1
|
Zhao RB, Xu YS, Li XH, Wei MJ, Deng Y, Peng X, Pan L. Correlation analysis of cofilin-1 with renal prognosis in primary IgA nephropathy. BMC Nephrol 2024; 25:289. [PMID: 39227817 PMCID: PMC11373397 DOI: 10.1186/s12882-024-03723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
PURPOSE The purpose of this study was to investigate the correlation between podocyte related biomarker cofilin-1 and renal function, and explore the value of cofilin-1 in predicting the risk of renal adverse prognosis in IgA nephropathy (IgAN). METHODS Patients with primary IgAN diagnosed by initial renal biopsy performed in our hospital from January 2019 to February 2022 were included. This study was a prospective cohort study. All IgAN patients were detected the expression of cofilin-1 and other related biomarkers (RhoA, NGAL) in urine by enzyme-linked immunosorbent assay (ELISA) and follow-up at least 6 months. We also collected baseline clinicopathologial data of IgAN. The decreased renal function group was defined as baseline eGFR < 60 ml/min/1.73m2. Logistic and Cox regression model were used to analyze the correlation among cofilin-1 and renal prognosis. RESULTS 133 IgAN patients were included, with a male-to-female ratio of 1.25:1 and an age of 37.67 ± 13.78 years, as well as an average of eGFR was 71.63 (40.42,109.33) ml/min/1.73m2. 56 patients (42.1%) had decreased renal function at baseline, with the average of eGFR was 34.07 (16.72, 49.21) ml/min/1.73 m2. 12 of which developed to renal adverse prognosis. The average of follow-up time was 22.035 ± 8.992 months. The multivariate regression analysis showed that increased urinary cofilin-1 was an independent risk factor associated with baseline renal function decline and renal adverse prognosis in IgAN patients (P < 0.05). ROC curves showed great efficacy of urinary cofilin-1 levels in diagnosing baseline renal function decline and predicting renal adverse prognosis (the area under the ROC curve was 0.708 and 0.803). CONCLUSION Cofilin-1 as a novel biomarker of podocyte lesion is closely related to renal function decline in IgAN. Cofilin-1 has certain clinical value in predicting the risk of renal adverse prognosis. Podocyte fusion affects the renal prognosis of IgAN.
Collapse
Affiliation(s)
- Ruo-Bei Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning City, 530021, Guangxi Province, China
| | - Yuan-Shan Xu
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning City, 530021, Guangxi Province, China
| | - Xiao-Hua Li
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning City, 530021, Guangxi Province, China
| | - Mei-Ju Wei
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning City, 530021, Guangxi Province, China
| | - Yang Deng
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning City, 530021, Guangxi Province, China
| | - Xun Peng
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning City, 530021, Guangxi Province, China
| | - Ling Pan
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning City, 530021, Guangxi Province, China.
| |
Collapse
|
2
|
Yu H, Luo C, Linghu R, Yang J, Wu H. Ezrin Contributes to the Damage of Airway Epithelial Barrier Related to Diabetes Mellitus. J Inflamm Res 2024; 17:2609-2621. [PMID: 38689797 PMCID: PMC11060175 DOI: 10.2147/jir.s449487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Background Diabetes mellitus predisposes individuals to respiratory infections. The airway epithelial barrier provides defense against inhaled antigens and pathogens. Ezrin, is a component of the membrane-cytoskeleton that maintains the cellular morphology, intercellular adhesion, and barrier function of epithelial cells. This study aimed to explore the role of ezrin in airway epithelial barrier damage and correlate its expression and activation with diabetes mellitus. Methods This study was performed in a murine model of diabetes mellitus and with human bronchial epithelial BEAS-2B cells using real-time PCR, Western blotting, immunohistochemical and immunofluorescence staining. Ezrin was knocked down in BEAS-2B cells using siRNA. Ezrin phosphorylation levels were measured to determine activation status. The integrity of the airway epithelial barrier was assessed in vivo by characterizing morphological structure, and in vitro in BEAS-2B cells by measuring tight junction protein expression, transepithelial electrical resistance (TER) and permeability. Results We demonstrated that ezrin expression levels were lower in the lung tissue and airway epithelium of diabetic mice than those in control mice. The morphological structure of the airway epithelium was altered in diabetic mice. High glucose levels downregulated the expression and distribution of ezrin and connexin 43, reduced the expression of tight junction proteins, and altered the epithelial barrier characteristics of BEAS-2B cells. Ezrin knockdown had effects similar to those of high glucose levels. Moreover, a specific inhibitor of ezrin Thr567 phosphorylation (NSC305787) inhibited epithelial barrier formation. Conclusion These results demonstrate that ezrin expression and activation are associated with airway epithelial damage in diabetes mellitus. These findings provide new insights into the molecular pathogenesis of pulmonary infections in diabetes mellitus and may lead to novel therapeutic interventions for airway epithelial barrier damage.
Collapse
Affiliation(s)
- Hongmei Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Cheng Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ru Linghu
- Department of Internal Medicine, Hospital of Chongqing University, Chongqing, People’s Republic of China
| | - Juan Yang
- Department of Respiratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Haiqiao Wu
- Department of Respiratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| |
Collapse
|
3
|
Barik GK, Sahay O, Paul D, Santra MK. Ezrin gone rogue in cancer progression and metastasis: An enticing therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188753. [PMID: 35752404 DOI: 10.1016/j.bbcan.2022.188753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is the primary cause of morbidity and mortality in cancer as it remains the most complicated, devastating, and enigmatic aspect of cancer. Several decades of extensive research have identified several key players closely associated with metastasis. Among these players, cytoskeletal linker Ezrin (the founding member of the ERM (Ezrin-Radixin-Moesin) family) was identified as a critical promoter of metastasis in pediatric cancers in the early 21st century. Ezrin was discovered 40 years ago as a aminor component of intestinal epithelial microvillus core protein, which is enriched in actin-containing cell surface structures. It controls gastric acid secretion and plays diverse physiological roles including maintaining cell polarity, regulating cell adhesion, cell motility and morphogenesis. Extensive research for more than two decades evinces that Ezrin is frequently dysregulated in several human cancers. Overexpression, altered subcellular localization and/or aberrant activation of Ezrin are closely associated with higher metastatic incidence and patient mortality, thereby justifying Ezrin as a valuable prognostic biomarker in cancer. Ezrin plays multifaceted role in multiple aspects of cancer, with its significant contribution in the complex metastatic cascade, through reorganizing the cytoskeleton and deregulating various cellular signaling pathways. Current preclinical studies using genetic and/or pharmacological approaches reveal that inactivation of Ezrin results in significant inhibition of Ezrin-mediated tumor growth and metastasis as well as increase in the sensitivity of cancer cells to various chemotherapeutic drugs. In this review, we discuss the recent advances illuminating the molecular mechanisms responsible for Ezrin dysregulation in cancer and its pleiotropic role in cancer progression and metastasis. We also highlight its potential as a prognostic biomarker and therapeutic target in various cancers. More importantly, we put forward some potential questions, which we strongly believe, will stimulate both basic and translational research to better understand Ezrin-mediated malignancy, ultimately leading to the development of Ezrin-targeted cancer therapy for the betterment of human life.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Centre for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
4
|
Chen D, Wu H, Wang X, Huang T, Jia J. Shared Genetic Basis and Causal Relationship Between Television Watching, Breakfast Skipping and Type 2 Diabetes: Evidence From a Comprehensive Genetic Analysis. Front Endocrinol (Lausanne) 2022; 13:836023. [PMID: 35399945 PMCID: PMC8988136 DOI: 10.3389/fendo.2022.836023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Epidemiological investigations have established unhealthy lifestyles, such as excessive leisurely sedentary behavior (especially TV/television watching) and breakfast skipping, increase the risk of type 2 diabetes (T2D), but the causal relationship is unclear. We aimed to understand how single nucleotide variants contribute to the co-occurrence of unhealthy lifestyles and T2D, thereby providing meaningful insights into disease mechanisms. Methods Combining summary statistics from genome-wide association studies (GWAS) on TV watching (N = 422218), breakfast skipping (N = 193860) and T2D (N = 159208) in European pedigrees, we conducted comprehensive pairwise genetic analysis, including high-definition likelihood (HDL-method), cross-phenotype association studies (CPASSOC), GWAS-eQTL colocalization analysis and transcriptome-wide association studies (TWAS), to understand the genetic overlap between them. We also performed bidirectional two-sample Mendelian randomization (MR) analysis for causal inference using genetic instrumental variables, and two-step MR mediation analysis was used to assess any effects explained by body mass index, lipid traits and glycemic traits. Results HDL-method showed that T2D shared a strong genetic correlation with TV watching (rg = 0.26; P = 1.63×10-29) and skipping breakfast (rg = 0.15; P =2.02×10-6). CPASSOC identifies eight independent SNPs shared between T2D and TV watching, including one novel shared locus. TWAS and CPASSOC showed that shared genes were enriched in lung, esophageal, adipose, and thyroid tissues and highlighted potential shared regulatory pathways for lipoprotein metabolism, pancreatic β-cell function, cellular senescence and multi-mediator factors. MR showed TV watching had a causal effect on T2D (βIVW = 0.629, PIVW = 1.80×10-10), but no significant results were observed between breakfast skipping and T2D. Mediation analysis provided evidence that body mass index, fasting glucose, hemoglobin A1c and high-density lipoprotein are potential factors that mediate the causal relationship between TV and T2D. Conclusions Our findings provide strong evidence of shared genetics and causation between TV watching and T2D and facilitate our identification of common genetic architectures shared between them.
Collapse
Affiliation(s)
- Dongze Chen
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hanyu Wu
- Department of Bioinformatics, School of Life Science, Peking University, Beijing, China
| | - Xinpei Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Statistical Science, Peking University, Beijing, China
| |
Collapse
|
5
|
Li S, Luo Z, Meng S, Qiu X, Zheng F, Dai W, Zhang X, Sui W, Yan Q, Tang D, Dai Y. Label-free quantitative proteomic and phosphoproteomic analyses of renal biopsy tissues in membranous nephropathy. Proteomics Clin Appl 2021; 16:e2000069. [PMID: 34543527 DOI: 10.1002/prca.202000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. However, the underlying mechanisms of its occurrence and development are not completely clear. Thus, it is essential to explore the mechanisms. EXPERIMENTAL DESIGN Here, we employed label-free quantification and liquid chromatography-tandem mass spectrometry analysis techniques to investigate the proteomic and phosphoproteomic alterations in renal biopsy tissues of MN patients. Samples were collected from 16 MN patients and 10 controls. Immunohistochemistry (IHC) was performed to validate the hub phosphoprotein. RESULTS We focused on the changes in the phosphoproteome in MN group versus control group (CG). Totally, 1704 phosphoproteins containing 3241 phosphosites were identified and quantified. The phosphorylation levels of 216 phosphoproteins containing 297 phosphosites were differentially regulated in stage II MN group versus CG, and 333 phosphoproteins containing 461 phosphosites were differentially phosphorylated in stage III MN group versus CG. In each comparison, several differential phosphoproteins were factors, kinases and receptors involved in cellular processes, biological regulation and other biological processes. The subcellular location of most of the differential phosphoproteins was the nucleus. Protein-protein interaction analysis showed that the connections among the differential phosphoproteins were extremely complex, and several signalling pathways probably associated with MN were identified. The hub phosphoprotein was validated by IHC. CONCLUSIONS AND CLINICAL RELEVANCE This investigation can provide direct insight into the global phosphorylation events in MN group versus CG and may help to shed light on the potential pathogenic mechanisms of MN.
Collapse
Affiliation(s)
- Shanshan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhifeng Luo
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Shuhui Meng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaofen Qiu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Fengping Zheng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, Texas, USA
| | - Xinzhou Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weiguo Sui
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Qiang Yan
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
6
|
Rogacka D. Insulin resistance in glomerular podocytes: Potential mechanisms of induction. Arch Biochem Biophys 2021; 710:109005. [PMID: 34371008 DOI: 10.1016/j.abb.2021.109005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023]
Abstract
Glomerular podocytes are a target for the actions of insulin. Accumulating evidence indicates that exposure to nutrient overload induces insulin resistance in these cells, manifested by abolition of the stimulatory effect of insulin on glucose uptake. Numerous recent studies have investigated potential mechanisms of the induction of insulin resistance in podocytes. High glucose concentrations stimulated reactive oxygen species production through NADPH oxidase activation, decreased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and reduced deacetylase sirtuin 1 (SIRT1) protein levels and activity. Calcium signaling involving transient receptor potential cation channel C, member 6 (TRPC6) also was demonstrated to play an essential role in the regulation of insulin-dependent signaling and glucose uptake in podocytes. Furthermore, podocytes exposed to diabetic environment, with elevated insulin levels become insulin resistant as a result of degradation of insulin receptor (IR), resulting in attenuation of insulin signaling responsiveness. Also elevated levels of palmitic acid appear to be an important factor and contributor to podocytes insulin resistance. This review summarizes cellular and molecular alterations that contribute to the development of insulin resistance in glomerular podocytes.
Collapse
Affiliation(s)
- Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
7
|
Guo W, Gao H, Pan W, Yu P, Che G. High glucose induces Nox4 expression and podocyte apoptosis through the Smad3/ezrin/PKA pathway. Biol Open 2021; 10:bio.055012. [PMID: 33046439 PMCID: PMC8181897 DOI: 10.1242/bio.055012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
Podocytes are the major target in proteinuric kidney diseases such as diabetic nephropathy. The underlying molecular mechanisms by which high glucose (HG) results in podocyte damage remain unclear. This study investigated the regulatory role of Smad3, ezrin, and protein kinase A (PKA) in NADPH oxidase (Nox4) expression, reactive oxidative species (ROS) production, and apoptosis in HG-treated podocytes. A human podocyte cell line was cultured and differentiated, then treated with 30 mM HG. Apoptosis and intracellular ROS levels were assessed using TUNEL and DCF assays, respectively. Expressions of Nox4, phospho-Smad3Ser423/425, phospho-PKAThr197, and phospho-ezrinThr567 were evaluated using western blotting. ELISA was used to quantify intracellular cAMP concentration and PKA activity. Knockdown assay was used to inhibit the expressions of Smad3, Nox4, and ezrin by lentiviral shRNA. In HG-treated podocytes, the level of phospho-Smad3Ser423/425 and phospho-ezrinThr567 was increased significantly, which was accompanied by the reduction of cAMP and phospho-PKAThr197. HG-induced apoptosis was significantly prevented by the Smad3-inhibitor SIS3 or shRNA-Smad3. In podocytes expressing shRNA-ezrin or shRNA-Nox4, apoptosis was remarkably mitigated following HG treatment. HG-induced upregulation of phospho-ezrinThr567 and downregulation of phospho-PKAThr197 was significantly prevented by SIS3, shRNA-ezrin or shRNA-Smad3. Forskolin, a PKA activator, significantly inhibited HG-mediated upregulation of Nox4 expression, ROS generation, and apoptosis. Additionally, an increase in the ROS level was prohibited in HG-treated podocytes with the knockdown of Nox4, Smad3, or ezrin. Taken together, our findings provided evidence that Smad3-mediated ezrin activation upregulates Nox4 expression and ROS production, by suppressing PKA activity, which may at least in part contribute to HG-induced podocyte apoptosis. Summary: The actin-membrane linker protein ezrin-related signaling plays a critical role in podocyte apoptosis through regulation of Nox4 expression and ROS production.
Collapse
Affiliation(s)
- Wanxu Guo
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, 130041, China
| | - Hang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Wei Pan
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, 130041, China
| | - Panapn Yu
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, 130041, China
| | - Guanghua Che
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, 130041, China
| |
Collapse
|
8
|
Caster DJ, Korte EA, Merchant ML, Klein JB, Barati MT, Joglekar A, Wilkey DW, Coventry S, Hata J, Rovin BH, Harley JB, Namjou-Khales B, McLeish KR, Powell DW. Patients with Proliferative Lupus Nephritis Have Autoantibodies That React to Moesin and Demonstrate Increased Glomerular Moesin Expression. J Clin Med 2021; 10:jcm10040793. [PMID: 33669337 PMCID: PMC7920286 DOI: 10.3390/jcm10040793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Kidney involvement in systemic lupus erythematosus (SLE)—termed lupus nephritis (LN)—is a severe manifestation of SLE that can lead to end-stage kidney disease (ESKD). LN is characterized by immune complex deposition and inflammation in the glomerulus. We tested the hypothesis that autoantibodies targeting podocyte and glomerular cell proteins contribute to the development of immune complex formation in LN. We used Western blotting with SLE sera from patients with and without LN to identify target antigens in human glomerular and cultured human-derived podocyte membrane proteins. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified the proteins in the gel regions corresponding to reactive bands observed with sera from LN patients. We identified 102 proteins that were present in both the podocyte and glomerular samples. We identified 10 high-probability candidates, including moesin, using bioinformatic analysis. Confirmation of moesin as a target antigen was conducted using immunohistochemical analysis (IHC) of kidney biopsy tissue and enzyme-linked immunosorbent assay (ELISA) to detect circulating antibodies. By IHC, biopsies from patients with proliferative lupus nephritis (PLN, class III/IV) demonstrated significantly increased glomerular expression of moesin (p < 0.01). By ELISA, patients with proliferative LN demonstrated significantly increased antibodies against moesin (p < 0.01). This suggests that moesin is a target glomerular antigen in lupus nephritis.
Collapse
Affiliation(s)
- Dawn J. Caster
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (E.A.K.); (M.L.M.); (J.B.K.); (M.T.B.); (A.J.); (D.W.W.); (K.R.M.); (D.W.P.)
- Correspondence: ; Tel.: +1-502-852-5757
| | - Erik A. Korte
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (E.A.K.); (M.L.M.); (J.B.K.); (M.T.B.); (A.J.); (D.W.W.); (K.R.M.); (D.W.P.)
| | - Michael L. Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (E.A.K.); (M.L.M.); (J.B.K.); (M.T.B.); (A.J.); (D.W.W.); (K.R.M.); (D.W.P.)
| | - Jon B. Klein
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (E.A.K.); (M.L.M.); (J.B.K.); (M.T.B.); (A.J.); (D.W.W.); (K.R.M.); (D.W.P.)
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
| | - Michelle T. Barati
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (E.A.K.); (M.L.M.); (J.B.K.); (M.T.B.); (A.J.); (D.W.W.); (K.R.M.); (D.W.P.)
| | - Ami Joglekar
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (E.A.K.); (M.L.M.); (J.B.K.); (M.T.B.); (A.J.); (D.W.W.); (K.R.M.); (D.W.P.)
| | - Daniel W. Wilkey
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (E.A.K.); (M.L.M.); (J.B.K.); (M.T.B.); (A.J.); (D.W.W.); (K.R.M.); (D.W.P.)
| | - Susan Coventry
- Pathology Department, Norton Children’s Hospital, Louisville, KY 40202, USA; (S.C.); (J.H.)
| | - Jessica Hata
- Pathology Department, Norton Children’s Hospital, Louisville, KY 40202, USA; (S.C.); (J.H.)
| | - Brad H. Rovin
- Department of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (J.B.H.); (B.N.-K.)
- US Department of Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | - Bahram Namjou-Khales
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (J.B.H.); (B.N.-K.)
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (E.A.K.); (M.L.M.); (J.B.K.); (M.T.B.); (A.J.); (D.W.W.); (K.R.M.); (D.W.P.)
| | - David W. Powell
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (E.A.K.); (M.L.M.); (J.B.K.); (M.T.B.); (A.J.); (D.W.W.); (K.R.M.); (D.W.P.)
| |
Collapse
|
9
|
Révész C, Wasik AA, Godó M, Tod P, Lehtonen S, Szénási G, Hamar P. Cold Saline Perfusion before Ischemia-Reperfusion Is Harmful to the Kidney and Is Associated with the Loss of Ezrin, a Cytoskeletal Protein, in Rats. Biomedicines 2021; 9:biomedicines9010030. [PMID: 33401597 PMCID: PMC7824567 DOI: 10.3390/biomedicines9010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Organ protection for transplantation is perfusion with ice-cold preservation solutions, although saline is also used in animal experiments and living donor transplantations. However, ice-cold perfusion can contribute to initial graft injury. Our aim was to test if cytoskeletal damage of parenchymal cells is caused by saline itself or by the ice-cold solution. Methods: F344 rat kidneys were flushed with cold (4 °C) saline, ischemic and sham kidneys were not perfused. In a separate set, F344 kidneys were flushed with saline or preservation solution at 4 or 15 °C. Ischemia time was 30 min. Results: Renal injury was significantly more severe following cold ischemia (CI) than after ischemia-reperfusion without flushing (ischemia/reperfusion (I/R)). Functional and morphologic damage was accompanied by severe loss of ezrin from glomerular and tubular epithelial cells after CI. Moreover, saline caused serious injury independently from its temperature, while the perfusion solution was more beneficial, especially at 4 °C. Conclusions: Flushing the kidney with ice-cold saline can cause more severe injury than ischemia-reperfusion at body temperature even during a short (30 min) ischemia. Saline perfusion can prolong recovery from ischemia in kidney transplantation, which can be prevented by using preservation solutions.
Collapse
Affiliation(s)
- Csaba Révész
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Anita A. Wasik
- Department of Pathology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.A.W.); (S.L.)
| | - Mária Godó
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Pál Tod
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Sanna Lehtonen
- Department of Pathology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.A.W.); (S.L.)
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Gábor Szénási
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Péter Hamar
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
- Correspondence: ; Tel.: +36-20-825-9751; Fax: +36-1-210-0100
| |
Collapse
|
10
|
Lehtonen S. Metformin Protects against Podocyte Injury in Diabetic Kidney Disease. Pharmaceuticals (Basel) 2020; 13:ph13120452. [PMID: 33321755 PMCID: PMC7764076 DOI: 10.3390/ph13120452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin is the most commonly prescribed drug for treating type 2 diabetes mellitus (T2D). Its mechanisms of action have been under extensive investigation, revealing that it has multiple cellular targets, either direct or indirect ones, via which it regulates numerous cellular pathways. Diabetic kidney disease (DKD), the serious complication of T2D, develops in up to 50% of the individuals with T2D. Various mechanisms contribute to the development of DKD, including hyperglycaemia, dyslipidemia, oxidative stress, chronic low-grade inflammation, altered autophagic activity and insulin resistance, among others. Metformin has been shown to affect these pathways, and thus, it could slow down or prevent the progression of DKD. Despite several animal studies demonstrating the renoprotective effects of metformin, there is no concrete evidence in clinical settings. This review summarizes the renoprotective effects of metformin in experimental settings. Special emphasis is on the effects of metformin on podocytes, the glomerular epithelial cells that are central in maintaining the glomerular ultrafiltration function.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism and Department of Pathology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
11
|
Woychyshyn B, Papillon J, Guillemette J, Navarro-Betancourt JR, Cybulsky AV. Genetic ablation of SLK exacerbates glomerular injury in adriamycin nephrosis in mice. Am J Physiol Renal Physiol 2020; 318:F1377-F1390. [PMID: 32308020 DOI: 10.1152/ajprenal.00028.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ste20-like kinase SLK is critical for embryonic development and may play an important role in wound healing, muscle homeostasis, cell migration, and tumor growth. Mice with podocyte-specific deletion of SLK show albuminuria and damage to podocytes as they age. The present study addressed the role of SLK in glomerular injury. We induced adriamycin nephrosis in 3- to 4-mo-old control and podocyte SLK knockout (KO) mice. Compared with control, SLK deletion exacerbated albuminuria and loss of podocytes, synaptopodin, and podocalyxin. Glomeruli of adriamycin-treated SLK KO mice showed diffuse increases in the matrix and sclerosis as well as collapse of the actin cytoskeleton. SLK can phosphorylate ezrin. The complex of phospho-ezrin, Na+/H+ exchanger regulatory factor 2, and podocalyxin in the apical domain of the podocyte is a key determinant of normal podocyte architecture. Deletion of SLK reduced glomerular ezrin and ezrin phosphorylation in adriamycin nephrosis. Also, deletion of SLK reduced the colocalization of ezrin and podocalyxin in the glomerulus. Cultured glomerular epithelial cells with KO of SLK showed reduced ezrin phosphorylation and podocalyxin expression as well as reduced F-actin. Thus, SLK deletion leads to podocyte injury as mice age and exacerbates injury in adriamycin nephrosis. The mechanism may at least in part involve ezrin phosphorylation as well as disruption of the cytoskeleton and podocyte apical membrane structure.
Collapse
Affiliation(s)
- Boyan Woychyshyn
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Julie Guillemette
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - José R Navarro-Betancourt
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Andrey V Cybulsky
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Audzeyenka I, Rachubik P, Rogacka D, Typiak M, Kulesza T, Angielski S, Rychłowski M, Wysocka M, Gruba N, Lesner A, Saleem MA, Piwkowska A. Cathepsin C is a novel mediator of podocyte and renal injury induced by hyperglycemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118723. [PMID: 32302668 DOI: 10.1016/j.bbamcr.2020.118723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
A growing body of evidence suggests a role of proteolytic enzymes in the development of diabetic nephropathy. Cathepsin C (CatC) is a well-known regulator of inflammatory responses, but its involvement in podocyte and renal injury remains obscure. We used Zucker rats, a genetic model of metabolic syndrome and insulin resistance, to determine the presence, quantity, and activity of CatC in the urine. In addition to the animal study, we used two cellular models, immortalized human podocytes and primary rat podocytes, to determine mRNA and protein expression levels via RT-PCR, Western blot, and confocal microscopy, and to evaluate CatC activity. The role of CatC was analyzed in CatC-depleted podocytes using siRNA and glycolytic flux parameters were obtained from extracellular acidification rate (ECAR) measurements. In functional analyses, podocyte and glomerular permeability to albumin was determined. We found that podocytes express and secrete CatC, and a hyperglycemic environment increases CatC levels and activity. Both high glucose and non-specific activator of CatC phorbol 12-myristate 13-acetate (PMA) diminished nephrin, cofilin, and GLUT4 levels and induced cytoskeletal rearrangements, increasing albumin permeability in podocytes. These negative effects were completely reversed in CatC-depleted podocytes. Moreover, PMA, but not high glucose, increased glycolytic flux in podocytes. Finally, we demonstrated that CatC expression and activity are increased in the urine of diabetic Zucker rats. We propose a novel mechanism of podocyte injury in diabetes, providing deeper insight into the role of CatC in podocyte biology.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland
| | - Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Michał Rychłowski
- Intercollegiate Faculty of Biotechnology, University of Gdansk - Medical University of Gdansk, Poland
| | | | | | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Poland
| | - Moin A Saleem
- Bristol Renal, University of Bristol, United Kingdom
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland
| |
Collapse
|
13
|
Lehtonen S. SHIPping out diabetes-Metformin, an old friend among new SHIP2 inhibitors. Acta Physiol (Oxf) 2020; 228:e13349. [PMID: 31342643 PMCID: PMC6916339 DOI: 10.1111/apha.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
SHIP2 (Src homology 2 domain‐containing inositol 5′‐phosphatase 2) belongs to the family of 5′‐phosphatases. It regulates the phosphoinositide 3‐kinase (PI3K)‐mediated insulin signalling cascade by dephosphorylating the 5′‐position of PtdIns(3,4,5)P3 to generate PtdIns(3,4)P2, suppressing the activity of the pathway. SHIP2 mouse models and genetic studies in human propose that increased expression or activity of SHIP2 contributes to the pathogenesis of the metabolic syndrome, hypertension and type 2 diabetes. This has raised great interest to identify SHIP2 inhibitors that could be used to design new treatments for metabolic diseases. This review summarizes the central mechanisms associated with the development of diabetic kidney disease, including the role of insulin resistance, and then moves on to describe the function of SHIP2 as a regulator of metabolism in mouse models. Finally, the identification of SHIP2 inhibitors and their effects on metabolic processes in vitro and in vivo are outlined. One of the newly identified SHIP2 inhibitors is metformin, the first‐line medication prescribed to patients with type 2 diabetes, further boosting the attraction of SHIP2 as a treatment target to ameliorate metabolic disorders.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine University of Helsinki Helsinki Finland
| |
Collapse
|
14
|
Kim DY, Kang MK, Kim YH, Lee EJ, Oh H, Kim SI, Oh SY, Kang YH. Eucalyptol Ameliorates Dysfunction of Actin Cytoskeleton Formation and Focal Adhesion Assembly in Glucose-Loaded Podocytes and Diabetic Kidney. Mol Nutr Food Res 2019; 63:e1900489. [PMID: 31483951 DOI: 10.1002/mnfr.201900489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/06/2019] [Indexed: 01/19/2023]
Abstract
SCOPE Podocytes are a component of glomerular filtration barrier with interdigitating foot processes. The podocyte function depends on the dynamics of actin cytoskeletal and focal adhesion crucial for foot process structure. This study investigates the renoprotective effects of eucalyptol on the F-actin cytoskeleton formation and focal adhesion assembly in glucose-loaded podocytes and diabetic kidneys. METHODS AND RESULTS Eucalyptol at 1-20 µm reverses the reduction of cellular level of F-actin, ezrin, cortactin, and Arp2/3 in 33 mm glucose-loaded mouse podocytes, and oral administration of 10 mg kg-1 eucalyptol elevates tissue levels of actin cytoskeletal proteins reduced in db/db mouse kidneys. Eucalyptol inhibits podocyte morphological changes, showing F-actin cytoskeleton formation in cortical regions and agminated F-actin along the cell periphery. Eucalyptol induces focal adhesion proteins of paxillin, vinculin, talin1, FAK, and Src in glucose-exposed podocytes and diabetic kidneys. Additionally, GTP-binding Rac1, Cdc42, Rho A, and ROCK are upregulated in glucose-stimulated podocytes and diabetic kidneys, which is attenuated by supplying eucalyptol. Rho A gene depletion partially diminishes GSK3β induction of podocytes by glucose. CONCLUSION Eucalyptol ameliorates F-actin cytoskeleton formation and focal adhesion assembly through blockade of the Rho signaling pathway, entailing partial involvement of GSK3β, which may inhibit barrier dysfunction of podocytes and resultant proteinuria.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, 24252, Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, 24252, Korea
| | - Yun-Ho Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, 24252, Korea
| | - Eun-Jung Lee
- Department of Food and Nutrition, Hallym University, Chuncheon, 24252, Korea
| | - Hyeongjoo Oh
- Department of Food and Nutrition, Hallym University, Chuncheon, 24252, Korea
| | - Soo-Il Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, 24252, Korea
| | - Su Yeon Oh
- Department of Food and Nutrition, Hallym University, Chuncheon, 24252, Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, 24252, Korea
| |
Collapse
|
15
|
Li Q, Zeng Y, Jiang Q, Wu C, Zhou J. Role of mTOR signaling in the regulation of high glucose-induced podocyte injury. Exp Ther Med 2019; 17:2495-2502. [PMID: 30906437 PMCID: PMC6425130 DOI: 10.3892/etm.2019.7236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
Podocyte injury, which promotes progressive nephropathy, is considered a key factor in the progression of diabetic nephropathy. The mammalian target of rapamycin (mTOR) signaling cascade controls cell growth, survival and metabolism. The present study investigated the role of mTOR signaling in regulating high glucose (HG)-induced podocyte injury. MTT assay and flow cytometry assay results indicated that HG significantly increased podocyte viability and apoptosis. HG effects on podocytes were suppressed by mTOR complex 1 (mTORC1) inhibitor, rapamycin, and further suppressed by dual mTORC1 and mTORC2 inhibitor, KU0063794, when compared with podocytes that received mannitol treatment. In addition, western blot analysis revealed that the expression levels of Thr-389-phosphorylated p70S6 kinase (p-p70S6K) and phosphorylated Akt (p-Akt) were significantly increased by HG when compared with mannitol treatment. Notably, rapamycin significantly inhibited HG-induced p-p70S6K expression, but did not significantly impact p-Akt expression. However, KU0063794 significantly inhibited the HG-induced p-p70S6K and p-Akt expression levels. Furthermore, the expression of ezrin was significantly reduced by HG when compared with mannitol treatment; however, α-smooth muscle actin (α-SMA) expression was significantly increased. Immunofluorescence analysis on ezrin and α-SMA supported the results of western blot analysis. KU0063794, but not rapamycin, suppressed the effect of HG on the expression levels of ezrin and α-SMA. Thus, it was suggested that the increased activation of mTOR signaling mediated HG-induced podocyte injury. In addition, the present findings suggest that the mTORC1 and mTORC2 signaling pathways may be responsible for the cell viability and apoptosis, and that the mTORC2 pathway could be primarily responsible for the regulation of cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Qiuyue Li
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan Zeng
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Jiang
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Cong Wu
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Zhou
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
16
|
Yuan YP, Zhao H, Peng LQ, Li ZF, Liu S, Yuan CY, Mwamunyi MJ, Pearce D, Yao LJ. The SGK3-triggered ubiquitin-proteasome degradation of podocalyxin (PC) and ezrin in podocytes was associated with the stability of the PC/ezrin complex. Cell Death Dis 2018; 9:1114. [PMID: 30385740 PMCID: PMC6212497 DOI: 10.1038/s41419-018-1161-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/27/2018] [Accepted: 10/18/2018] [Indexed: 12/28/2022]
Abstract
Podocyte damage is commonly accompanied by destabilization of the podocalyxin (PC)/ezrin complex. Serum- and glucocorticoid-inducible kinase 3 (SGK3) plays a role in the maintenance of podocyte function, but the details of this role are poorly understood. Herein we demonstrated that SGK3 and its downstream target protein neural precursor cell expressed developmentally downregulated protein 4 subtype 2 (Nedd4-2) triggered PC and ezrin interaction. In adriamycin (ADR)-induced nephritic mice, and after puromycin aminonucleoside (PAN)-induced podocyte damage in vitro, PC and ezrin protein expression levels decreased significantly, while Nedd4-2 activity increased. Moreover, PAN treatment increased PC and ezrin ubiquitination and decreased PC/ezrin interaction in cultured mouse podocytes. The downregulation of SGK3 activity in mouse podocytes resulted in decreased PC and ezrin protein expression and increased the ubiquitin-proteasome degradation of PC and ezrin. Furthermore, upregulation of SGK3 activity mostly reversed the PAN-induced decrease in PC and ezrin protein expression. Overexpression of Nedd4-2 led to decreased ezrin protein expression via the upregulation of ezrin ubiquitination. In contrast, Nedd4-2 knockdown resulted in increased ezrin protein expression but decreased ezrin ubiquitination. In PC-transfected human embryonic kidney (HEK293T) cells, SGK3 activity downregulation and Nedd4-2 overexpression resulted in decreased PC/ezrin interaction. These results suggested that SGK3 triggers the ubiquitin-proteasome degradation of PC and ezrin, while the SGK3/Nedd4-2 signaling pathway regulates ezrin, but not PC, ubiquitination. Thus SGK3 helps to regulate podocyte function by maintaining the stability of the PC/ezrin complex.
Collapse
Affiliation(s)
- Ya-Pei Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Hong Zhao
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Li-Qin Peng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Zi-Fang Li
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Song Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Cheng-Yan Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Mercy-Julian Mwamunyi
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - David Pearce
- Department of Medicine, University of California, San Francisco, CA, 94107-2140, USA.,Department of Molecular and Cellular Pharmacology, University of California, San Francisco, CA, 94107-2140, USA
| | - Li-Jun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
17
|
Levi M, Myakala K, Wang X. SRGAP2a: A New Player That Modulates Podocyte Cytoskeleton and Injury in Diabetes. Diabetes 2018; 67:550-551. [PMID: 29559512 PMCID: PMC5860859 DOI: 10.2337/dbi17-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/28/2017] [Indexed: 11/13/2022]
Affiliation(s)
- Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Xiaoxin Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| |
Collapse
|
18
|
Abstract
Ezrin is highly expressed in glomerular podocytes and is reported to form a multi-protein complex with scaffold protein Na+/H+ exchanger regulatory factor 2 (NHERF2) and podocalyxin, a major sialoprotein. Podocalyxin-knockout mice died within 24 h of birth with anuric renal failure, whereas NHERF2-knockout mice show no apparent changes in the glomerular functions. However, the physiological roles of ezrin in glomerular podocytes remain unclear. Here, we investigated the importance of ezrin in the regulation of glomerular podocyte function using ezrin-knockdown mice (Vil2 kd/kd ). The Vil2 kd/kd mice did not exhibit apparent glomerular dysfunction, morphological defects or abnormal localisation of podocalyxin and NHERF2 in podocytes. Thus, we investigated the influence of ezrin defects on Rho-GTPase activity, as ezrin interacts with the Rho-GTPase dissociation inhibitor (Rho-GDI), which plays a key role in the regulation of podocyte actin organisation. In Vil2 kd/kd glomeruli, Rac1 activity was significantly reduced compared to wildtype (WT) glomeruli at baseline. Furthermore, Vil2 kd/kd mice showed reduced susceptibility to glomerular injury. In WT glomeruli, Rac1 activity was enhanced in nephrotic conditions, but remained at baseline levels in Vil2 kd/kd glomeruli, suggesting that loss of ezrin protects podocytes from injury-induced morphological changes by suppressing Rac1 activation.
Collapse
|
19
|
Wasik AA, Lehtonen S. Glucose Transporters in Diabetic Kidney Disease-Friends or Foes? Front Endocrinol (Lausanne) 2018; 9:155. [PMID: 29686650 PMCID: PMC5900043 DOI: 10.3389/fendo.2018.00155] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a common cause of end-stage renal disease worldwide. DKD manifests as an increased urinary protein excretion (albuminuria). Multiple studies have shown that insulin resistance correlates with the development of albuminuria in non-diabetic and diabetic patients. There is also accumulating evidence that glomerular epithelial cells or podocytes are insulin sensitive and that insulin signaling in podocytes is essential for maintaining normal kidney function. At the cellular level, the mechanisms leading to the development of insulin resistance include mutations in the insulin receptor gene, impairments in the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, or perturbations in the trafficking of glucose transporters (GLUTs), which mediate the uptake of glucose into cells. Podocytes express several GLUTs, including GLUT1, GLUT2, GLUT3, GLUT4, and GLUT8. Of these, the most studied ones are GLUT1 and GLUT4, both shown to be insulin responsive in podocytes. In the basal state, GLUT4 is preferentially located in perinuclear and cytosolic vesicular structures and to a lesser extent at the plasma membrane. After insulin stimulation, GLUT4 is sorted into GLUT4-containing vesicles (GCVs) that translocate to the plasma membrane. GCV trafficking consists of several steps, including approaching of the GCVs to the plasma membrane, tethering, and docking, after which the lipid bilayers of the GCVs and the plasma membrane fuse, delivering GLUT4 to the cell surface for glucose uptake into the cell. Studies have revealed novel molecular regulators of the GLUT trafficking in podocytes and unraveled unexpected roles for GLUT1 and GLUT4 in the development of DKD, summarized in this review. These findings pave the way for better understanding of the mechanistic pathways associated with the development and progression of DKD and aid in the development of new treatments for this devastating disease.
Collapse
|
20
|
Khan MM, Tran BQ, Jang YJ, Park SH, Fondrie WE, Chowdhury K, Yoon SH, Goodlett DR, Chae SW, Chae HJ, Seo SY, Goo YA. Assessment of the Therapeutic Potential of Persimmon Leaf Extract on Prediabetic Subjects. Mol Cells 2017; 40:466-475. [PMID: 28681595 PMCID: PMC5547216 DOI: 10.14348/molcells.2017.2298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Dietary supplements have exhibited myriads of positive health effects on human health conditions and with the advent of new technological advances, including in the fields of proteomics, genomics, and metabolomics, biological and pharmacological activities of dietary supplements are being evaluated for their ameliorative effects in human ailments. Recent interests in understanding and discovering the molecular targets of phytochemical-gene-protein-metabolite dynamics resulted in discovery of a few protein signature candidates that could potentially be used to assess the effects of dietary supplements on human health. Persimmon (Diospyros kaki) is a folk medicine, commonly used as dietary supplement in China, Japan, and South Korea, owing to its different beneficial health effects including anti-diabetic implications. However, neither mechanism of action nor molecular biomarkers have been discovered that could either validate or be used to evaluate effects of persimmon on human health. In present study, Mass Spectrometry (MS)-based proteomic studies were accomplished to discover proteomic molecular signatures that could be used to understand therapeutic potentials of persimmon leaf extract (PLE) in diabetes amelioration. Saliva, serum, and urine samples were analyzed and we propose that salivary proteins can be used for evaluating treatment effectiveness and in improving patient compliance. The present discovery proteomics study demonstrates that salivary proteomic profile changes were found as a result of PLE treatment in prediabetic subjects that could specifically be used as potential protein signature candidates.
Collapse
Affiliation(s)
- Mohd M. Khan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201,
USA
- Present address: University of Maryland School of Medicine, Baltimore, MD 21201,
USA
| | - Bao Quoc Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201,
USA
| | - Yoon-Jin Jang
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju 54907,
Korea
| | - Soo-Hyun Park
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju 54907,
Korea
| | | | | | - Sung Hwan Yoon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201,
USA
| | - David R. Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201,
USA
| | - Soo-Wan Chae
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju 54907,
Korea
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju 54907,
Korea
| | - Han-Jung Chae
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju 54907,
Korea
| | - Seung-Young Seo
- Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju 54907,
Korea
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201,
USA
| |
Collapse
|
21
|
RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways. Sci Rep 2016; 6:35671. [PMID: 27774996 PMCID: PMC5075905 DOI: 10.1038/srep35671] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/29/2016] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or ‘podocytes’, the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes.
Collapse
|
22
|
Ding F, Tan A, Ju W, Li X, Li S, Ding J. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network. PLoS One 2016; 11:e0156024. [PMID: 27227331 PMCID: PMC4882061 DOI: 10.1371/journal.pone.0156024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/09/2016] [Indexed: 01/10/2023] Open
Abstract
Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet contributes to improving the understanding of normal glomerular function and will be useful for detecting target cytoskeleton molecules of interest that may be involved in glomerular diseases in future studies.
Collapse
Affiliation(s)
- Fangrui Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Aidi Tan
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Wenjun Ju
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Xuejuan Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Shao Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
23
|
Abstract
Podocytes are highly specialized cells of the kidney glomerulus that wrap around capillaries and that neighbor cells of the Bowman’s capsule. When it comes to glomerular filtration, podocytes play an active role in preventing plasma proteins from entering the urinary ultrafiltrate by providing a barrier comprising filtration slits between foot processes, which in aggregate represent a dynamic network of cellular extensions. Foot processes interdigitate with foot processes from adjacent podocytes and form a network of narrow and rather uniform gaps. The fenestrated endothelial cells retain blood cells but permit passage of small solutes and an overlying basement membrane less permeable to macromolecules, in particular to albumin. The cytoskeletal dynamics and structural plasticity of podocytes as well as the signaling between each of these distinct layers are essential for an efficient glomerular filtration and thus for proper renal function. The genetic or acquired impairment of podocytes may lead to foot process effacement (podocyte fusion or retraction), a morphological hallmark of proteinuric renal diseases. Here, we briefly discuss aspects of a contemporary view of podocytes in glomerular filtration, the patterns of structural changes in podocytes associated with common glomerular diseases, and the current state of basic and clinical research.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
24
|
McRobert EA, Bach LA. Ezrin contributes to impaired podocyte migration and adhesion caused by advanced glycation end products. Nephrology (Carlton) 2015; 21:13-20. [DOI: 10.1111/nep.12526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2015] [Indexed: 11/30/2022]
Affiliation(s)
| | - Leon A Bach
- Department of Medicine (Alfred); Monash University; Melbourne Victoria Australia
- Department of Endocrinology and Diabetes; Alfred Hospital; Melbourne Victoria Australia
| |
Collapse
|
25
|
Caster DJ, Korte EA, Merchant ML, Klein JB, Wilkey DW, Rovin BH, Birmingham DJ, Harley JB, Cobb BL, Namjou B, McLeish KR, Powell DW. Autoantibodies targeting glomerular annexin A2 identify patients with proliferative lupus nephritis. Proteomics Clin Appl 2015; 9:1012-20. [PMID: 25824007 DOI: 10.1002/prca.201400175] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/10/2015] [Accepted: 03/26/2015] [Indexed: 11/09/2022]
Abstract
PURPOSE Patients with systemic lupus erythematosus (SLE) frequently develop lupus nephritis (LN), a complication frequently leading to end stage kidney disease. Immune complex deposition in the glomerulus is central to the development of LN. Using a targeted proteomic approach, we tested the hypothesis that autoantibodies targeting glomerular antigens contribute to the development of LN. EXPERIMENTAL DESIGN Human podocyte and glomerular proteins were separated by SDS-PAGE and immunoblotted with sera from SLE patients with and without LN. The regions of those gels corresponding to reactive bands observed with sera from LN patients were analyzed using LC-MS/MS. RESULTS LN reactive bands were seen at approximately 50 kDa in podocyte extracts and between 36 and 50 kDa in glomerular extracts. Those bands were analyzed by LC-MS/MS and 102 overlapping proteins were identified. Bioinformatic analysis determined that 36 of those proteins were membrane associated, including a protein previously suggested to contribute to glomerulonephritis and LN, annexin A2. By ELISA, patients with proliferative LN demonstrated significantly increased antibodies against annexin A2. CONCLUSION AND CLINICAL RELEVANCE Proteomic approaches identified multiple candidate antigens for autoantibodies in patients with LN. Serum antibodies against annexin A2 were significantly elevated in subjects with proliferative LN, validating those antibodies as potential biomarkers.
Collapse
Affiliation(s)
- Dawn J Caster
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA
| | - Erik A Korte
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jon B Klein
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA
| | - Daniel W Wilkey
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Brad H Rovin
- Department of Medicine, the Ohio State University, Columbus, OH, USA
| | - Dan J Birmingham
- Department of Medicine, the Ohio State University, Columbus, OH, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA.,US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Beth L Cobb
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA
| | - David W Powell
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
26
|
Saurus P, Kuusela S, Lehtonen E, Hyvönen ME, Ristola M, Fogarty CL, Tienari J, Lassenius MI, Forsblom C, Lehto M, Saleem MA, Groop PH, Holthöfer H, Lehtonen S. Podocyte apoptosis is prevented by blocking the Toll-like receptor pathway. Cell Death Dis 2015; 6:e1752. [PMID: 25950482 PMCID: PMC4669704 DOI: 10.1038/cddis.2015.125] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/30/2022]
Abstract
High serum lipopolysaccharide (LPS) activity in normoalbuminuric patients with type 1 diabetes (T1D) predicts the progression of diabetic nephropathy (DN), but the mechanisms behind this remain unclear. We observed that treatment of cultured human podocytes with sera from normoalbuminuric T1D patients with high LPS activity downregulated 3-phosphoinositide-dependent kinase-1 (PDK1), an activator of the Akt cell survival pathway, and induced apoptosis. Knockdown of PDK1 in cultured human podocytes inhibited antiapoptotic Akt pathway, stimulated proapoptotic p38 MAPK pathway, and increased apoptosis demonstrating an antiapoptotic role for PDK1 in podocytes. Interestingly, PDK1 was downregulated in the glomeruli of diabetic rats and patients with type 2 diabetes before the onset of proteinuria, further suggesting that reduced expression of PDK1 associates with podocyte injury and development of DN. Treatment of podocytes in vitro and mice in vivo with LPS reduced PDK1 expression and induced apoptosis, which were prevented by inhibiting the Toll-like receptor (TLR) signaling pathway with the immunomodulatory agent GIT27. Our data show that LPS downregulates the cell survival factor PDK1 and induces podocyte apoptosis, and that blocking the TLR pathway with GIT27 may provide a non-nephrotoxic means to prevent the progression of DN.
Collapse
Affiliation(s)
- P Saurus
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - S Kuusela
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - E Lehtonen
- 1] Department of Pathology, University of Helsinki, Helsinki, Finland [2] Laboratory Animal Centre, University of Helsinki, Helsinki, Finland
| | - M E Hyvönen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - M Ristola
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - C L Fogarty
- 1] Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland [2] Division of Nephrology, Helsinki University Central Hospital, Helsinki, Finland [3] Diabetes and Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland
| | - J Tienari
- Department of Pathology, HUSLAB and Helsinki University Hospital, Helsinki and Hyvinkää, Finland
| | - M I Lassenius
- 1] Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland [2] Division of Nephrology, Helsinki University Central Hospital, Helsinki, Finland [3] Diabetes and Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland
| | - C Forsblom
- 1] Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland [2] Division of Nephrology, Helsinki University Central Hospital, Helsinki, Finland [3] Diabetes and Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland
| | - M Lehto
- 1] Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland [2] Division of Nephrology, Helsinki University Central Hospital, Helsinki, Finland [3] Diabetes and Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland
| | - M A Saleem
- Bristol Royal Hospital for Children, University of Bristol, Bristol, UK
| | - P-H Groop
- 1] Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland [2] Division of Nephrology, Helsinki University Central Hospital, Helsinki, Finland [3] Diabetes and Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland [4] Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - H Holthöfer
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - S Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Perisic L, Rodriguez PQ, Hultenby K, Sun Y, Lal M, Betsholtz C, Uhlén M, Wernerson A, Hedin U, Pikkarainen T, Tryggvason K, Patrakka J. Schip1 is a novel podocyte foot process protein that mediates actin cytoskeleton rearrangements and forms a complex with Nherf2 and ezrin. PLoS One 2015; 10:e0122067. [PMID: 25807495 PMCID: PMC4373682 DOI: 10.1371/journal.pone.0122067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/18/2015] [Indexed: 01/28/2023] Open
Abstract
Background Podocyte foot process effacement accompanied by actin cytoskeleton rearrangements is a cardinal feature of many progressive human proteinuric diseases. Results By microarray profiling of mouse glomerulus, SCHIP1 emerged as one of the most highly enriched transcripts. We detected Schip1 protein in the kidney glomerulus, specifically in podocytes foot processes. Functionally, Schip1 inactivation in zebrafish by morpholino knock-down results in foot process disorganization and podocyte loss leading to proteinuria. In cultured podocytes Schip1 localizes to cortical actin-rich regions of lamellipodia, where it forms a complex with Nherf2 and ezrin, proteins known to participate in actin remodeling stimulated by PDGFβ signaling. Mechanistically, overexpression of Schip1 in vitro causes accumulation of cortical F-actin with dissolution of transversal stress fibers and promotes cell migration in response to PDGF-BB stimulation. Upon actin disassembly by latrunculin A treatment, Schip1 remains associated with the residual F-actin-containing structures, suggesting a functional connection with actin cytoskeleton possibly via its interaction partners. A similar assay with cytochalasin D points to stabilization of cortical actin cytoskeleton in Schip1 overexpressing cells by attenuation of actin depolymerisation. Conclusions Schip1 is a novel glomerular protein predominantly expressed in podocytes, necessary for the zebrafish pronephros development and function. Schip1 associates with the cortical actin cytoskeleton network and modulates its dynamics in response to PDGF signaling via interaction with the Nherf2/ezrin complex. Its implication in proteinuric diseases remains to be further investigated.
Collapse
Affiliation(s)
- Ljubica Perisic
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Patricia Q. Rodriguez
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kjell Hultenby
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ying Sun
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mark Lal
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Christer Betsholtz
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mathias Uhlén
- Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Ulf Hedin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Timo Pikkarainen
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Karl Tryggvason
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Jaakko Patrakka
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|