1
|
Shehadeh-Tout F, Milioli HH, Roslan S, Jansson PJ, Dharmasivam M, Graham D, Anderson R, Wijesinghe T, Azad MG, Richardson DR, Kovacevic Z. Innovative Thiosemicarbazones that Induce Multi-Modal Mechanisms to Down-Regulate Estrogen-, Progesterone-, Androgen- and Prolactin-Receptors in Breast Cancer. Pharmacol Res 2023:106806. [PMID: 37244387 DOI: 10.1016/j.phrs.2023.106806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
The estrogen receptor-α (ER-α) is a key driver of breast cancer (BC) and the ER-antagonist, tamoxifen, is a central pillar of BC treatment. However, cross-talk between ER-α, other hormone and growth factor receptors enables development of de novo resistance to tamoxifen. Herein, we mechanistically dissect the activity of a new class of anti-cancer agents that inhibit multiple growth factor receptors and down-stream signaling for the treatment of ER-positive BC. Using RNA sequencing and comprehensive protein expression analysis, we examined the activity of di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), on the expression and activation of hormone and growth factor receptors, co-factors, and key resistance pathways in ER-α-positive BC. DpC differentially regulated 106 estrogen-response genes, and this was linked to decreased mRNA levels of 4 central hormone receptors involved in BC pathogenesis, namely ER, progesterone receptor (PR), androgen receptor (AR), and prolactin receptor (PRL-R). Mechanistic investigation demonstrated that due to DpC and Dp44mT binding metal ions, these agents caused a pronounced decrease in ER-α, AR, PR, and PRL-R protein expression. DpC and Dp44mT also inhibited activation and down-stream signaling of the epidermal growth factor (EGF) family receptors, and expression of co-factors that promote ER-α transcriptional activity, including SRC3, NF-κB p65, and SP1. In vivo, DpC was highly tolerable and effectively inhibited ER-α-positive BC growth. Through bespoke, non-hormonal, multi-modal mechanisms, Dp44mT and DpC decrease the expression of PR, AR, PRL-R, and tyrosine kinases that act with ER-α to promote BC, constituting an innovative therapeutic approach.
Collapse
Affiliation(s)
- Faten Shehadeh-Tout
- School of Medical Sciences, University of Sydney, NSW 2006, Australia; Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Heloisa H Milioli
- Connie Johnson Breast Cancer Research Laboratory, Garvan Institute of Medical Research, NSW 2010 Australia
| | - Suraya Roslan
- Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg Vic 3084, Australia
| | - Patric J Jansson
- Cancer Drug Resistance and Stem Cell Program, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Dinny Graham
- Breast Cancer Group, The Westmead Institute for Medical Research and Westmead Clinical School, University of Sydney, NSW 2145 Australia
| | - Robin Anderson
- Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg Vic 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Tharushi Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Zaklina Kovacevic
- School of Medical Sciences, University of Sydney, NSW 2006, Australia; Department of Physiology, School of Biomedical Sciences, University of NSW, NSW 2052 Australia.
| |
Collapse
|
2
|
Medicinal Mushroom Leucocalocybe mongolica Imai Extracts Improve Mammary Gland Differentiation in Lactating Rats via Regulating Protein Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5762847. [PMID: 35761899 PMCID: PMC9233605 DOI: 10.1155/2022/5762847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Leucocalocybe mongolica is a known medicinal mushroom in China. It possesses many biological activities. This study investigated the effect of L. mongolica petroleum ether and water extracts (200, 500, and 1,000 mg/kg BW) on mammary gland differentiation during lactation. However, prolactin, growth hormone, progesterone, and estrogen levels were determined in serum by ELISA assay. Immunofluorescence, western blot, and real-time PCR were utilized to evaluate the expression levels of β-casein, α-Lactalbumin, prolactin receptor, progesterone receptor, and STAT-5a. The immunohistochemistry staining was used to detect the presence of steroid receptors. The results showed that petroleum ether and water extracts increased milk yield and milk content of calcium, total fat, total carbohydrate, and total protein. Prolactin and growth hormone levels were significantly upregulated in all treated groups compared with the control group. In contrast, progesterone and estrogen were downregulated. The high doses of petroleum ether and water extracts increased the expression levels of β-Cas, α-Lactalb, PRLR, PR, and STAT-5a. The observation of histological sections showed that the extracts induced higher mammary gland differentiation than the control group. This study is the first to use mushrooms as nutritional supplements to improve milk production and mammary gland differentiation during lactation.
Collapse
|
3
|
Abstract
Prolactin coordinates with the ovarian steroids to orchestrate mammary development and lactation, culminating in nourishment and an increasingly appreciated array of other benefits for neonates. Its central activities in mammary epithelial growth and differentiation suggest that it plays a role(s) in breast cancer, but it has been challenging to identify its contributions, essential for incorporation into prevention and treatment approaches. Large prospective epidemiologic studies have linked higher prolactin exposure to increased risk, particularly for ER+ breast cancer in postmenopausal women. However, it has been more difficult to determine its actions and clinical consequences in established tumors. Here we review experimental data implicating multiple mechanisms by which prolactin may increase the risk of breast cancer. We then consider the evidence for role(s) of prolactin and its downstream signaling cascades in disease progression and treatment responses, and discuss how new approaches are beginning to illuminate the biology behind the seemingly conflicting epidemiologic and experimental studies of prolactin actions across diverse breast cancers.
Collapse
|
4
|
Kolomiiets O, Yazykov O, Piddubnyi A, Lyndin M, Lukavenko I, Andryushchenko V, Romaniuk A, Moskalenko R. The Expression of Prolactin Receptors in Benign Breast Tumors Is Not Associated with Serum Prolactin Level. J Clin Med 2021; 10:jcm10245866. [PMID: 34945164 PMCID: PMC8705851 DOI: 10.3390/jcm10245866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
The role of prolactin (PRL) and its receptors in the initiation and development of benign breast tumors (BBT) has not been sufficiently studied. An imbalance in the system of hormone homeostasis is crucial in the development of BBT. In particular, an association between elevated prolactin levels and the development of BBT has been reported. Our study showed no significant differences between PRL receptor (PRL-R) expression in BBT tissue under normal and elevated serum PRL levels. There was also no significant correlation between age, PRL-R expression in BBT tissue, intact tissue, and PRL level in the serum. There was a strong significant correlation (p < 0.01; r = 0.92) between PRL-R expression in BBT samples and intact breast tissue, which did not depend on the serum PRL level. There was also no significant difference in the expression of the proliferative marker Ki-67 in BBT tissues from women with normal and elevated levels of serum PRL (p > 0.05). No signs of PRL and its receptors were detected in the BBT cystic fluid women with elevated serum PRL levels. In summary, our prospective study showed that the expression of PRL-R in the tissue of BBT and physiological breast tissue does not depend on the level of serum PRL.
Collapse
Affiliation(s)
- Olena Kolomiiets
- Department of Pathology, Sumy State University, 40022 Sumy, Ukraine; (O.K.); (A.P.); (M.L.)
- Private Clinic “MRIYA”, 40004 Sumy, Ukraine; (O.Y.); (I.L.); (V.A.)
| | - Oleksandr Yazykov
- Private Clinic “MRIYA”, 40004 Sumy, Ukraine; (O.Y.); (I.L.); (V.A.)
- Department of Surgery, Sumy State University, 40007 Sumy, Ukraine
| | - Artem Piddubnyi
- Department of Pathology, Sumy State University, 40022 Sumy, Ukraine; (O.K.); (A.P.); (M.L.)
- Department of Medical Biochemistry and Biophysics, Umeå University, 90736 Umeå, Sweden
- Ukrainian-Swedish Research Center SUMEYA, Sumy State University, 40022 Sumy, Ukraine
| | - Mykola Lyndin
- Department of Pathology, Sumy State University, 40022 Sumy, Ukraine; (O.K.); (A.P.); (M.L.)
| | - Ivan Lukavenko
- Private Clinic “MRIYA”, 40004 Sumy, Ukraine; (O.Y.); (I.L.); (V.A.)
- Department of Surgery, Sumy State University, 40007 Sumy, Ukraine
| | - Volodymyr Andryushchenko
- Private Clinic “MRIYA”, 40004 Sumy, Ukraine; (O.Y.); (I.L.); (V.A.)
- Department of Surgery, Sumy State University, 40007 Sumy, Ukraine
| | - Anatolii Romaniuk
- Department of Pathology, Sumy State University, 40022 Sumy, Ukraine; (O.K.); (A.P.); (M.L.)
- Correspondence: (A.R.); (R.M.); Tel.: +380-979-802-731 (R.M.)
| | - Roman Moskalenko
- Department of Pathology, Sumy State University, 40022 Sumy, Ukraine; (O.K.); (A.P.); (M.L.)
- Ukrainian-Swedish Research Center SUMEYA, Sumy State University, 40022 Sumy, Ukraine
- Correspondence: (A.R.); (R.M.); Tel.: +380-979-802-731 (R.M.)
| |
Collapse
|
5
|
Woock AE, Grible JM, Olex AL, Harrell JC, Zot P, Idowu M, Clevenger CV. Serine residues 726 and 780 have nonredundant roles regulating STAT5a activity in luminal breast cancer. Sci Rep 2021; 11:13506. [PMID: 34188118 PMCID: PMC8242097 DOI: 10.1038/s41598-021-92830-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/11/2021] [Indexed: 01/19/2023] Open
Abstract
In breast cancer, prolactin-induced activation of the transcription factor STAT5a results from the phosphorylation of STAT5a tyrosine residue 694. However, its role in mammary oncogenesis remains an unsettled debate as STAT5a exhibits functional dichotomy with both pro-differentiative and pro-proliferative target genes. Phosphorylation of STAT5a serine residues, S726 and S780, may regulate STAT5a in such a way to underlie this duality. Given hematopoiesis studies showing phospho-serine STAT5a as necessary for transformation, we hypothesized that serine phosphorylation regulates STAT5a activity to contribute to its role in mammary oncogenesis, specifically in luminal breast cancer. Here, phosphorylation of S726-, S780-, and Y694-STAT5a in response to prolactin in MCF7 luminal breast cancer cells was investigated with STAT5a knockdown and rescue with Y694F-, S726A-, or S780A-STAT5a, where the phospho-sites were mutated. RNA-sequencing and subsequent Ingenuity Pathway Analysis predicted that loss of each phospho-site differentially affected both prolactin-induced gene expression as well as functional pathways of breast cancer (e.g. cell survival, proliferation, and colony formation). In vitro studies of anchorage-independent growth and proliferation confirmed distinct phenotypes: whereas S780A-STAT5a decreased clonogenicity, S726A-STAT5a decreased proliferation in response to prolactin compared to wild type STAT5a. Collectively, these studies provide novel insights into STAT5a activation in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Alicia E Woock
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA, 23298-06629, USA
| | - Jacqueline M Grible
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA, 23298-06629, USA
| | - Amy L Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA, 23298-06629, USA
| | - Patricija Zot
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA, 23298-06629, USA
| | - Michael Idowu
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA, 23298-06629, USA
| | - Charles V Clevenger
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA, 23298-06629, USA.
| |
Collapse
|
6
|
Grible JM, Zot P, Olex AL, Hedrick SE, Harrell JC, Woock AE, Idowu MO, Clevenger CV. The human intermediate prolactin receptor is a mammary proto-oncogene. NPJ Breast Cancer 2021; 7:37. [PMID: 33772010 PMCID: PMC7997966 DOI: 10.1038/s41523-021-00243-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
The hormone prolactin (PRL) and its receptor (hPRLr) are significantly involved in breast cancer pathogenesis. The intermediate hPRLr (hPRLrI) is an alternatively-spliced isoform, capable of stimulating cellular viability and proliferation. An analogous truncated mouse PRLr (mPRLr) was recently found to be oncogenic when co-expressed with wild-type mPRLr. The goal of this study was to determine if a similar transforming event occurs with the hPRLr in human breast epithelial cells and to better understand the mechanism behind such transformation. hPRLrL+I co-expression in MCF10AT cells resulted in robust in vivo and in vitro transformation, while hPRLrI knock-down in MCF7 cells significantly decreased in vitro malignant potential. hPRLrL+I heterodimers displayed greater stability than hPRLrL homodimers, and while being capable of activating Jak2, Ras, and MAPK, they were unable to induce Stat5a tyrosine phosphorylation. Both immunohistochemical breast cancer tissue microarray data and RNA sequencing analyses using The Cancer Genome Atlas (TCGA) identified that higher hPRLrI expression associates with triple-negative breast cancer. These studies indicate the hPRLrI, when expressed alongside hPRLrL, participates in mammary transformation, and represents a novel oncogenic mechanism.
Collapse
Affiliation(s)
- Jacqueline M Grible
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricija Zot
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy L Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Shannon E Hedrick
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Alicia E Woock
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael O Idowu
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Charles V Clevenger
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
7
|
Ramírez-de-Arellano A, Villegas-Pineda JC, Hernández-Silva CD, Pereira-Suárez AL. The Relevant Participation of Prolactin in the Genesis and Progression of Gynecological Cancers. Front Endocrinol (Lausanne) 2021; 12:747810. [PMID: 34745013 PMCID: PMC8566755 DOI: 10.3389/fendo.2021.747810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
Prolactin (PRL) is a hormone produced by the pituitary gland and multiple non-pituitary sites, vital in several physiological processes such as lactation, pregnancy, cell growth, and differentiation. However, PRL is nowadays known to have a strong implication in oncogenic processes, making it essential to delve into the mechanisms governing these actions. PRL and its receptor (PRLR) activate a series of effects such as survival, cellular proliferation, migration, invasion, metastasis, and resistance to treatment, being highly relevant in developing certain types of cancer. Because women produce high levels of PRL, its influence in gynecological cancers is herein reviewed. It is interesting that, other than the 23 kDa PRL, whose mechanism of action is endocrine, other variants of PRL have been observed to be produced by tumoral tissue, acting in a paracrine/autocrine manner. Because many components, including PRL, surround the microenvironment, it is interesting to understand the hormone's modulation in cancer cells. This work aims to review the most important findings regarding the PRL/PRLR axis in cervical, ovarian, and endometrial cancers and its molecular mechanisms to support carcinogenesis.
Collapse
Affiliation(s)
- Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Julio César Villegas-Pineda
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Christian David Hernández-Silva
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez,
| |
Collapse
|
8
|
Prolactin: A hormone with diverse functions from mammary gland development to cancer metastasis. Semin Cell Dev Biol 2020; 114:159-170. [PMID: 33109441 DOI: 10.1016/j.semcdb.2020.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 01/14/2023]
Abstract
Prolactin has a rich mechanistic set of actions and signaling in order to elicit developmental effects in mammals. Historically, prolactin has been appreciated as an endocrine peptide hormone that is responsible for final, functional mammary gland development and lactation. Multiple signaling pathways impacted upon by the microenvironment contribute to cell function and differentiation. Endocrine, autocrine and paracrine signaling are now apparent in not only mammary development, but also in cancer, and involve multiple cell types including those of the immune system. Multiple ligands agonists are capable of binding to the prolactin receptor, potentially expanding receptor function. Prolactin has an important role not only in tumorigenesis of the breast, but also in a number of hormonally responsive cancers such as prostate, ovarian and endometrial cancer, as well as pancreatic and lung cancer. Although pituitary and extra-pituitary sources of prolactin such as the epithelium are important, stromal sourced prolactin is now also being recognized as an important factor in tumor progression, all of which potentially signal to multiple cell types in the tumor microenvironment. While prolactin has important roles in milk production including calcium and bone homeostasis, in the disease state it can also affect bone homeostasis. Prolactin also impacts metastatic cancer of the breast to modulate the bone microenvironment and promote bone damage. Prolactin has a fascinating contribution in both physiologic and pathologic settings of mammals.
Collapse
|
9
|
Hakim S, Craig JM, Koblinski JE, Clevenger CV. Inhibition of the Activity of Cyclophilin A Impedes Prolactin Receptor-Mediated Signaling, Mammary Tumorigenesis, and Metastases. iScience 2020; 23:101581. [PMID: 33083747 PMCID: PMC7549119 DOI: 10.1016/j.isci.2020.101581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/27/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Prolactin (PRL) and its receptor (PRLr) play important roles in the pathogenesis of breast cancer. Cyclophilin A (CypA) is a cis-trans peptidyl-prolyl isomerase (PPI) that is constitutively associated with the PRLr and facilitates the activation of the tyrosine kinase Jak2. Treatment with the non-immunosuppressive prolyl isomerase inhibitor NIM811 or CypA short hairpin RNA inhibited PRL-stimulated signaling, breast cancer cell growth, and migration. Transcriptomic analysis revealed that NIM811 inhibited two-thirds of the top 50 PRL-induced genes and a reduction in gene pathways associated with cancer cell signaling. In vivo treatment of NIM811 in a TNBC xenograft lessened primary tumor growth and induced central tumor necrosis. Deletion of CypA in the MMTV-PyMT mouse model demonstrated inhibition of tumorigenesis with significant reduction in lung and lymph node metastasis. The regulation of PRLr/Jak2-mediated biology by NIM811 demonstrates that a non-immunosuppressive prolyl isomerase inhibitor can function as a potential breast cancer therapeutic. CypA inhibition or knockdown blocks breast cancer cell signaling, growth, and migration NIM811 inhibited PRL-induced genes and gene pathways relevant to cancer signaling Deletion of CypA has shown reduction in tumorigenesis and metastasis in mice
Collapse
Affiliation(s)
- Shawn Hakim
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA.,Wright Center for Clinical and Translational Sciences, Richmond, VA 23298, USA
| | - Justin M Craig
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA.,Wright Center for Clinical and Translational Sciences, Richmond, VA 23298, USA
| | - Jennifer E Koblinski
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA
| | - Charles V Clevenger
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
10
|
Jallow F, Brockman JL, Helzer KT, Rugowski DE, Goffin V, Alarid ET, Schuler LA. 17 β-Estradiol and ICI182,780 Differentially Regulate STAT5 Isoforms in Female Mammary Epithelium, With Distinct Outcomes. J Endocr Soc 2018; 2:293-309. [PMID: 29594259 PMCID: PMC5842396 DOI: 10.1210/js.2017-00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
Prolactin (PRL) and estrogen cooperate in lobuloalveolar development of the mammary gland and jointly regulate gene expression in breast cancer cells in vitro. Canonical PRL signaling activates STAT5A/B, homologous proteins that have different target genes and functions. Although STAT5A/B are important for physiological mammary function and tumor pathophysiology, little is known about regulation of their expression, particularly of STAT5B, and the consequences for hormone action. In this study, we examined the effect of two estrogenic ligands, 17β-estradiol (E2) and the clinical antiestrogen, ICI182,780 (ICI, fulvestrant) on expression of STAT5 isoforms and resulting crosstalk with PRL in normal and tumor murine mammary epithelial cell lines. In all cell lines, E2 and ICI significantly increased protein and corresponding nascent and mature transcripts for STAT5A and STAT5B, respectively. Transcriptional regulation of STAT5A and STAT5B by E2 and ICI, respectively, is associated with recruitment of estrogen receptor alpha and increased H3K27Ac at a common intronic enhancer 10 kb downstream of the Stat5a transcription start site. Further, E2 and ICI induced different transcripts associated with differentiation and tumor behavior. In tumor cells, E2 also significantly increased proliferation, invasion, and stem cell-like activity, whereas ICI had no effect. To evaluate the role of STAT5B in these responses, we reduced STAT5B expression using short hairpin (sh) RNA. shSTAT5B blocked ICI-induced transcripts associated with metastasis and the epithelial mesenchymal transition in both cell types. shSTAT5B also blocked E2-induced invasion of tumor epithelium without altering E2-induced transcripts. Together, these studies indicate that STAT5B mediates a subset of protumorigenic responses to both E2 and ICI, underscoring the need to understand regulation of its expression and suggesting exploration as a possible therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Fatou Jallow
- Endocrinology/Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jennifer L Brockman
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kyle T Helzer
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Debra E Rugowski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vincent Goffin
- Inserm Unit 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Elaine T Alarid
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
11
|
Leehy KA, Truong TH, Mauro LJ, Lange CA. Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models. J Steroid Biochem Mol Biol 2018; 176:88-93. [PMID: 28442393 PMCID: PMC5653461 DOI: 10.1016/j.jsbmb.2017.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/28/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022]
Abstract
Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR). Cooperation between PR and prolactin (PRL) signaling, via regulation of downstream components in the PRL signaling pathway including JAKs and STATs, facilitates the alveolar morphogenesis observed during pregnancy. Indeed, these pathways are fully integrated via activation of shared signaling pathways (i.e. JAKs, MAPKs) as well as by the convergence of PRs and STATs at target genes relevant to both mammary gland biology and breast cancer progression (i.e. proliferation, stem cell outgrowth, tissue cell type heterogeneity). Thus, rather than a single mediator such as ER, transcription factor cascades (ER>PR>STATs) are responsible for rapid proliferative and developmental programming in the normal mammary gland. It is not surprising that these same mediators typify uncontrolled proliferation in a majority of breast cancers, where ER and PR are most often co-expressed and may cooperate to drive malignant tumor progression. This review will primarily focus on the integration of PR and PRL signaling in breast cancer models and the importance of this cross-talk in cancer progression in the context of mammographic density. Components of these PR/PRL signaling pathways could offer alternative drug targets and logical complements to anti-ER or anti-estrogen-based endocrine therapies.
Collapse
Affiliation(s)
- Katherine A Leehy
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Thu H Truong
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Laura J Mauro
- Department of Animal Sciences, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Carol A Lange
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States.
| |
Collapse
|
12
|
Griffith OL, Chan SR, Griffith M, Krysiak K, Skidmore ZL, Hundal J, Allen JA, Arthur CD, Runci D, Bugatti M, Miceli AP, Schmidt H, Trani L, Kanchi KL, Miller CA, Larson DE, Fulton RS, Vermi W, Wilson RK, Schreiber RD, Mardis ER. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas. Cell Rep 2017; 17:249-260. [PMID: 27681435 DOI: 10.1016/j.celrep.2016.08.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 05/27/2016] [Accepted: 08/23/2016] [Indexed: 10/20/2022] Open
Abstract
Estrogen receptor alpha-positive (ERα+) luminal tumors are the most frequent subtype of breast cancer. Stat1(-/-) mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1(-/-) primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR) in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1(-/-) mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation.
Collapse
Affiliation(s)
- Obi L Griffith
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl., St. Louis, MO 63110, USA
| | - Szeman Ruby Chan
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl., St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Kilannin Krysiak
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Zachary L Skidmore
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Julie A Allen
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Cora D Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Daniele Runci
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Piazza del Mercato, 15, 25121 Brescia, Italy
| | - Alexander P Miceli
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Heather Schmidt
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Lee Trani
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Krishna-Latha Kanchi
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Christopher A Miller
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - David E Larson
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Robert S Fulton
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - William Vermi
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Section of Pathology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Piazza del Mercato, 15, 25121 Brescia, Italy
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl., St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 425 S Euclid Ave., St. Louis, MO 63110, USA.
| | - Elaine R Mardis
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl., St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
O'Leary KA, Shea MP, Salituro S, Blohm CE, Schuler LA. Prolactin Alters the Mammary Epithelial Hierarchy, Increasing Progenitors and Facilitating Ovarian Steroid Action. Stem Cell Reports 2017; 9:1167-1179. [PMID: 28919264 PMCID: PMC5639259 DOI: 10.1016/j.stemcr.2017.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023] Open
Abstract
Hormones drive mammary development and function and play critical roles in breast cancer. Epidemiologic studies link prolactin (PRL) to increased risk for aggressive cancers that express estrogen receptor α (ERα). However, in contrast to ovarian steroids, PRL actions on the mammary gland outside of pregnancy are poorly understood. We employed the transgenic NRL-PRL model to examine the effects of PRL alone and with defined estrogen/progesterone exposure on stem/progenitor activity and regulatory networks that drive epithelial differentiation. PRL increased progenitors and modulated transcriptional programs, even without ovarian steroids, and with steroids further raised stem cell activity associated with elevated canonical Wnt signaling. However, despite facilitating some steroid actions, PRL opposed steroid-driven luminal maturation and increased CD61+ luminal cells. Our findings demonstrate that PRL can powerfully influence the epithelial hierarchy alone and temper the actions of ovarian steroids, which may underlie its role in the development of breast cancer.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael P Shea
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stephanie Salituro
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Courtney E Blohm
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; Molecular and Environmental Toxicology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Schauwecker SM, Kim JJ, Licht JD, Clevenger CV. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells. J Biol Chem 2016; 292:2237-2254. [PMID: 28035005 DOI: 10.1074/jbc.m116.764233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/28/2016] [Indexed: 01/10/2023] Open
Abstract
The hormone prolactin (PRL) contributes to breast cancer pathogenesis through various signaling pathways, one of the most notable being the JAK2/signal transducer and activator of transcription 5 (STAT5) pathway. PRL-induced activation of the transcription factor STAT5 results in the up-regulation of numerous genes implicated in breast cancer pathogenesis. However, the molecular mechanisms that enable STAT5 to access the promoters of these genes are not well understood. Here, we show that PRL signaling induces chromatin decompaction at promoter DNA, corresponding with STAT5 binding. The chromatin-modifying protein high mobility group nucleosomal binding domain 2 (HMGN2) specifically promotes STAT5 accessibility at promoter DNA by facilitating the dissociation of the linker histone H1 in response to PRL. Knockdown of H1 rescues the decrease in PRL-induced transcription following HMGN2 knockdown, and it does so by allowing increased STAT5 recruitment. Moreover, H1 and STAT5 are shown to function antagonistically in regulating PRL-induced transcription as well as breast cancer cell biology. While reduced STAT5 activation results in decreased PRL-induced transcription and cell proliferation, knockdown of H1 rescues both of these effects. Taken together, we elucidate a novel mechanism whereby the linker histone H1 prevents STAT5 binding at promoter DNA, and the PRL-induced dissociation of H1 mediated by HMGN2 is necessary to allow full STAT5 recruitment and promote the biological effects of PRL signaling.
Collapse
Affiliation(s)
| | - J Julie Kim
- the Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jonathan D Licht
- the Division of Hematology and Oncology, Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida 32610, and
| | - Charles V Clevenger
- the Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
15
|
Medler TR, Craig JM, Fiorillo AA, Feeney YB, Harrell JC, Clevenger CV. HDAC6 Deacetylates HMGN2 to Regulate Stat5a Activity and Breast Cancer Growth. Mol Cancer Res 2016; 14:994-1008. [PMID: 27358110 DOI: 10.1158/1541-7786.mcr-16-0109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022]
Abstract
Stat5a is a transcription factor utilized by several cytokine/hormone receptor signaling pathways that promotes transcription of genes associated with proliferation, differentiation, and survival of cancer cells. However, there are currently no clinically approved therapies that directly target Stat5a, despite ample evidence that it contributes to breast cancer pathogenesis. Here, deacetylation of the Stat5a coactivator and chromatin-remodeling protein HMGN2 on lysine residue K2 by HDAC6 promotes Stat5a-mediated transcription and breast cancer growth. HDAC6 inhibition both in vitro and in vivo enhances HMGN2 acetylation with a concomitant reduction in Stat5a-mediated signaling, resulting in an inhibition of breast cancer growth. Furthermore, HMGN2 is highly acetylated at K2 in normal human breast tissue, but is deacetylated in primary breast tumors and lymph node metastases, suggesting that targeting HMGN2 deacetylation is a viable treatment for breast cancer. Together, these results reveal a novel mechanism by which HDAC6 activity promotes the transcription of Stat5a target genes and demonstrate utility of HDAC6 inhibition for breast cancer therapy. IMPLICATIONS HMGN2 deacetylation enhances Stat5a transcriptional activity, thereby regulating prolactin-induced gene transcription and breast cancer growth. Mol Cancer Res; 14(10); 994-1008. ©2016 AACR.
Collapse
Affiliation(s)
- Terry R Medler
- Women's Cancer Research Program, Robert H. Lurie Comprehensive Cancer Center and Department of Pathology, Northwestern University, Chicago, Illinois. Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Justin M Craig
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Alyson A Fiorillo
- Women's Cancer Research Program, Robert H. Lurie Comprehensive Cancer Center and Department of Pathology, Northwestern University, Chicago, Illinois
| | - Yvonne B Feeney
- Women's Cancer Research Program, Robert H. Lurie Comprehensive Cancer Center and Department of Pathology, Northwestern University, Chicago, Illinois
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Charles V Clevenger
- Women's Cancer Research Program, Robert H. Lurie Comprehensive Cancer Center and Department of Pathology, Northwestern University, Chicago, Illinois. Department of Pathology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
16
|
Barcus CE, Holt EC, Keely PJ, Eliceiri KW, Schuler LA. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS One 2015; 10:e0116891. [PMID: 25607819 PMCID: PMC4301649 DOI: 10.1371/journal.pone.0116891] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023] Open
Abstract
Breast cancers that express estrogen receptor alpha (ERα+) constitute the majority of breast tumors. Estrogen is a major driver of their growth, and targeting ER-mediated signals is a largely successful primary therapeutic strategy. Nonetheless, ERα+ tumors also result in the most breast cancer mortalities. Other factors, including altered characteristics of the extracellular matrix such as density and orientation and consequences for estrogen crosstalk with other hormones such as prolactin (PRL), may contribute to these poor outcomes. Here we employed defined three dimensional low density/compliant and high density/stiff collagen-I matrices to investigate the effects on 17β-estradiol (E2) activity and PRL/E2 interactions in two well-characterized ERα+/PRLR+ luminal breast cancer cell lines in vitro. We demonstrate that matrix density modulated E2-induced transcripts, but did not alter the growth response. However, matrix density was a potent determinant of the behavioral outcomes of PRL/E2 crosstalk. High density/stiff matrices enhanced PRL/E2-induced growth mediated by increased activation of Src family kinases and insensitivity to the estrogen antagonist, 4-hydroxytamoxifen. It also permitted these hormones in combination to drive invasion and modify the alignment of collagen fibers. In contrast, low density/compliant matrices allowed modest if any cooperation between E2 and PRL to growth and did not permit hormone-induced invasion or collagen reorientation. Our studies demonstrate the power of matrix density to determine the outcomes of hormone actions and suggest that stiff matrices are potent collaborators of estrogen and PRL in progression of ERα+ breast cancer. Our evidence for bidirectional interactions between these hormones and the extracellular matrix provides novel insights into the regulation of the microenvironment of ERα+ breast cancer and suggests new therapeutic approaches.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth C Holt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin W Eliceiri
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
17
|
O'Leary KA, Shea MP, Schuler LA. Modeling prolactin actions in breast cancer in vivo: insights from the NRL-PRL mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:201-20. [PMID: 25472540 DOI: 10.1007/978-3-319-12114-7_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Elevated exposure to prolactin (PRL) is epidemiologically associated with an increased risk of aggressive ER+ breast cancer. To understand the underlying mechanisms and crosstalk with other oncogenic factors, we developed the NRL-PRL mouse. In this model, mammary expression of a rat prolactin transgene raises local exposure to PRL without altering estrous cycling. Nulliparous females develop metastatic, histotypically diverse mammary carcinomas independent from ovarian steroids, and most are ER+. These characteristics resemble the human clinical disease, facilitating study of tumorigenesis, and identification of novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA,
| | | | | |
Collapse
|
18
|
Vaithiyanathan V, Mirunalini S. Chemo preventive potential of fruit juice of Phyllanthus emblica Linn. (amla) against mammary cancer by altering oxidant/antioxidant status, lipid profile levels and estrogen/progesterone receptor status in female Sprague–Dawley rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bionut.2013.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Sato T, Tran TH, Peck AR, Liu C, Ertel A, Lin J, Neilson LM, Rui H. Global profiling of prolactin-modulated transcripts in breast cancer in vivo. Mol Cancer 2013; 12:59. [PMID: 23758962 PMCID: PMC3691730 DOI: 10.1186/1476-4598-12-59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/15/2013] [Indexed: 12/02/2022] Open
Abstract
Background Prolactin (PRL) is essential for normal mammary gland development. PRL promotes mammary tumor formation in rodents and elevated serum prolactin is associated with increased risk of estrogen-receptor positive breast cancer in women. On the other hand, PRL may also exert pro-differentiation effects and act to suppress invasive features of established breast cancer. Previously published limited global transcript profiling analyses of prolactin-regulated gene expression in human breast cancer cells have exclusively been performed in vitro. The present study aimed to shed new light on how PRL modulates estrogen receptor (ER)-positive breast cancer through global transcript profiling of a human breast cancer xenograft model in vivo. Methods The prolactin-responsive human T47D breast cancer cell line was xenotransplanted into nude mice and global transcript profiling was carried out following treatment with or without human PRL for 48 h. A subset of PRL-modulated transcripts was further validated using qRT-PCR and immunohistochemistry. Results The in vivo analyses identified 130 PRL-modulated transcripts, 75 upregulated and 55 downregulated, based on fold change >1.6 and P-value <0.05. From this initial panel of transcripts, a subset of 18 transcripts with established breast cancer-relevance were selected and validated by qRT-PCR. Some but not all of the transcripts were also PRL-modulated in vitro. The selected PRL-modulated transcripts were tested for dependence on Stat5, Jak1 or Jak2 activation, and for co-regulation by 17β-estradiol (E2). The protein encoded by one of the PRL-regulated transcripts, PTHrP, was examined in a panel of 92 human breast cancers and found by in situ quantitative immunofluorescence analysis to be highly positively correlated with nuclear localized and tyrosine phosphorylated Stat5. Gene Ontology analysis revealed that PRL-upregulated genes were enriched in pathways involved in differentiation. Finally, a gene signature based on PRL-upregulated genes was associated with prolonged relapse-free and metastasis-free survival in breast cancer patients. Conclusions This global analysis identified and validated a panel of PRL-modulated transcripts in an ER-positive human breast cancer xenotransplant model, which may have value as markers of relapse-free and metastasis-free survival. Gene products identified in the present study may facilitate ongoing deciphering of the pleiotropic effects of PRL on human breast cancer.
Collapse
|