sed5p and mammalian Stx5 are differently recruited to COPII-coated vesicles, and Stx5 interacts with the microtubular cytoskeleton, whereas Sed5p does not. In this review, we argue that these different Stx5 interactions contribute to structural differences in ER-Golgi transport between mammalian and yeast cells. Insight into the function of Stx5 is important given its essential role in the secretory pathway of eukaryotic cells and its involvement in infections and neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Ta Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Chiel van der Horst
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Martin Ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
16
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
17
|
Retro-2 and its dihydroquinazolinone derivatives inhibit filovirus infection. Antiviral Res 2017; 149:154-163. [PMID: 29175127 DOI: 10.1016/j.antiviral.2017.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/31/2022]
Abstract
Members of the family Filoviridae cause severe, often fatal disease in humans, for which there are no approved vaccines and only a few experimental drugs tested in animal models. Retro-2, a small molecule that inhibits retrograde trafficking of bacterial and plant toxins inside host cells, has been demonstrated to be effective against a range of bacterial and virus pathogens, both in vitro and in animal models. Here, we demonstrated that Retro-2 and its derivatives, Retro-2.1 and compound 25, blocked infection by Ebola virus and Marburg virus in vitro. We show that the derivatives were more potent inhibitors of infection as compared to the parent compound. Pseudotyped virus assays indicated that the compounds affected virus entry into cells while virus particle localization to Niemann-Pick C1-positive compartments showed that they acted at a late step in virus entry. Our work demonstrates a potential for Retro-type drugs to be developed into anti-filoviral therapeutics.
Collapse
|
18
|
Inhibition of Retrograde Transport Limits Polyomavirus Infection In Vivo. mSphere 2017; 2:mSphere00494-17. [PMID: 29152583 PMCID: PMC5687923 DOI: 10.1128/mspheredirect.00494-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023] Open
Abstract
PyVs can cause significant morbidity and mortality in immunocompromised individuals. No clinically efficacious anti-PyV therapeutic agents are available. A recently identified inhibitor of retrograde transport, Retro-2cycl, blocks movement of PyV virion-containing vesicles from early endosomes to the endoplasmic reticulum, an early step in the PyV life cycle. Retro-2cycl and its derivatives have been shown to inhibit infection by human PyVs in tissue culture. Here, we demonstrate that a derivative of Retro-2cycl, Retro-2.1, reduces infection by MuPyV in the kidneys of acutely infected mice. Mimicking the common clinical scenario of PyV resurgence, we further show that MuPyV levels increase in the kidneys of immunocompromised, persistently infected mice and that this increase is inhibited by Retro-2.1. These data provide the first evidence for control of a natural PyV infection in vivo by administration of an inhibitor of retrograde transport. Polyomaviruses (PyVs) silently infect most humans, but they can cause life-threatening diseases in immunocompromised individuals. The JC polyomavirus (JCPyV) induces progressive multifocal leukoencephalopathy, a severe demyelinating disease in multiple sclerosis patients receiving immunomodulatory therapy, and BK polyomavirus (BKPyV)-associated nephropathy is a major cause of kidney allograft failure. No effective anti-PyV agents are available. Several compounds have been reported to possess anti-PyV activity in vitro, but none have shown efficacy in clinical trials. Productive PyV infection involves usurping the cellular retrograde vesicular transport pathway to enable endocytosed virions to navigate to the endoplasmic reticulum where virion uncoating begins. Compounds inhibiting this pathway have been shown to reduce infection by simian virus 40 (SV40), JCPyV, and BKPyV in tissue culture. In this study, we investigated the potential of Retro-2.1, a retrograde transport inhibitor, to limit infection by mouse polyomavirus (MuPyV) in vivo. We found that Retro-2.1 significantly reduced MuPyV levels in the kidney during acute infection without affecting renal function or the MuPyV-specific CD8 T cell response. To approximate the clinical setting of PyV resurgence in immunocompromised hosts, we showed that antibody-mediated depletion of T cells in persistently infected mice elevated MuPyV levels in the kidney and that Retro-2.1 blunted this increase in virus levels. In summary, these data indicate that inhibition of retrograde vesicular transport in vivo controls infection in a natural PyV mouse model and supports development of these compounds as potential therapeutic agents for individuals at risk for human PyV-associated diseases. IMPORTANCE PyVs can cause significant morbidity and mortality in immunocompromised individuals. No clinically efficacious anti-PyV therapeutic agents are available. A recently identified inhibitor of retrograde transport, Retro-2cycl, blocks movement of PyV virion-containing vesicles from early endosomes to the endoplasmic reticulum, an early step in the PyV life cycle. Retro-2cycl and its derivatives have been shown to inhibit infection by human PyVs in tissue culture. Here, we demonstrate that a derivative of Retro-2cycl, Retro-2.1, reduces infection by MuPyV in the kidneys of acutely infected mice. Mimicking the common clinical scenario of PyV resurgence, we further show that MuPyV levels increase in the kidneys of immunocompromised, persistently infected mice and that this increase is inhibited by Retro-2.1. These data provide the first evidence for control of a natural PyV infection in vivo by administration of an inhibitor of retrograde transport.
Collapse
|
19
|
Descoteaux A. The Macrophage–Parasite Interface as a Chemotherapeutic Target in Leishmaniasis. DRUG DISCOVERY FOR LEISHMANIASIS 2017. [DOI: 10.1039/9781788010177-00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Parasites of the genus Leishmania are intravacuolar pathogens that create compartments within their mammalian hosts where they can live, replicate and manipulate host immune responses. To generate these parasitophorous vacuoles, Leishmania diverts the default phagolysosomal biogenesis process, in part through the action of virulence factors on the host cell membrane fusion machinery. Components of this machinery essential to the biogenesis, maintenance and function of parasitophorous vacuoles may constitute attractive targets for the design of compounds that will disrupt the integrity of the Leishmania intracellular niche and interfere with parasite replication. Targeting components of the fusion machinery thus represents a promising avenue for the discovery of anti-leishmanial compounds that may not be plagued with problems associated with the development of resistance.
Collapse
Affiliation(s)
- Albert Descoteaux
- INRS-Institut Armand-Frappier 531 boul. des Prairies Laval, QC H7V 1B7 Canada
| |
Collapse
|
20
|
Semini G, Aebischer T. Phagosome proteomics to study Leishmania's intracellular niche in macrophages. Int J Med Microbiol 2017; 308:68-76. [PMID: 28927848 DOI: 10.1016/j.ijmm.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens invade their host cells and replicate within specialized compartments. In turn, the host cell initiates a defensive response trying to kill the invasive agent. As a consequence, intracellular lifestyle implies morphological and physiological changes in both pathogen and host cell. Leishmania spp. are medically important intracellular protozoan parasites that are internalized by professional phagocytes such as macrophages, and reside within the parasitophorous vacuole inhibiting their microbicidal activity. Whereas the proteome of the extracellular promastigote form and the intracellular amastigote form have been extensively studied, the constituents of Leishmania's intracellular niche, an endolysosomal compartment, are not fully deciphered. In this review we discuss protocols to purify such compartments by means of an illustrating example to highlight generally relevant considerations and innovative aspects that allow purification of not only the intracellular parasites but also the phagosomes that harbor them and analyze the latter by gel free proteomics.
Collapse
Affiliation(s)
- Geo Semini
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.
| | - Toni Aebischer
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
21
|
Antiviral effects of Retro-2 cycl and Retro-2.1 against Enterovirus 71 in vitro and in vivo. Antiviral Res 2017; 144:311-321. [PMID: 28688753 DOI: 10.1016/j.antiviral.2017.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/23/2022]
Abstract
Enterovirus 71 (EV71) is one of the causative pathogens of hand, foot and mouth disease (HFMD), especially the form associated with fatal neurological disorders. Sustained outbreaks of EV71 infections remain a serious health threat worldwide. However, no antiviral agent against EV71 for clinical therapy has been approved. Retro-2cycl and Retro-2.1 are inhibitors of several pathogens specifically targeting the intracellular vesicle transport, which also participates in the EV71 lifecycle processes including progeny virus release. Here, we reported that Retro-2cycl and Retro-2.1, respectively, could inhibit EV71 infection with 50% effective concentrations of 12.56 μM and 0.05 μM in a cytopathic effect inhibition assay and showed relatively low cytotoxicity with 50% cytotoxicity concentrations of more than 500 μM and 267.80 μM. Preliminary mechanism studies revealed that Retro-2cycl and Retro-2.1 did not inhibit EV71 protein synthesis or RNA replication but could block progeny EV71 release specifically. Furthermore, administration of Retro-2cycl at the dose of 10 mg/kg significantly protected 90% of newborn mice from lethal EV71 challenge. Consequently, our results for the first time identified Retro-2cycl and Retro-2.1 as effective inhibitors of EV71 as well as lead compounds, which would contribute to anti-EV71 drug development. We also identified progeny virus release and the intracellular vesicle transport as antiviral targets for EV71.
Collapse
|
22
|
Craig E, Huyghues-Despointes CE, Yu C, Handy EL, Sello JK, Kima PE. Structurally optimized analogs of the retrograde trafficking inhibitor Retro-2cycl limit Leishmania infections. PLoS Negl Trop Dis 2017; 11:e0005556. [PMID: 28505157 PMCID: PMC5444862 DOI: 10.1371/journal.pntd.0005556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/25/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022] Open
Abstract
In infected mammalian cells, Leishmania parasites reside within specialized compartments called parasitophorous vacuoles (LPVs). We have previously shown that Retro-2, a member of a novel class of small retrograde pathway inhibitors caused reduced LPV sizes and lower parasite numbers during experimental L. mexicana sp. infections. The purpose of this study was to determine if structural analogs of Retro-2cycl reported to have superior potency in the inhibition of retrograde pathway-dependent phenomena (i.e., polyomavirus cellular infection by polyomavrius and Shiga toxin trafficking in cells) are also more effective than the parent compound at controlling Leishmania infections. In addition to their effects on LPV development, we show that two optimized analogs of Retro-2cycl, DHQZ 36 and DHQZ 36.1 limit Leishmania amazonensis infection in macrophages at EC50 of 13.63+/-2.58μM and10.57+/-2.66μM, respectively, which is significantly lower than 40.15μM the EC50 of Retro-2cycl. In addition, these analogs caused a reversal in Leishmania induced suppression of IL-6 release by infected cells after LPS activation. Moreover, we show that in contrast to Retro-2cycl that is Leishmania static, the analogs can kill Leishmania parasites in axenic cultures, which is a desirable attribute for any drug to treat Leishmania infections. Together, these studies validate and extend the published structure-activity relationship analyses of Retro-2cycl.
Collapse
Affiliation(s)
- Evan Craig
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | | | - Chun Yu
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Emma L. Handy
- Department of Chemistry, Brown University, Providence Rhode Island, United States of America
| | - Jason K. Sello
- Department of Chemistry, Brown University, Providence Rhode Island, United States of America
| | - Peter E. Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
23
|
Vaccinia Virus Uses Retromer-Independent Cellular Retrograde Transport Pathways To Facilitate the Wrapping of Intracellular Mature Virions during Virus Morphogenesis. J Virol 2016; 90:10120-10132. [PMID: 27581988 PMCID: PMC5105650 DOI: 10.1128/jvi.01464-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/22/2016] [Indexed: 01/09/2023] Open
Abstract
Poxviruses, such as vaccinia virus (VACV), undertake a complex cytoplasmic replication cycle which involves morphogenesis through four distinct virion forms and includes a crucial wrapping step whereby intracellular mature virions (IMVs) are wrapped in two additional membranes to form intracellular enveloped virions (IEVs). To determine if cellular retrograde transport pathways are required for this wrapping step, we examined VACV morphogenesis in cells with reduced expression of the tetrameric tethering factor known as the GARP (Golgi-associated retrograde pathway), a central component of retrograde transport. VACV multistep replication was significantly impaired in cells transfected with small interfering RNA targeting the GARP complex and in cells with a mutated GARP complex. Detailed analysis revealed that depletion of the GARP complex resulted in a reduction in the number of IEVs, thereby linking retrograde transport with the wrapping of IMVs. In addition, foci of viral wrapping membrane proteins without an associated internal core accumulated in cells with a mutated GARP complex, suggesting that impaired retrograde transport uncouples nascent IMVs from the IEV membranes at the site of wrapping. Finally, small-molecule inhibitors of retrograde transport strongly suppressed VACV multistep growth in vitro and reduced weight loss and clinical signs in an in vivo murine model of systemic poxviral disease. This work links cellular retrograde transport pathways with the morphogenesis of poxviruses and identifies a panel of novel inhibitors of poxvirus replication. IMPORTANCE Cellular retrograde transport pathways traffic cargo from endosomes to the trans-Golgi network and are a key part of the intracellular membrane network. This work reveals that the prototypic poxvirus vaccinia virus (VACV) exploits cellular retrograde transport pathways to facilitate the wrapping of intracellular mature virions and therefore promote the production of extracellular virus. Inhibition of retrograde transport by small-molecule inhibitors reduced the replication of VACV in cell culture and alleviated disease in mice experimentally infected with VACV. This research provides fundamental new knowledge about the wrapping step of poxvirus morphogenesis, furthers our knowledge of the complex cellular retrograde pathways, and identifies a new group of antipoxvirus drugs.
Collapse
|
24
|
Gupta N, Noël R, Goudet A, Hinsinger K, Michau A, Pons V, Abdelkafi H, Secher T, Shima A, Shtanko O, Sakurai Y, Cojean S, Pomel S, Liévin-Le Moal V, Leignel V, Herweg JA, Fischer A, Johannes L, Harrison K, Beard PM, Clayette P, Le Grand R, Rayner JO, Rudel T, Vacus J, Loiseau PM, Davey RA, Oswald E, Cintrat JC, Barbier J, Gillet D. Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses, Leishmania and Chlamydiales. Chem Biol Interact 2016; 267:96-103. [PMID: 27712998 DOI: 10.1016/j.cbi.2016.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/09/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022]
Abstract
Medical countermeasures to treat biothreat agent infections require broad-spectrum therapeutics that do not induce agent resistance. A cell-based high-throughput screen (HTS) against ricin toxin combined with hit optimization allowed selection of a family of compounds that meet these requirements. The hit compound Retro-2 and its derivatives have been demonstrated to be safe in vivo in mice even at high doses. Moreover, Retro-2 is an inhibitor of retrograde transport that affects syntaxin-5-dependent toxins and pathogens. As a consequence, it has a broad-spectrum activity that has been demonstrated both in vitro and in vivo against ricin, Shiga toxin-producing O104:H4 entero-hemorrhagic E. coli and Leishmania sp. and in vitro against Ebola, Marburg and poxviruses and Chlamydiales. An effect is anticipated on other toxins or pathogens that use retrograde trafficking and syntaxin-5. Since Retro-2 targets cell components of the host and not directly the pathogen, no selection of resistant pathogens is expected. These lead compounds need now to be developed as drugs for human use.
Collapse
Affiliation(s)
- Neetu Gupta
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Romain Noël
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Amélie Goudet
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Karen Hinsinger
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Aurélien Michau
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Valérie Pons
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Hajer Abdelkafi
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | | | | | - Olena Shtanko
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Sandrine Cojean
- Antiparasitic Chemotherapy, UMR 8076, CNRS BioCIS, LabEx LERMIT, Université Paris-Sud, Université Paris-Saclay, F-92290, Chatenay-Malabry, France
| | - Sébastien Pomel
- Antiparasitic Chemotherapy, UMR 8076, CNRS BioCIS, LabEx LERMIT, Université Paris-Sud, Université Paris-Saclay, F-92290, Chatenay-Malabry, France
| | - Vanessa Liévin-Le Moal
- Antiparasitic Chemotherapy, UMR 8076, CNRS BioCIS, LabEx LERMIT, Université Paris-Sud, Université Paris-Saclay, F-92290, Chatenay-Malabry, France
| | - Véronique Leignel
- DRUGABILIS (French Research Performer SME), F-92290, Chatenay-Malabry, France
| | - Jo-Ana Herweg
- University of Würzburg, Biocenter, Chair of Microbiology, Am Hubland, D-97074, Würzburg, Germany
| | - Annette Fischer
- University of Würzburg, Biocenter, Chair of Microbiology, Am Hubland, D-97074, Würzburg, Germany
| | - Ludger Johannes
- Institut Curie, PSL Research University, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, F-75248, Paris Cedex 05, France; CNRS, UMR3666, F-75005, Paris, France; INSERM, U1143, F-75005, Paris, France
| | - Kate Harrison
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9RG, United Kingdom
| | - Philippa M Beard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9RG, United Kingdom; The Pirbright Institute, Ash Rd, Pirbright, Surrey GH24 0NF, United Kingdom
| | - Pascal Clayette
- ImmunoPharmacology and Biosafety Laboratory, BERTIN Pharma, CEA, F-92265, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Institute of Emerging Diseases and Innovative Therapies, CEA, U1184, Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Infrastructure, F-92265, Fontenay-aux-Roses, France; INSERM, U1184, F-94276, Le Kremlin-Bicêtre, France; University of Paris South, U1184, F-92265, Fontenay-aux-Roses, France; Vaccine Research Institute, Henri Mondor Hospital, F-94010, Créteil, France
| | - Jonathan O Rayner
- Infectious Disease Research, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, USA
| | - Thomas Rudel
- University of Würzburg, Biocenter, Chair of Microbiology, Am Hubland, D-97074, Würzburg, Germany
| | - Joël Vacus
- DRUGABILIS (French Research Performer SME), F-92290, Chatenay-Malabry, France
| | - Philippe M Loiseau
- Antiparasitic Chemotherapy, UMR 8076, CNRS BioCIS, LabEx LERMIT, Université Paris-Sud, Université Paris-Saclay, F-92290, Chatenay-Malabry, France
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Jean-Christophe Cintrat
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Julien Barbier
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Daniel Gillet
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France.
| |
Collapse
|
25
|
Casgrain PA, Martel C, McMaster WR, Mottram JC, Olivier M, Descoteaux A. Cysteine Peptidase B Regulates Leishmania mexicana Virulence through the Modulation of GP63 Expression. PLoS Pathog 2016; 12:e1005658. [PMID: 27191844 PMCID: PMC4871588 DOI: 10.1371/journal.ppat.1005658] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/03/2016] [Indexed: 01/30/2023] Open
Abstract
Cysteine peptidases play a central role in the biology of Leishmania. In this work, we sought to further elucidate the mechanism(s) by which the cysteine peptidase CPB contributes to L. mexicana virulence and whether CPB participates in the formation of large communal parasitophorous vacuoles induced by these parasites. We initially examined the impact of L. mexicana infection on the trafficking of VAMP3 and VAMP8, two endocytic SNARE proteins associated with phagolysosome biogenesis and function. Using a CPB-deficient mutant, we found that both VAMP3 and VAMP8 were down-modulated in a CPB-dependent manner. We also discovered that expression of the virulence-associated GPI-anchored metalloprotease GP63 was inhibited in the absence of CPB. Expression of GP63 in the CPB-deficient mutant was sufficient to down-modulate VAMP3 and VAMP8. Similarly, episomal expression of GP63 enabled the CPB-deficient mutant to establish infection in macrophages, induce the formation of large communal parasitophorous vacuoles, and cause lesions in mice. These findings implicate CPB in the regulation of GP63 expression and provide evidence that both GP63 and CPB are key virulence factors in L. mexicana. The parasite Leishmania mexicana expresses several cysteine peptidases of the papain family that are involved in processes such as virulence and evasion of host immune responses. The cysteine peptidase CPB is required for survival within macrophages and for lesion formation in susceptible mice. Upon their internalization by macrophages, parasites of the L. mexicana complex induce the formation of large communal parasitophorous vacuoles in which they replicate, and expansion of those large vacuoles correlates with the ability of the parasites to survive inside macrophages. Here, we found that CPB contributes to L. mexicana virulence (macrophage survival, formation and expansion of communal parasitophorous vacuoles, lesion formation in mice) through the regulation of the virulence factor GP63, a Leishmania zinc-metalloprotease that acts by cleaving key host cell proteins. This work thus elucidates a novel Leishmania virulence regulatory mechanism whereby CPB controls the expression of GP63.
Collapse
Affiliation(s)
- Pierre-André Casgrain
- INRS- Institut Armand-Frappier and the Center for Host-Parasite Interactions, Laval, Canada
| | - Caroline Martel
- The Research Institute of the McGill University Health Centre, Montréal, Canada
| | - W. Robert McMaster
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jeremy C. Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way Heslington, York, United Kingdom
| | - Martin Olivier
- The Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Albert Descoteaux
- INRS- Institut Armand-Frappier and the Center for Host-Parasite Interactions, Laval, Canada
- * E-mail:
| |
Collapse
|
26
|
Barbier J, Cintrat JC, Gillet D. Intracellular pathogens convert macrophages from death traps into hospitable homes. FEBS J 2016; 283:595-7. [DOI: 10.1111/febs.13657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julien Barbier
- CEA, Section of Molecular Engineering of Proteins (SIMOPRO); Institute of Biology and Biotechnology of Saclay (iBiTec-S); LERMIT LabEx; Paris Saclay University; Gif sur Yvette France
| | - Jean-Christophe Cintrat
- CEA, Section of Bioorganic Chemistry and Labelling (SCBM); Institute of Biology and Biotechnology of Saclay (iBiTec-S); LERMIT LabEx; Paris Saclay University; Gif sur Yvette France
| | - Daniel Gillet
- CEA, Section of Molecular Engineering of Proteins (SIMOPRO); Institute of Biology and Biotechnology of Saclay (iBiTec-S); LERMIT LabEx; Paris Saclay University; Gif sur Yvette France
| |
Collapse
|
27
|
Liévin-Le Moal V, Loiseau PM. Leishmania hijacking of the macrophage intracellular compartments. FEBS J 2015; 283:598-607. [PMID: 26588037 DOI: 10.1111/febs.13601] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022]
Abstract
Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses.
Collapse
Affiliation(s)
- Vanessa Liévin-Le Moal
- Anti-Parasitic Chemotherapy, Faculté de Pharmacie, CNRS, UMR 8076 BioCIS, Châtenay-Malabry, France.,Université Paris-Sud, Orsay, France.,Faculté de Pharmacie, Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LabEx LERMIT), Châtenay-Malabry, France
| | - Philippe M Loiseau
- Anti-Parasitic Chemotherapy, Faculté de Pharmacie, CNRS, UMR 8076 BioCIS, Châtenay-Malabry, France.,Université Paris-Sud, Orsay, France.,Faculté de Pharmacie, Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LabEx LERMIT), Châtenay-Malabry, France
| |
Collapse
|
28
|
Podinovskaia M, Descoteaux A. Leishmania and the macrophage: a multifaceted interaction. Future Microbiol 2015; 10:111-29. [DOI: 10.2217/fmb.14.103] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ABSTRACT Leishmania, the causative agent of leishmaniases, is an intracellular parasite of macrophages, transmitted to humans via the bite of its sand fly vector. This protozoan organism has evolved strategies for efficient uptake into macrophages and is able to regulate phagosome maturation in order to make the phagosome more hospitable for parasite growth and to avoid destruction. As a result, macrophage defenses such as oxidative damage, antigen presentation, immune activation and apoptosis are compromised whereas nutrient availability is improved. Many Leishmania survival factors are involved in shaping the phagosome and reprogramming the macrophage to promote infection. This review details the complexity of the host–parasite interactions and summarizes our latest understanding of key events that make Leishmania such a successful intracellular parasite.
Collapse
Affiliation(s)
- Maria Podinovskaia
- INRS – Institut Armand-Frappier & Center for Host–Parasite Interactions, 531 boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
| | - Albert Descoteaux
- INRS – Institut Armand-Frappier & Center for Host–Parasite Interactions, 531 boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
| |
Collapse
|
29
|
Gupta N, Pons V, Noël R, Buisson DA, Michau A, Johannes L, Gillet D, Barbier J, Cintrat JC. (S)-N-Methyldihydroquinazolinones are the Active Enantiomers of Retro-2 Derived Compounds against Toxins. ACS Med Chem Lett 2014; 5:94-7. [PMID: 24900779 DOI: 10.1021/ml400457j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 01/08/2023] Open
Abstract
This study reports the synthesis, chromatographic separation, and pharmacological evaluation of the two enantiomers of a new compound, named Retro-2.1, active against toxins by inhibiting intracellular trafficking via the retrograde route. The absolute configuration of the bioactive enantiomer has been assigned from X-ray diffraction to the (S)-enantiomer. To date, (S)-Retro-2.1 is the most potent molecule to counteract the cytotoxic potential of ricin and Shiga toxin, with EC50 values of 23 and 54 nM, respectively.
Collapse
Affiliation(s)
- Neetu Gupta
- CEA, iBiTec-S/SIMOPRO,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- CEA, iBiTec-S/SCBM,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- U1143 INSERM, 75005 Paris, France
- Institut
Curie,
Centre de Recherche, Chemical Biology of Membranes and Therapeutic
Delivery, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Valérie Pons
- CEA, iBiTec-S/SIMOPRO,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- CEA, iBiTec-S/SCBM,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- U1143 INSERM, 75005 Paris, France
- Institut
Curie,
Centre de Recherche, Chemical Biology of Membranes and Therapeutic
Delivery, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Romain Noël
- CEA, iBiTec-S/SIMOPRO,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- CEA, iBiTec-S/SCBM,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- U1143 INSERM, 75005 Paris, France
- Institut
Curie,
Centre de Recherche, Chemical Biology of Membranes and Therapeutic
Delivery, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - David-Alexandre Buisson
- CEA, iBiTec-S/SIMOPRO,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- CEA, iBiTec-S/SCBM,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- U1143 INSERM, 75005 Paris, France
- Institut
Curie,
Centre de Recherche, Chemical Biology of Membranes and Therapeutic
Delivery, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Aurélien Michau
- CEA, iBiTec-S/SIMOPRO,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- CEA, iBiTec-S/SCBM,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- U1143 INSERM, 75005 Paris, France
- Institut
Curie,
Centre de Recherche, Chemical Biology of Membranes and Therapeutic
Delivery, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Ludger Johannes
- CEA, iBiTec-S/SIMOPRO,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- CEA, iBiTec-S/SCBM,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- U1143 INSERM, 75005 Paris, France
- Institut
Curie,
Centre de Recherche, Chemical Biology of Membranes and Therapeutic
Delivery, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Daniel Gillet
- CEA, iBiTec-S/SIMOPRO,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- CEA, iBiTec-S/SCBM,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- U1143 INSERM, 75005 Paris, France
- Institut
Curie,
Centre de Recherche, Chemical Biology of Membranes and Therapeutic
Delivery, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Julien Barbier
- CEA, iBiTec-S/SIMOPRO,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- CEA, iBiTec-S/SCBM,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- U1143 INSERM, 75005 Paris, France
- Institut
Curie,
Centre de Recherche, Chemical Biology of Membranes and Therapeutic
Delivery, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Jean-Christophe Cintrat
- CEA, iBiTec-S/SIMOPRO,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- CEA, iBiTec-S/SCBM,
CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- U1143 INSERM, 75005 Paris, France
- Institut
Curie,
Centre de Recherche, Chemical Biology of Membranes and Therapeutic
Delivery, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
30
|
Noel R, Gupta N, Pons V, Goudet A, Garcia-Castillo MD, Michau A, Martinez J, Buisson DA, Johannes L, Gillet D, Barbier J, Cintrat JC. N-Methyldihydroquinazolinone Derivatives of Retro-2 with Enhanced Efficacy against Shiga Toxin. J Med Chem 2013; 56:3404-13. [DOI: 10.1021/jm4002346] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Romain Noel
- CEA, iBiTec-S/SCBM, CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
| | - Neetu Gupta
- CEA, iBiTec-S/SIMOPRO, CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
| | - Valérie Pons
- CEA, iBiTec-S/SCBM, CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
| | - Amélie Goudet
- CEA, iBiTec-S/SIMOPRO, CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
| | - Maria Daniela Garcia-Castillo
- UMR144 CNRS and Traffic, Signaling,
and Delivery Laboratory, Institut Curie, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Aurélien Michau
- CEA, iBiTec-S/SIMOPRO, CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
| | - Jennifer Martinez
- CEA, iBiTec-S/SIMOPRO, CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
| | | | - Ludger Johannes
- UMR144 CNRS and Traffic, Signaling,
and Delivery Laboratory, Institut Curie, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Daniel Gillet
- CEA, iBiTec-S/SIMOPRO, CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
| | - Julien Barbier
- CEA, iBiTec-S/SIMOPRO, CEA-Saclay, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
| | | |
Collapse
|
31
|
Canton J, Kima PE. Interactions of pathogen-containing compartments with the secretory pathway. Cell Microbiol 2012; 14:1676-86. [PMID: 22862745 DOI: 10.1111/cmi.12000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 02/03/2023]
Abstract
A subgroup of intracellular pathogens reside and replicate within membrane-bound compartments often termed pathogen-containing compartments (PCC). PCCs navigate around a wide range of host cell vesicles and organelles. In light of the perils of engaging with vesicles of the endocytic pathway, most PCCs modulate their interactions with endocytic vesicles while a few avoid those interactions. The secretory pathway constitutes another important grouping of vesicles and organelles in host cells. Although the negative consequences of engaging with the secretory pathway are not known, there is evidence that PCCs interact differentially with vesicles and organelles in this pathway as well. In this review, we consider three prokaryote pathogens and two protozoan parasites for which there is information on the interactions of their PCCs with the secretory pathway. Current understandings of the molecular interactions as well as the metabolic benefits that accompany those interactions are discussed. Not unexpectedly, our understanding of the extent of these interactions is variable. An underlying theme that is brought to the fore is that PCCs establish preferential interactions with distinct compartments of the secretory pathway.
Collapse
Affiliation(s)
- Johnathan Canton
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|