1
|
Ishikawa M, Uchiyama A, Kosaka K, Nishio M, Ogino S, Yokoyama Y, Torii R, Akai R, Iwawaki T, Torii S, Motegi SI. Exposure to volatile ferroptosis inhibitor, TEMPO, reduced cutaneous ischemia-reperfusion injury progression to pressure ulcer formation in a mouse model. J Dermatol Sci 2024; 115:130-140. [PMID: 39098373 DOI: 10.1016/j.jdermsci.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Ischemia- reperfusion (I/R) injury-induced oxidative stress is a key factor in the pathogenesis of pressure ulcer formation. Ferroptosis is an iron-dependent programmed cell death that connects oxidative stress and inflammation in various diseases. Recent studies revealed the protective effect of inhibition of ferroptosis in I/R injury. However, the role of ferroptosis in cutaneous I/R injury remains elusive. OBJECTIVE To assess the role of ferroptosis in the progression of cutaneous I/R injury. METHODS Cutaneous I/R injury experiments and histopathological studies were performed in wild-type mice with or without exposure to volatile ferroptosis inhibitor, TEMPO (2,2,6,6-Tetramethylpiperidine-1-oxyl). The suppressive effects of TEMPO on ferroptosis inducing cell death and oxidative stress were examined in vitro. RESULTS Inhibition of ferroptosis with TEMPO significantly reduced ulcer formation after cutaneous I/R injury. Fluctuated ferroptosis markers, such as GPX4, ACSL4, and 4-HNE expression in the I/R skin site, were reversed by TEMPO treatment. Inhibition of ferroptosis reduced apoptosis, CD3+ infiltrating lymphocytes, and improved vascularity in the I/R skin site. Inhibition of ferroptosis also suppressed the enhancement of Nrf2 activation. In vitro, ferroptosis and the activation of ferroptosis-related gene expression by RSL3 stimulation were markedly ameliorated by TEMPO treatment in mouse fibroblasts. Inhibiting ferroptosis also suppressed the elevation of the mRNA levels of NOX2 and HO-1 caused by ferroptosis. CONCLUSION Cutaneous I/R injury-induced ferroptosis likely promotes cell death, vascular loss, infiltration of inflammatory cells, and oxidative stress. The inhibition of ferroptosis with TEMPO might have potential clinical application as novel therapeutic agent for cutaneous I/R injury.
Collapse
Affiliation(s)
- Mai Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Keiji Kosaka
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mayu Nishio
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Torii
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Akai
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Seiji Torii
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan; Center for Food Science and Wellness, Gunma University, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
2
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
3
|
Zhao W, Zhao B, Meng X, Li B, Wang Y, Yu F, Fu C, Yu X, Li X, Dai C, Wang J, Gao H, Cheng M. The regulation of MFG-E8 on the mitophagy in diabetic sarcopenia via the HSPA1L-Parkin pathway and the effect of D-pinitol. J Cachexia Sarcopenia Muscle 2024; 15:934-948. [PMID: 38553831 PMCID: PMC11154748 DOI: 10.1002/jcsm.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Diabetic sarcopenia is a disease-related skeletal muscle disorder that causes progressive symptoms. The complete understanding of its pathogenesis is yet to be unravelled, which makes it difficult to develop effective therapeutic strategies. This study investigates how MFG-E8 affects mitophagy and the protective role of D-pinitol (DP) in diabetic sarcopenia. METHODS In vivo, streptozotocin-induced diabetic SAM-R1 (STZ-R1) and SAM-P8 (STZ-P8) mice (16-week-old) were used, and STZ-P8 mice were administrated of DP (150 mg/kg per day) for 6 weeks. Gastrocnemius muscles were harvested for histological analysis including transmission electron microscopy. Proteins were evaluated via immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) assay. In vitro, advanced glycation end products (AGEs) induced diabetic and D-galactose (DG) induced senescent C2C12 models were established and received DP, MFG-E8 plasmid (Mover)/siRNA (MsiRNA), or 3-MA/Torin-1 intervention. Proteins were evaluated by IF and WB assay. Immunoprecipitation (IP) and co-immunoprecipitation (CO-IP) were used for hunting the interacted proteins of MFG-E8. RESULTS In vivo, sarcopenia, mitophagy deficiency, and up-regulated MFG-E8 were confirmed in the STZ-P8 group. DP exerted protective effects on sarcopenia and mitophagy (DP + STZ-P8 vs. STZ-P8; all P < 0.01), such as increased lean mass (8.47 ± 0.81 g vs. 7.08 ± 1.64 g), grip strength (208.62 ± 39.45 g vs. 160.87 ± 26.95 g), rotarod tests (109.7 ± 11.81 s vs. 59.3 ± 20.97 s), muscle cross-sectional area (CSA) (1912.17 ± 535.61 μm2 vs. 1557.19 ± 588.38 μm2), autophagosomes (0.07 ± 0.02 per μm2 vs. 0.02 ± 0.01 per μm2), and cytolysosome (0.07 ± 0.03 per μm2 vs. 0.03 ± 0.01 per μm2). DP down-regulated MFG-E8 in both serum (DP + STZ-P8: 253.19 ± 34.75 pg/mL vs. STZ-P8: 404.69 ± 78.97 pg/mL; P < 0.001) and gastrocnemius muscle (WB assay. DP + STZ-P8: 0.39 ± 0.04 vs. STZ-P8: 0.55 ± 0.08; P < 0.01). DP also up-regulated PINK1, Parkin and LC3B-II/I ratio, and down-regulated P62 in gastrocnemius muscles (all P < 0.01). In vitro, mitophagy deficiency and MFG-E8 up-regulation were confirmed in diabetic and senescent models (all P < 0.05). DP and MsiRNA down-regulated MFG-E8 and P62, and up-regulated PINK1, Parkin and LC3B-II/I ratio to promote mitophagy as Torin-1 does (all P < 0.05). HSPA1L was confirmed as an interacted protein of MFG-E8 in IP and CO-IP assay. Mover down-regulated the expression of Parkin via the HSPA1L-Parkin pathway, leading to mitophagy inhibition. MsiRNA up-regulated the expression of PINK1 via SGK1, FOXO1, and STAT3 phosphorylation pathways, leading to mitophagy stimulation. CONCLUSIONS MFG-E8 is a crucial target protein of DP and plays a distinct role in mitophagy regulation. DP down-regulates the expression of MFG-E8, reduces mitophagy deficiency, and alleviates the symptoms of diabetic sarcopenia, which could be considered a novel therapeutic strategy for diabetic sarcopenia.
Collapse
Affiliation(s)
- Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Bin Zhao
- Postdoctoral Research StationShandong University of Traditional Chinese MedicineJinanChina
| | - Xinyue Meng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Health Management Center (East Area)Qilu Hospital of Shandong UniversityJinanChina
| | - Yajuan Wang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Chunli Fu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Xiaoli Li
- Department of PharmacyQilu Hospital of Shandong UniversityJinanChina
| | - Chaochao Dai
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jie Wang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| |
Collapse
|
4
|
Lereim RR, Nytrova P, Guldbrandsen A, Havrdova EK, Myhr KM, Barsnes H, Berven FS. Natalizumab promotes anti-inflammatory and repair effects in multiple sclerosis. PLoS One 2024; 19:e0300914. [PMID: 38527011 PMCID: PMC10962820 DOI: 10.1371/journal.pone.0300914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Multiple sclerosis is an inflammatory and degenerative disease of the central nervous system leading to demyelination and axonal loss. Relapsing-remitting multiple sclerosis (RRMS) is commonly treated by anti-inflammatory drugs, where one of the most effective drugs to date is the monoclonal antibody natalizumab. METHODS The cerebrospinal fluid (CSF) proteome was analyzed in 56 patients with RRMS before and after natalizumab treatment, using label-free mass spectrometry and a subset of the changed proteins were verified by parallel reaction monitoring in a new cohort of 20 patients, confirming the majority of observed changes. RESULTS A total of 287 differentially abundant proteins were detected including (i) the decrease of proteins with roles in immunity, such as immunoglobulin heavy constant mu, chitinase-3-like protein 1 and chitotriosidase, (ii) an increase of proteins involved in metabolism, such as lactate dehydrogenase A and B and malate-dehydrogenase cytoplasmic, and (iii) an increase of proteins associated with the central nervous system, including lactadherin and amyloid precursor protein. Comparison with the CSF-PR database provided evidence that natalizumab counters protein changes commonly observed in RRMS. Furthermore, vitamin-D binding protein and apolipoprotein 1 and 2 were unchanged during treatment with natalizumab, implying that these may be involved in disease activity unaffected by natalizumab. CONCLUSIONS Our study revealed that some of the previously suggested biomarkers for MS were affected by the natalizumab treatment while others were not. Proteins not previously suggested as biomarkers were also found affected by the treatment. In sum, the results provide new information on how the natalizumab treatment impacts the CSF proteome of MS patients, and points towards processes affected by the treatment. These findings ought to be explored further to disclose potential novel disease mechanisms and predict treatment responses.
Collapse
Affiliation(s)
- Ragnhild Reehorst Lereim
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
- Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Bergen, Norway
| | - Petra Nytrova
- Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Astrid Guldbrandsen
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
- Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Bergen, Norway
| | - Eva Kubala Havrdova
- Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kjell-Morten Myhr
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Harald Barsnes
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
- Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Bergen, Norway
| | - Frode S. Berven
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Pavličev M, McDonough-Goldstein CE, Zupan AM, Muglia L, Hu YC, Kong F, Monangi N, Dagdas G, Zupančič N, Maziarz J, Sinner D, Zhang G, Wagner G, Muglia L. A common allele increases endometrial Wnt4 expression, with antagonistic implications for pregnancy, reproductive cancers, and endometriosis. Nat Commun 2024; 15:1152. [PMID: 38346980 PMCID: PMC10861470 DOI: 10.1038/s41467-024-45338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2024] [Indexed: 02/15/2024] Open
Abstract
The common human SNP rs3820282 is associated with multiple phenotypes including gestational length and likelihood of endometriosis and cancer, presenting a paradigmatic pleiotropic variant. Deleterious pleiotropic mutations cause the co-occurrence of disorders either within individuals, or across population. When adverse and advantageous effects are combined, pleiotropy can maintain high population frequencies of deleterious alleles. To reveal the causal molecular mechanisms of this pleiotropic SNP, we introduced this substitution into the mouse genome by CRISPR/Cas 9. Previous work showed that rs3820282 introduces a high-affinity estrogen receptor alpha-binding site at the Wnt4 locus. Here, we show that this mutation upregulates Wnt4 transcription in endometrial stroma, following the preovulatory estrogen peak. Effects on uterine transcription include downregulation of epithelial proliferation and induction of progesterone-regulated pro-implantation genes. We propose that these changes increase uterine permissiveness to embryo invasion, whereas they decrease resistance to invasion by cancer and endometriotic foci in other estrogen-responsive tissues.
Collapse
Affiliation(s)
- Mihaela Pavličev
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.
- Complexity Science Hub, Vienna, Austria.
| | | | | | - Lisa Muglia
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fansheng Kong
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nagendra Monangi
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gülay Dagdas
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Nina Zupančič
- University Medical Center Ljubljana, Department of Cardiovascular Surgery, Ljubljana, Slovenia
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Debora Sinner
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ge Zhang
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Günter Wagner
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Yale Systems Biology Institute, Yale University, West Haven, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, USA
| | - Louis Muglia
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Burroughs Wellcome Fund, Research Triangle Park, NC, Durham, USA
| |
Collapse
|
6
|
Zhao Y, Li M, Mao J, Su Y, Huang X, Xia W, Leng X, Zan T. Immunomodulation of wound healing leading to efferocytosis. SMART MEDICINE 2024; 3:e20230036. [PMID: 39188510 PMCID: PMC11235971 DOI: 10.1002/smmd.20230036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 08/28/2024]
Abstract
Effectively eliminating apoptotic cells is precisely controlled by a variety of signaling molecules and a phagocytic effect known as efferocytosis. Abnormalities in efferocytosis may bring about the development of chronic conditions, including angiocardiopathy, chronic inflammatory diseases and autoimmune diseases. During wound healing, failure of efferocytosis leads to the collection of apoptosis, the release of necrotic material and chronic wounds that are difficult to heal. In addition to the traditional phagocytes-macrophages, other important cell species including dendritic cells, neutrophils, vascular endothelial cells, fibroblasts and keratinocytes contribute to wounding healing. This review summarizes how efferocytosis-mediated immunomodulation plays a repair-promoting role in wound healing, providing new insights for patients suffering from various cutaneous wounds.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Cosmetic and Plastic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Minxiong Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiayi Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yinghong Su
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Huang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenzheng Xia
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiangfeng Leng
- Department of Cosmetic and Plastic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tao Zan
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Taivanbat B, Yamazaki S, Nasanbat B, Uchiyama A, Amalia SN, Nasan-Ochir M, Inoue Y, Ishikawa M, Kosaka K, Sekiguchi A, Ogino S, Yokoyama Y, Torii R, Hosoi M, Shibasaki K, Motegi SI. Transient receptor potential vanilloid 4 promotes cutaneous wound healing by regulating keratinocytes and fibroblasts migration and collagen production in fibroblasts in a mouse model. J Dermatol Sci 2023; 112:54-62. [PMID: 37839930 DOI: 10.1016/j.jdermsci.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/29/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Transient receptor potential vanilloid 4 (TRPV4), a cation ion channel, is expressed in different cells, and it regulates the development of different diseases. We recently found a high TRPV4 expression in the wounded skin area. However, the role of TRPV4 in cutaneous wound healing is unknown. OBJECTIVE To investigate the role of TRPV4 in cutaneous wound healing in a mouse model. METHODS Skin wound healing experiment and histopathological studies were performed between WT and TRPV4 KO mice. The effect of TRPV4 antagonist and agonist on cell migration, proliferation, and differentiation were examined in vitro. RESULTS TRPV4 expression was enhanced in wounded area in the skin. TRPV4 KO mice had impaired cutaneous wound healing compared with the WT mice. Further, they had significantly suppressed re-epithelialization and formation of granulation tissue, amount of collagen deposition, and number of α-SMA-positive myofibroblasts in skin wounds. qPCR revealed that the KO mice had decreased mRNA expression of COL1A1 and ACTA2 in skin wounds. In vitro, treatment with selective TRPV4 antagonist suppressed migrating capacity, scratch stimulation enhanced the expression of phospho-ERK in keratinocytes, and TGF-β stimulation enhanced the mRNA expression of COL1A1 and ACTA2 in fibroblasts. Selective TRPV4 agonist suppressed cell migration in keratinocytes, and did not enhance proliferation and migration, but promoted differentiation in fibroblasts. CONCLUSION TRPV4 mediates keratinocytes and fibroblasts migration and increases collagen deposition in the wound area, thereby promoting cutaneous wound healing.
Collapse
Affiliation(s)
- Bayarmaa Taivanbat
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Bolor Nasanbat
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Syahla Nisaa Amalia
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Yuta Inoue
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mai Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Keiji Kosaka
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Torii
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mari Hosoi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Shibasaki
- Laboratory of Neurochemistry, Department of Nutrition Science, University of Nagasaki, Nagasaki, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
8
|
Liu B, Zhang B, Qi J, Zhou H, Tan L, Huang J, Huang J, Fang X, Gong L, Luo J, Liu S, Fu L, Ling F, Ma S, Lai-wan Kwong D, Wang X, Guan XY. Targeting MFGE8 secreted by cancer-associated fibroblasts blocks angiogenesis and metastasis in esophageal squamous cell carcinoma. Proc Natl Acad Sci U S A 2023; 120:e2307914120. [PMID: 37816055 PMCID: PMC10589644 DOI: 10.1073/pnas.2307914120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/09/2023] [Indexed: 10/12/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) play vital roles in establishing a suitable tumor microenvironment. In this study, RNA sequencing data revealed that CAFs could promote cell proliferation, angiogenesis, and ECM reconstitution by binding to integrin families and activating PI3K/AKT pathways in esophageal squamous cell carcinoma (ESCC). The secretions of CAFs play an important role in regulating these biological activities. Among these secretions, we found that MFGE8 is specifically secreted by CAFs in ESCC. Additionally, the secreted MFGE8 protein is essential in CAF-regulated vascularization, tumor proliferation, drug resistance, and metastasis. By binding to Integrin αVβ3/αVβ5 receptors, MFGE8 promotes tumor progression by activating both the PI3K/AKT and ERK/AKT pathways. Interestingly, the biological function of MFGE8 secreted by CAFs fully demonstrated the major role of CAFs in ESCC and its mode of mechanism, showing that MFGE8 could be a driver factor of CAFs in remodeling the tumor environment. In vivo treatment targeting CAFs-secreting MFGE8 or its receptor produced significant inhibitory effects on ESCC growth and metastasis, which provides an approach for the treatment of ESCC.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518053, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
| | - Baifeng Zhang
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518053, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
| | - Jiali Qi
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
| | - Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
| | - Jinlin Huang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
| | - Jiao Huang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
| | - Xiaona Fang
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518053, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
| | - Lanqi Gong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518053, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
| | - Jie Luo
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
| | - Shan Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
| | - Li Fu
- Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen518060, China
| | - Fei Ling
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou510006, China
| | - Stephianie Ma
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518053, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong852, China
| | - Dora Lai-wan Kwong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518053, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Hong Kong510060, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518053, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong852, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou528200, China
- Ministry of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou510275, China
| |
Collapse
|
9
|
Naik A, Dalpatraj N, Thakur N. Comparative analysis of the occupancy of Histone H3 Lysine 4 methylation in the cells treated with TGFβ and Interferonγ. Gene 2023:147601. [PMID: 37394048 DOI: 10.1016/j.gene.2023.147601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
In this current study, we have compared our H3K4me3 Chip-Sequencing data in PC3 cells in response to 6h and 24h TGFβ stimulation with the IFNγ stimulated/unstimulated HeLa S3 cells Since both TGFβ and IFNγ play an essential role in tumorigenesis both as a tumor promoter and tumor suppressor and known to antagonize each other's signalling, it would be of utmost importance to find out the regions undergoing histone modification changes in response to TGFβ and IFNγ and compare them to explore the genes common to both as well as the specific for each ligand. Our study has compared the genes showing H3K4me3 occupancy in response to both TGFβ and IFNγ. Several genes were found to be shared between the TGFβ and IFNγ. DAVID Functional enrichment analysis in the TGFβ and IFNγ dataset revealed association of genes with different biological processes such as miRNA-mediated gene silencing, positive regulation of ERK cascade, hypoxia-induced apoptosis repression, translational regulation and molecular functions such as TGFβR activity, GPCR activity, TGFβ binding activity. Further analysis of these genes can reveal fascinating insights into epigenetic regulation by growth factor stimulation.
Collapse
Affiliation(s)
- Ankit Naik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Nidhi Dalpatraj
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Noopur Thakur
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|
10
|
Perrino BA, Malogan J, Cobine CA, Sasse KC. Mfge8 is expressed by pericytes in gastric antrum submucosa from patients with obesity. Am J Physiol Cell Physiol 2023; 324:C992-C1006. [PMID: 36939201 PMCID: PMC10110711 DOI: 10.1152/ajpcell.00043.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/21/2023]
Abstract
The main function of the stomach is to digest ingested food. Gastric antrum muscular contractions mix ingested food with digestive enzymes and stomach acid and propel the chyme through the pyloric sphincter at a rate in which the small intestine can process the chyme for optimal nutrient absorption. Mfge8 binding to α8β1 integrins helps regulate gastric emptying by reducing the force of antral smooth muscle contractions. The source of Mfge8 within gastric muscles is unclear. Since Mfge8 is a secreted protein, Mfge8 could be delivered via the circulation, or be locally secreted by cells within the muscle layers. In this study, we identify a source of Mfge8 within human gastric antrum muscles using spatial transcriptomic analysis. We show that Mfge8 is expressed in subpopulations of Mef2c+ perivascular cells within the submucosa layer of the gastric antrum. Mef2c is expressed in subpopulations of NG2+ and PDGFRB+ pericytes. Mfge8 is expressed in NG2+/Mef2c+ pericytes, but not in NG2+/Mef2c-, PDGFRB+/Mef2c-, or PDGFRB+/Mef2c+ pericytes. Mfge8 is absent from CD34+ endothelial cells but is expressed in a small population of perivascular ACTA2+ cells. We also show that α8 integrin is not expressed by interstitial cells of Cajal (ICC), supporting the findings that Mfge8 attenuates gastric antrum smooth muscle contractions by binding to α8β1 integrins on enteric smooth muscle cells. These findings suggest a novel, supplementary mechanism of regulation of gastric antrum motility by cellular regulators of capillary blood flow, in addition to the regulation of gastric antrum motility by the enteric nervous system and the SMC, ICC, and PDGFRα+ cell (SIP) syncytium.
Collapse
Affiliation(s)
- Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States
| | - Justin Malogan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States
| | - Kent C Sasse
- Nevada Surgical Associates, Reno, Nevada, United States
| |
Collapse
|
11
|
Elçi B, Yalçınkaya Z, Tekin E, Bakırcı Ş, Sayan CD, Kısa Ü, Kurdoğlu M, Özkan ZS, Sağsöz N. Could maternal serum MFG-E8 level predict adverse first trimester pregnancy outcome? A preliminary study. Turk J Med Sci 2023; 53:536-543. [PMID: 37476868 PMCID: PMC10388033 DOI: 10.55730/1300-0144.5614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/15/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Milk fat globule-epidermal growth factor 8 (MFG-E8) is expressed in the endometrial epithelium and its expression increases during the implantation process. Due to this knowledge, we aimed to investigate the maternal serum MFG-E8 levels on both healthy pregnant women in the first trimester and pregnant women complicated with missed abortion and threatened abortion in the first trimester. METHODS This prospective, cross-sectional study was conducted in a tertiary referral hospital, department of obstetrics between July 2020 and February 2021 after ethical committee approval. The study population was consisted of 30 healthy pregnant women (HP) in the first trimester, 30 pregnant women suffering from threatened abortion (TA) in the first trimester and 30 pregnant women suffering from missed abortion (MA) in the first trimester. Maternal serum MFG-E8 levels were analyzed with enzyme linked immunosorbent assay. Delivery and neonatal outcomes of the study population was evaluated. The continuous variables were compared among three groups with variance analysis with post hoc tests. The categorical variables were compared with chi-square and Fisher's exact tests where applicable. RESULTS The mean age of the study population was 29.36 ± 5.31 years. There was no significant difference among three groups for parameters of age, body mass index, parity number, and gestational week. Despite being within normal ranges, the mean neutrophil and international normalized ratio values of the three groups showed statistically significant difference (p < 0.05). The mean maternal serum MFG-E8 levels of MA, TA, and HP groups were 270 ± 152.3, 414.7 ± 236.7, and 474 ± 222.5 ng/mL, respectively (p = 0.001). It was found that mean of MFG-E8 of the MA group was statistically significantly lower than those of the other two groups (p < 0.05). DISCUSSION Although maternal serum MFG-E8 level seems to be a parameter that differ between live and nonlive pregnancies, studies with large number of cases are needed to discuss our results and to determine a cut-off value for prediction.
Collapse
Affiliation(s)
- Bircan Elçi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Zeynep Yalçınkaya
- Department of Public Health, Afyonkarahisar State Hospital, Afyonkarahisar, Turkey
| | - Ercan Tekin
- Department of Biochemistry, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Şükrü Bakırcı
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Cemile Dayangan Sayan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Üçler Kısa
- Department of Biochemistry, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Mertihan Kurdoğlu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Zehra Sema Özkan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Nevin Sağsöz
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
12
|
Tian B, Zhang M, Kang X. Strategies to promote tendon-bone healing after anterior cruciate ligament reconstruction: Present and future. Front Bioeng Biotechnol 2023; 11:1104214. [PMID: 36994361 PMCID: PMC10040767 DOI: 10.3389/fbioe.2023.1104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
At present, anterior cruciate ligament (ACL) reconstruction still has a high failure rate. Tendon graft and bone tunnel surface angiogenesis and bony ingrowth are the main physiological processes of tendon-bone healing, and also the main reasons for the postoperative efficacy of ACL reconstruction. Poor tendon-bone healing has been also identified as one of the main causes of unsatisfactory treatment outcomes. The physiological process of tendon-bone healing is complicated because the tendon-bone junction requires the organic fusion of the tendon graft with the bone tissue. The failure of the operation is often caused by tendon dislocation or scar healing. Therefore, it is important to study the possible risk factors for tendon-bone healing and strategies to promote it. This review comprehensively analyzed the risk factors contributing to tendon-bone healing failure after ACL reconstruction. Additionally, we discuss the current strategies used to promote tendon-bone healing following ACL reconstruction.
Collapse
|
13
|
Lozano J, Rai A, Lees JG, Fang H, Claridge B, Lim SY, Greening DW. Scalable Generation of Nanovesicles from Human-Induced Pluripotent Stem Cells for Cardiac Repair. Int J Mol Sci 2022; 23:14334. [PMID: 36430812 PMCID: PMC9696585 DOI: 10.3390/ijms232214334] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) from stem cells have shown significant therapeutic potential to repair injured cardiac tissues and regulate pathological fibrosis. However, scalable generation of stem cells and derived EVs for clinical utility remains a huge technical challenge. Here, we report a rapid size-based extrusion strategy to generate EV-like membranous nanovesicles (NVs) from easily sourced human iPSCs in large quantities (yield 900× natural EVs). NVs isolated using density-gradient separation (buoyant density 1.13 g/mL) are spherical in shape and morphologically intact and readily internalised by human cardiomyocytes, primary cardiac fibroblasts, and endothelial cells. NVs captured the dynamic proteome of parental cells and include pluripotency markers (LIN28A, OCT4) and regulators of cardiac repair processes, including tissue repair (GJA1, HSP20/27/70, HMGB1), wound healing (FLNA, MYH9, ACTC1, ILK), stress response/translation initiation (eIF2S1/S2/S3/B4), hypoxia response (HMOX2, HSP90, GNB1), and extracellular matrix organization (ITGA6, MFGE8, ITGB1). Functionally, NVs significantly promoted tubule formation of endothelial cells (angiogenesis) (p < 0.05) and survival of cardiomyocytes exposed to low oxygen conditions (hypoxia) (p < 0.0001), as well as attenuated TGF-β mediated activation of cardiac fibroblasts (p < 0.0001). Quantitative proteome profiling of target cell proteome following NV treatments revealed upregulation of angiogenic proteins (MFGE8, MYH10, VDAC2) in endothelial cells and pro-survival proteins (CNN2, THBS1, IGF2R) in cardiomyocytes. In contrast, NVs attenuated TGF-β-driven extracellular matrix remodelling capacity in cardiac fibroblasts (ACTN1, COL1A1/2/4A2/12A1, ITGA1/11, THBS1). This study presents a scalable approach to generating functional NVs for cardiac repair.
Collapse
Affiliation(s)
- Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC 3086, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jarmon G. Lees
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Bethany Claridge
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Shiang Y. Lim
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Melbourne, VIC 3010, Australia
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC 3086, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
14
|
Pang C, Peng Z, Li X, Gao Y, Liu X, Wang H, Lu Y, Zhuang Z, Zhang Q, Li W, Hang C. Elevated MFG-E8 in CSF in the Early Stage Indicates Rapid Recovery of Mild Aneurysmal SAH Patients. DISEASE MARKERS 2022; 2022:6731286. [PMID: 36267465 PMCID: PMC9578862 DOI: 10.1155/2022/6731286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
Abstract
Background Aneurysmal subarachnoid hemorrhage (aSAH) can impair blood perfusion in brain tissue and cause adverse effects. Microglia, which are the inherent immune cells of the brain, significantly activate and play a role in phagocytosis, anti-inflammatory, proinflammatory, and damage repair in this process. Milk fat globule epidermal growth factor 8 (MFG-E8) is the bridging molecule of this process and mediates the activation and biological effects of microglia. Methods We obtained cerebrospinal fluid (CSF) from patients with aSAH at various times (the third day, seventh day, and ninth day) as well as from patients in the control cohort. MFG-E8 protein levels in CSF were measured by enzyme-linked immunosorbent assay (ELISA). Meanwhile, we evaluated the GCS and GOS of aSAH patients on admission and on the third day, seventh day, ninth day, and at discharge. Then, we analyzed the association between the levels of MFG-E8 and the changes in GCS and GOS. Results MFG-E8 expression rose in the early stage on the third day and reached equilibrium around day 7 and day 9. The levels of MFG-E8 on the third day were associated with the change in GOS on the seventh day (r = 0.644, p = 0.018) and ninth day (r = 0.572, p = 0.041) compared with admission but were not correlated with the change on day 3 or at discharge. The levels of MFG-E8 were not correlated with any change in GCS. Conclusions We found that aSAH resulted in an upregulation of MFG-E8 in CSF. Moreover, high MFG-E8 levels in the early stage indicated a rapid recovery of mild aSAH patients.
Collapse
Affiliation(s)
- Cong Pang
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Zheng Peng
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Xiaojian Li
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Yongyue Gao
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Xunzhi Liu
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Han Wang
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Yue Lu
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Zong Zhuang
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Qingrong Zhang
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Wei Li
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Chunhua Hang
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, China
| |
Collapse
|
15
|
Tan SY, Jing Q, Leung Z, Xu Y, Cheng LKW, Tam SST, Wu AR. Transcriptomic analysis of 3D vasculature-on-a-chip reveals paracrine factors affecting vasculature growth and maturation. LAB ON A CHIP 2022; 22:3885-3897. [PMID: 36093896 DOI: 10.1039/d2lc00570k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vitro models of vasculature are of great importance for modelling vascular physiology and pathology. However, there is usually a lack of proper spatial patterning of interacting heterotypic cells in conventional vasculature dish models, which might confound results between contact and non-contact interactions. We use a microfluidic platform with structurally defined separation between human microvasculature and fibroblasts to probe their dynamic, paracrine interactions. We also develop a novel, versatile technique to retrieve cells embedded in extracellular matrix from the microfluidic device for downstream transcriptomic analysis, and uncover growth factor and cytokine expression profiles associated with improved vasculature growth. Paired receptor-ligand analysis further reveals paracrine signaling molecules that could be supplemented into the medium for vasculatures models where fibroblast coculture is undesirable or infeasible. These findings also provide deeper insights into the molecular cues for more physiologically relevant vascular mimicry and vascularized organoid model for clinical applications such as drug screening and disease modeling.
Collapse
Affiliation(s)
- Sin Yen Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Qiuyu Jing
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ziuwin Leung
- Department of Electrical and Computer Engineering, Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H3G1M8, Canada
| | - Ying Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Lily Kwan Wai Cheng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Sindy Sing Ting Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Angela Ruohao Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong S.A.R., China
| |
Collapse
|
16
|
Lin CW, Hung CM, Chen WJ, Chen JC, Huang WY, Lu CS, Kuo ML, Chen SG. New Horizons of Macrophage Immunomodulation in the Healing of Diabetic Foot Ulcers. Pharmaceutics 2022; 14:pharmaceutics14102065. [PMID: 36297499 PMCID: PMC9606988 DOI: 10.3390/pharmaceutics14102065] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are one of the most costly and troublesome complications of diabetes mellitus. The wound chronicity of DFUs remains the main challenge in the current and future treatment of this condition. Persistent inflammation results in chronic wounds characterized by dysregulation of immune cells, such as M1 macrophages, and impairs the polarization of M2 macrophages and the subsequent healing process of DFUs. The interactive regulation of M1 and M2 macrophages during DFU healing is critical and seems manageable. This review details how cytokines and signalling pathways are co-ordinately regulated to control the functions of M1 and M2 macrophages in normal wound repair. DFUs are defective in the M1-to-M2 transition, which halts the whole wound-healing machinery. Many pre-clinical and clinical innovative approaches, including the application of topical insulin, CCL chemokines, micro RNAs, stem cells, stem-cell-derived exosomes, skin substitutes, antioxidants, and the most recent Phase III-approved ON101 topical cream, have been shown to modulate the activity of M1 and M2 macrophages in DFUs. ON101, the newest clinically approved product in this setting, is designed specifically to down-regulate M1 macrophages and further modulate the wound microenvironment to favour M2 emergence and expansion. Finally, the recent evolution of macrophage modulation therapies and techniques will improve the effectiveness of the treatment of diverse DFUs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Liang Kuo
- Microbio Co., Ltd., Taipei 115, Taiwan
- Correspondence: (M.-L.K.); or (S.-G.C.); Tel.: +886-2-27031298 (ext. 550) (M.-L.K.); +886-2-27031098 (ext. 551) (S.-G.C.)
| | - Shyi-Gen Chen
- Oneness Biotech Co., Ltd., Taipei 106, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (M.-L.K.); or (S.-G.C.); Tel.: +886-2-27031298 (ext. 550) (M.-L.K.); +886-2-27031098 (ext. 551) (S.-G.C.)
| |
Collapse
|
17
|
Geoffroy K, Laplante P, Clairefond S, Azzi F, Trudel D, Lattouf JB, Stagg J, Saad F, Mes-Masson AM, Bourgeois-Daigneault MC, Cailhier JF. High Levels of MFG-E8 Confer a Good Prognosis in Prostate and Renal Cancer Patients. Cancers (Basel) 2022; 14:cancers14112790. [PMID: 35681775 PMCID: PMC9179566 DOI: 10.3390/cancers14112790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary In the present study, we analyzed the distribution and prognostic impact of milk fat globule-epidermal growth factor-8 (MFG-E8) protein expression in patients with prostate and renal cancers. Our data highlighted MFG-E8 expression by tumor cells in the epithelium. Our results also showed that low levels of MFG-E8 in prostate and renal cancers were associated with worse clinical outcomes. Furthermore, higher numbers of CD206+ cells were found in the peripheral regions of renal clear cell carcinoma that expressed lower MFG-E8 levels. Globally, our results suggest that MFG-E8 expression could potentially be used as a prognostic marker in prostate and renal cancers. Abstract Milk fat globule-epidermal growth factor-8 (MFG-E8) is a glycoprotein secreted by different cell types, including apoptotic cells and activated macrophages. MFG-E8 is highly expressed in a variety of cancers and is classically associated with tumor growth and poor patient prognosis through reprogramming of macrophages into the pro-tumoral/pro-angiogenic M2 phenotype. To date, correlations between levels of MFG-E8 and patient survival in prostate and renal cancers remain unclear. Here, we quantified MFG-E8 and CD68/CD206 expression by immunofluorescence staining in tissue microarrays constructed from renal (n = 190) and prostate (n = 274) cancer patient specimens. Percentages of MFG-E8-positive surface area were assessed in each patient core and Kaplan–Meier analyses were performed accordingly. We found that MFG-E8 was expressed more abundantly in malignant regions of prostate tissue and papillary renal cell carcinoma but was also increased in the normal adjacent regions in clear cell renal carcinoma. In addition, M2 tumor-associated macrophage staining was increased in the normal adjacent tissues compared to the malignant areas in renal cancer patients. Overall, high tissue expression of MFG-E8 was associated with less disease progression and better survival in prostate and renal cancer patients. Our observations provide new insights into tumoral MFG-E8 content and macrophage reprogramming in cancer.
Collapse
Affiliation(s)
- Karen Geoffroy
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
| | - Patrick Laplante
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
| | - Sylvie Clairefond
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
| | - Feryel Azzi
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Division of Pathology and Cellular Biology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Dominique Trudel
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Division of Pathology and Cellular Biology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Baptiste Lattouf
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Division of Urology, Department of Surgery, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - John Stagg
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Faculté de Pharmacie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Fred Saad
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Division of Urology, Department of Surgery, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Anne-Marie Mes-Masson
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Department of Medicine, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Department de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-François Cailhier
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Department of Medicine, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Division of Nephrology, Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Correspondence: ; Tel.: +1-514-890-8000-x25971; Fax: +1-514-412-7938
| |
Collapse
|
18
|
Milk fat-globule epidermal growth factor 8: A potential Regulator of Cutaneous Wound Healing. Mol Biol Rep 2022; 49:8883-8893. [PMID: 35581508 DOI: 10.1007/s11033-022-07365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Destroying the integrity of the skin may causes disability and even death from injury or illness. Wound healing is a core mechanism to maintain skin barrier function. Milk fat-globule epidermal growth factor 8 (MFG-E8) is a key factor in wound healing and is involved in regulating blood coagulation, mediating macrophage uptake of apoptotic cells, shifting macrophages from an inflammatory to an anti-inflammatory phenotype, promoting angiogenesis, enhancing vascular endothelial growth factor (VEGF) signaling, and assisting wound tissue perfusion. However, these abilities are dysregulated in pathological conditions, such as glucose disorders and ischemic injury. Restricted application of exogenous MFG-E8 can restore function and play a beneficial role in cutaneous wound healing.
Collapse
|
19
|
Geng R, Lin Y, Ji M, Chang Q, Li Z, Xu L, Zhang W, Lu J. MFG-E8 promotes tendon-bone healing by regualting macrophage efferocytosis and M2 polarization after anterior cruciate ligament reconstruction. J Orthop Translat 2022; 34:11-21. [PMID: 35615640 PMCID: PMC9109120 DOI: 10.1016/j.jot.2022.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
|
20
|
Kim H, Jang Y, Kim EH, Jang H, Cho H, Han G, Song HK, Kim SH, Yang Y. Potential of Colostrum-Derived Exosomes for Promoting Hair Regeneration Through the Transition From Telogen to Anagen Phase. Front Cell Dev Biol 2022; 10:815205. [PMID: 35359449 PMCID: PMC8960251 DOI: 10.3389/fcell.2022.815205] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Human hair dermal papillary (DP) cells comprising mesenchymal stem cells in hair follicles contribute critically to hair growth and cycle regulation. The transition of hair follicles from telogen to anagen phase is the key to regulating hair growth, which relies heavily on the activation of DP cells. In this paper, we suggested exosomes derived from bovine colostrum (milk exosomes, Milk-exo) as a new effective non-surgical therapy for hair loss. Results showed that Milk-exo promoted the proliferation of hair DP cells and rescued dihydrotestosterone (DHT, androgen hormones)-induced arrest of follicle development. Milk-exo also induced dorsal hair re-growth in mice at the level comparable to minoxidil treatment, without associated adverse effects such as skin rashes. Our data demonstrated that Milk-exo accelerated the hair cycle transition from telogen to anagen phase by activating the Wnt/β-catenin pathway. Interestingly, Milk-exo has been found to stably retain its original properties and efficacy for hair regeneration after freeze-drying and resuspension, which is considered critical to use it as a raw material applied in different types of alopecia medicines and treatments. Overall, this study highlights a great potential of an exosome from colostrum as a therapeutic modality for hair loss.
Collapse
Affiliation(s)
- Hyosuk Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yeongji Jang
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- Department of Life Science, Korea University, Seoul, South Korea
| | - Eun Hye Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- Department of Life Science, Korea University, Seoul, South Korea
| | - Hochung Jang
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio‐Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Haeun Cho
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- Department of Biotechnology, Korea University, Seoul, South Korea
| | - Geonhee Han
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Hyun Kyu Song
- Department of Life Science, Korea University, Seoul, South Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- *Correspondence: Sun Hwa Kim, ; Yoosoo Yang,
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio‐Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
- *Correspondence: Sun Hwa Kim, ; Yoosoo Yang,
| |
Collapse
|
21
|
Yu Q, Qiao GH, Wang M, Yu L, Sun Y, Shi H, Ma TL. Stem Cell-Based Therapy for Diabetic Foot Ulcers. Front Cell Dev Biol 2022; 10:812262. [PMID: 35178389 PMCID: PMC8844366 DOI: 10.3389/fcell.2022.812262] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic foot ulcer has become a worldwide clinical medical challenge as traditional treatments are not effective enough to reduce the amputation rate. Therefore, it is of great social significance to deeply study the pathogenesis and biological characteristics of the diabetic foot, explore new treatment strategies and promote their application. Stem cell-based therapy holds tremendous promise in the field of regenerative medicine, and its mechanisms include promoting angiogenesis, ameliorating neuroischemia and inflammation, and promoting collagen deposition. Studying the specific molecular mechanisms of stem cell therapy for diabetic foot has an important role and practical clinical significance in maximizing the repair properties of stem cells. In addition, effective application modalities are also crucial in order to improve the survival and viability of stem cells at the wound site. In this paper, we reviewed the specific molecular mechanisms of stem cell therapy for diabetic foot and the extended applications of stem cells in recent years, with the aim of contributing to the development of stem cell-based therapy in the repair of diabetic foot ulcers.
Collapse
Affiliation(s)
- Qian Yu
- Department of Hepatology, Songjiang Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Guo-Hong Qiao
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Hui Shi
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tie-Liang Ma
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| |
Collapse
|
22
|
Cabrera JTO, Makino A. Efferocytosis of vascular cells in cardiovascular disease. Pharmacol Ther 2022; 229:107919. [PMID: 34171333 PMCID: PMC8695637 DOI: 10.1016/j.pharmthera.2021.107919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Cell death and the clearance of apoptotic cells are tightly regulated by various signaling molecules in order to maintain physiological tissue function and homeostasis. The phagocytic removal of apoptotic cells is known as the process of efferocytosis, and abnormal efferocytosis is linked to various health complications and diseases, such as cardiovascular disease, inflammatory diseases, and autoimmune diseases. During efferocytosis, phagocytic cells and/or apoptotic cells release signals, such as "find me" and "eat me" signals, to stimulate the phagocytic engulfment of apoptotic cells. Primary phagocytic cells are macrophages and dendritic cells; however, more recently, other neighboring cell types have also been shown to exhibit phagocytic character, including endothelial cells and fibroblasts, although they are comparatively slower in clearing dead cells. In this review, we focus on macrophage efferocytosis of vascular cells, such as endothelial cells, smooth muscle cells, fibroblasts, and pericytes, and its relation to the progression and development of cardiovascular disease. We also highlight the role of efferocytosis-related molecules and their contribution to the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- Jody Tori O Cabrera
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
23
|
Henn D, Chen K, Fehlmann T, Trotsyuk AA, Sivaraj D, Maan ZN, Bonham CA, Barrera JA, Mays CJ, Greco AH, Moortgat Illouz SE, Lin JQ, Steele SR, Foster DS, Padmanabhan J, Momeni A, Nguyen D, Wan DC, Kneser U, Januszyk M, Keller A, Longaker MT, Gurtner GC. Xenogeneic skin transplantation promotes angiogenesis and tissue regeneration through activated Trem2 + macrophages. SCIENCE ADVANCES 2021; 7:eabi4528. [PMID: 34851663 PMCID: PMC8635426 DOI: 10.1126/sciadv.abi4528] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/09/2021] [Indexed: 05/07/2023]
Abstract
Skin allo- and xenotransplantation are the standard treatment for major burns when donor sites for autografts are not available. The relationship between the immune response to foreign grafts and their impact on wound healing has not been fully elucidated. Here, we investigated changes in collagen architecture after xenogeneic implantation of human biologic scaffolds. We show that collagen deposition in response to the implantation of human split-thickness skin grafts (hSTSGs) containing live cells recapitulates normal skin architecture, whereas human acellular dermal matrix (ADM) grafts led to a fibrotic collagen deposition. We show that macrophage differentiation in response to hSTSG implantation is driven toward regenerative Trem2+ subpopulations and found that hydrogel delivery of these cells significantly accelerated wound closure. Our study identifies the preclinical therapeutic potential of Trem2+ macrophages to mitigate fibrosis and promote wound healing, providing a novel effective strategy to develop advanced cell therapies for complex wounds.
Collapse
Affiliation(s)
- Dominic Henn
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Artem A. Trotsyuk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Dharshan Sivaraj
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Zeshaan N. Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Clark A. Bonham
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Janos A. Barrera
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Chyna J. Mays
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Autumn H. Greco
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Sylvia E. Moortgat Illouz
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - John Qian Lin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Sydney R. Steele
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Deshka S. Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Jagannath Padmanabhan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Arash Momeni
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Dung Nguyen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Ulrich Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Geoffrey C. Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
An GH, Lee J, Jin X, Chung J, Kim JC, Park JH, Kim M, Han C, Kim JH, Woo DH. Truncated Milk Fat Globule-EGF-like Factor 8 Ameliorates Liver Fibrosis via Inhibition of Integrin-TGFβ Receptor Interaction. Biomedicines 2021; 9:biomedicines9111529. [PMID: 34829758 PMCID: PMC8615163 DOI: 10.3390/biomedicines9111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) protein is known as an immunomodulator in various diseases, and we previously demonstrated the anti-fibrotic role of MFG-E8 in liver disease. Here, we present a truncated form of MFG-E8 that provides an advanced therapeutic benefit in treating liver fibrosis. The enhanced therapeutic potential of the modified MFG-E8 was demonstrated in various liver fibrosis animal models, and the efficacy was further confirmed in human hepatic stellate cells and a liver spheroid model. In the subsequent analysis, we found that the modified MFG-E8 more efficiently suppressed transforming growth factor β (TGF-β) signaling than the original form of MFG-E8, and it deactivated the proliferation of hepatic stellate cells in the liver disease environment through interfering with the interactions between integrins (αvβ3 & αvβ5) and TGF-βRI. Furthermore, the protein preferentially delivered in the liver after administration, and the safety profiles of the protein were demonstrated in male and female rat models. Therefore, in conclusion, this modified MFG-E8 provides a promising new therapeutic strategy for treating fibrotic diseases.
Collapse
Affiliation(s)
- Geun Ho An
- Department of New Drug Development, NEXEL Co., Ltd., 8th Floor, 55 Magokdong-ro, Gangseo-gu, Seoul 07802, Korea; (G.H.A.); (J.L.); (J.C.); (J.-C.K.); (J.-H.P.); (M.K.); (C.H.)
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Jaehun Lee
- Department of New Drug Development, NEXEL Co., Ltd., 8th Floor, 55 Magokdong-ro, Gangseo-gu, Seoul 07802, Korea; (G.H.A.); (J.L.); (J.C.); (J.-C.K.); (J.-H.P.); (M.K.); (C.H.)
| | - Xiong Jin
- School of Pharmacy, Henan University, Jin Ming Ave, Kaifeng 475004, China;
| | - Jinwoo Chung
- Department of New Drug Development, NEXEL Co., Ltd., 8th Floor, 55 Magokdong-ro, Gangseo-gu, Seoul 07802, Korea; (G.H.A.); (J.L.); (J.C.); (J.-C.K.); (J.-H.P.); (M.K.); (C.H.)
| | - Joon-Chul Kim
- Department of New Drug Development, NEXEL Co., Ltd., 8th Floor, 55 Magokdong-ro, Gangseo-gu, Seoul 07802, Korea; (G.H.A.); (J.L.); (J.C.); (J.-C.K.); (J.-H.P.); (M.K.); (C.H.)
| | - Jung-Hyuck Park
- Department of New Drug Development, NEXEL Co., Ltd., 8th Floor, 55 Magokdong-ro, Gangseo-gu, Seoul 07802, Korea; (G.H.A.); (J.L.); (J.C.); (J.-C.K.); (J.-H.P.); (M.K.); (C.H.)
| | - Minkyung Kim
- Department of New Drug Development, NEXEL Co., Ltd., 8th Floor, 55 Magokdong-ro, Gangseo-gu, Seoul 07802, Korea; (G.H.A.); (J.L.); (J.C.); (J.-C.K.); (J.-H.P.); (M.K.); (C.H.)
| | - Choongseong Han
- Department of New Drug Development, NEXEL Co., Ltd., 8th Floor, 55 Magokdong-ro, Gangseo-gu, Seoul 07802, Korea; (G.H.A.); (J.L.); (J.C.); (J.-C.K.); (J.-H.P.); (M.K.); (C.H.)
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
- Correspondence: (J.-H.K.); (D.-H.W.)
| | - Dong-Hun Woo
- Department of New Drug Development, NEXEL Co., Ltd., 8th Floor, 55 Magokdong-ro, Gangseo-gu, Seoul 07802, Korea; (G.H.A.); (J.L.); (J.C.); (J.-C.K.); (J.-H.P.); (M.K.); (C.H.)
- Correspondence: (J.-H.K.); (D.-H.W.)
| |
Collapse
|
25
|
Marazuela P, Solé M, Bonaterra-Pastra A, Pizarro J, Camacho J, Martínez-Sáez E, Kuiperij HB, Verbeek MM, de Kort AM, Schreuder FHBM, Klijn CJM, Castillo-Ribelles L, Pancorbo O, Rodríguez-Luna D, Pujadas F, Delgado P, Hernández-Guillamon M. MFG-E8 (LACTADHERIN): a novel marker associated with cerebral amyloid angiopathy. Acta Neuropathol Commun 2021; 9:154. [PMID: 34530925 PMCID: PMC8444498 DOI: 10.1186/s40478-021-01257-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023] Open
Abstract
Brain accumulation of amyloid-beta (Aβ) is a crucial feature in Alzheimer´s disease (AD) and cerebral amyloid angiopathy (CAA), although the pathophysiological relationship between these diseases remains unclear. Numerous proteins are associated with Aβ deposited in parenchymal plaques and/or cerebral vessels. We hypothesized that the study of these proteins would increase our understanding of the overlap and biological differences between these two pathologies and may yield new diagnostic tools and specific therapeutic targets. We used a laser capture microdissection approach combined with mass spectrometry in the APP23 transgenic mouse model of cerebral-β-amyloidosis to specifically identify vascular Aβ-associated proteins. We focused on one of the main proteins detected in the Aβ-affected cerebrovasculature: MFG-E8 (milk fat globule-EGF factor 8), also known as lactadherin. We first validated the presence of MFG-E8 in mouse and human brains. Immunofluorescence and immunoblotting studies revealed that MFG-E8 brain levels were higher in APP23 mice than in WT mice. Furthermore, MFG-E8 was strongly detected in Aβ-positive vessels in human postmortem CAA brains, whereas MFG-E8 was not present in parenchymal Aβ deposits. Levels of MFG-E8 were additionally analysed in serum and cerebrospinal fluid (CSF) from patients diagnosed with CAA, patients with AD and control subjects. Whereas no differences were found in MFG-E8 serum levels between groups, MFG-E8 concentration was significantly lower in the CSF of CAA patients compared to controls and AD patients. Finally, in human vascular smooth muscle cells MFG-E8 was protective against the toxic effects of the treatment with the Aβ40 peptide containing the Dutch mutation. In summary, our study shows that MFG-E8 is highly associated with CAA pathology and highlights MFG-E8 as a new CSF biomarker that could potentially be used to differentiate cerebrovascular Aβ pathology from parenchymal Aβ deposition.
Collapse
Affiliation(s)
- Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jesús Pizarro
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jessica Camacho
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Sáez
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna M de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Castillo-Ribelles
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olalla Pancorbo
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - David Rodríguez-Luna
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francesc Pujadas
- Neurology Department, Dementia Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
26
|
Zhu Y, Ferri-Borgogno S, Sheng J, Yeung TL, Burks JK, Cappello P, Jazaeri AA, Kim JH, Han GH, Birrer MJ, Mok SC, Wong STC. SIO: A Spatioimageomics Pipeline to Identify Prognostic Biomarkers Associated with the Ovarian Tumor Microenvironment. Cancers (Basel) 2021; 13:1777. [PMID: 33917869 PMCID: PMC8068305 DOI: 10.3390/cancers13081777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/02/2023] Open
Abstract
Stromal and immune cells in the tumor microenvironment (TME) have been shown to directly affect high-grade serous ovarian cancer (HGSC) malignant phenotypes, however, how these cells interact to influence HGSC patients' survival remains largely unknown. To investigate the cell-cell communication in such a complex TME, we developed a SpatioImageOmics (SIO) pipeline that combines imaging mass cytometry (IMC), location-specific transcriptomics, and deep learning to identify the distribution of various stromal, tumor and immune cells as well as their spatial relationship in TME. The SIO pipeline automatically and accurately segments cells and extracts salient cellular features to identify biomarkers, and multiple nearest-neighbor interactions among tumor, immune, and stromal cells that coordinate to influence overall survival rates in HGSC patients. In addition, SIO integrates IMC data with microdissected tumor and stromal transcriptomes from the same patients to identify novel signaling networks, which would lead to the discovery of novel survival rate-modulating mechanisms in HGSC patients.
Collapse
Affiliation(s)
- Ying Zhu
- Center for Modeling Cancer Development, Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA; (Y.Z.); (J.S.)
- Departments of Pathology and Laboratory Medicine and Radiology, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Sammy Ferri-Borgogno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.F.-B.); (T.-L.Y.); (A.A.J.)
| | - Jianting Sheng
- Center for Modeling Cancer Development, Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA; (Y.Z.); (J.S.)
- Departments of Pathology and Laboratory Medicine and Radiology, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.F.-B.); (T.-L.Y.); (A.A.J.)
| | - Jared K. Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy;
| | - Amir A. Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.F.-B.); (T.-L.Y.); (A.A.J.)
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.-H.K.); (G.H.H.)
| | - Gwan Hee Han
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.-H.K.); (G.H.H.)
| | - Michael J. Birrer
- Winthrop P. Rockefeller Cancer Institute, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Samuel C. Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.F.-B.); (T.-L.Y.); (A.A.J.)
| | - Stephen T. C. Wong
- Center for Modeling Cancer Development, Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA; (Y.Z.); (J.S.)
- Departments of Pathology and Laboratory Medicine and Radiology, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| |
Collapse
|
27
|
Bu HF, Subramanian S, Geng H, Wang X, Liu F, Chou PM, Du C, De Plaen IG, Tan XD. MFG-E8 Plays an Important Role in Attenuating Cerulein-Induced Acute Pancreatitis in Mice. Cells 2021; 10:728. [PMID: 33806041 PMCID: PMC8064467 DOI: 10.3390/cells10040728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) is a secreted glycoprotein that regulates tissue homeostasis, possesses potent anti-inflammatory properties, and protects against tissue injury. The human pancreas expresses MFG-E8; however, the role of MFG-E8 in the pancreas remains unclear. We examined the expression of MFG-E8 in the pancreas at baseline and during cerulein-induced acute pancreatitis in mice and determined whether MFG-E8 attenuates the progression of pancreatitis, a serious inflammatory condition that can be life-threatening. We administered cerulein to wild-type (WT) and Mfge8 knockout (KO) mice to induce pancreatitis. Immunoblot analysis showed that MFG-E8 is constitutively expressed in the murine pancreas and is increased in mice with cerulein-induced acute pancreatitis. In situ hybridization revealed that ductal epithelial cells in the mouse pancreas express Mfge8 transcripts at baseline. During pancreatitis, Mfge8 transcripts were abundantly expressed in acinar cells and endothelial cells in addition to ductal epithelial cells. Knocking out Mfge8 in mice exacerbated the severity of cerulein-induced acute pancreatitis and delayed its resolution. In contrast, administration of recombinant MFG-E8 attenuated cerulein-induced acute pancreatitis and promoted repair of pancreatic injury in Mfge8 KO mice. Taken together, our study suggests that MFG-E8 protects the pancreas against inflammatory injury and promotes pancreatic tissue repair. MFG-E8 may represent a novel therapeutic target in acute pancreatitis.
Collapse
Affiliation(s)
- Heng-Fu Bu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Saravanan Subramanian
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hua Geng
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Xiao Wang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Fangyi Liu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Pauline M. Chou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Chao Du
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Isabelle G. De Plaen
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Xiao-Di Tan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Research & Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Huang W, Jiao J, Liu J, Huang M, Hu Y, Ran W, Yan L, Xiong Y, Li M, Quan Z, Rao Y, Chen J, Huang Y, Zhang D. MFG-E8 accelerates wound healing in diabetes by regulating "NLRP3 inflammasome-neutrophil extracellular traps" axis. Cell Death Discov 2020; 6:84. [PMID: 32963812 PMCID: PMC7484765 DOI: 10.1038/s41420-020-00318-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Sustained activation of NLRP3 inflammasome and release of neutrophil extracellular traps (NETs) impair wound healing of diabetic foot ulcers (DFUs). Our previous study reported that milk fat globule epidermal growth factor VIII (MFG-E8) attenuates tissue damage in systemic lupus erythematosus. However, the functional effect of MFG-E8 on "NLRP3 inflammasome-NETs" inflammatory loop in wound healing of diabetes is not completely elucidated. In this study, neutrophils from DFU patients are susceptible to undergo NETosis, releasing more NETs. The circulating levels of NET components neutrophil elastase and proteinase 3 and inflammatory cytokines IL-1β and IL-18 were significantly elevated in DFU patients compared with healthy controls or diabetic patients, in spite of higher levels of MFG-E8 in DFU patients. In Mfge8-/- diabetic mice, skin wound displayed exaggerated inflammatory response, including leukocyte infiltration, excessive activation of NLRP3 inflammasome (release of higher IL-1β, IL-18, and TNF-α), largely lodged NETs, resulting in poor angiogenesis and wound closure. When stimulated with high-dose glucose or IL-18, MFG-E8-deficient neutrophils release more NETs than WT neutrophils. After administration of recombinant MFG-E8, IL-18-primed NETosis of WT or Mfge8-/- neutrophils was significantly inhibited. Furthermore, NET and mCRAMP (component of NETs, the murine equivalent of cathelicidin LL-37 in human)-mediated activation of NLRP3 inflammasome and production of IL-1β/IL-18 were significantly elevated in Mfge8-/- macrophages compared with WT macrophages, which were also significantly dampened by the administration of rmMFG-E8. Therefore, our study demonstrated that as inhibitor of the "NLRP3 inflammasome-NETs" inflammatory loop, exogenous rMFG-E8 improves angiogenesis and accelerates wound healing, highlighting possible therapeutic potential for DFUs.
Collapse
Affiliation(s)
- Wei Huang
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Jinyu Jiao
- Department of Cardiac Function, Wuhan Asian Heart Hospital, Wuhan University of Science and Technology, Wuhan, Hubei China
| | - Ju Liu
- Department of Geriatrics, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Meng Huang
- Department of Dermatology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Yanyan Hu
- Department of Dermatology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wenzhuo Ran
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Li Yan
- Clinical Laboratory of Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yin Xiong
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Mei Li
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Ziyao Quan
- Clinical Laboratory of Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yahua Rao
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Jiayi Chen
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Yan Huang
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Dongxin Zhang
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|
29
|
Iglesias-Bartolome R, Uchiyama A, Molinolo AA, Abusleme L, Brooks SR, Callejas-Valera JL, Edwards D, Doci C, Asselin-Labat ML, Onaitis MW, Moutsopoulos NM, Gutkind JS, Morasso MI. Transcriptional signature primes human oral mucosa for rapid wound healing. Sci Transl Med 2019; 10:10/451/eaap8798. [PMID: 30045979 DOI: 10.1126/scitranslmed.aap8798] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/13/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Oral mucosal wound healing has long been regarded as an ideal system of wound resolution. However, the intrinsic characteristics that mediate optimal healing at mucosal surfaces are poorly understood, particularly in humans. We present a unique comparative analysis between human oral and cutaneous wound healing using paired and sequential biopsies during the repair process. Using molecular profiling, we determined that wound-activated transcriptional networks are present at basal state in the oral mucosa, priming the epithelium for wound repair. We show that oral mucosal wound-related networks control epithelial cell differentiation and regulate inflammatory responses, highlighting fundamental global mechanisms of repair and inflammatory responses in humans. The paired comparative analysis allowed for the identification of differentially expressed SOX2 (sex-determining region Y-box 2) and PITX1 (paired-like homeodomain 1) transcriptional regulators in oral versus skin keratinocytes, conferring a unique identity to oral keratinocytes. We show that SOX2 and PITX1 transcriptional function has the potential to reprogram skin keratinocytes to increase cell migration and improve wound resolution in vivo. Our data provide insights into therapeutic targeting of chronic and nonhealing wounds based on greater understanding of the biology of healing in human mucosal and cutaneous environments.
Collapse
Affiliation(s)
- Ramiro Iglesias-Bartolome
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.,Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Akihiko Uchiyama
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Loreto Abusleme
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Juan Luis Callejas-Valera
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dean Edwards
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Colleen Doci
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | | | - Mark W Onaitis
- Moores Cancer Center, University California, San Diego, La Jolla, CA 92093, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - J S Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA. .,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Fujiwara C, Motegi SI, Ohira A, Yamaguchi S, Sekiguchi A, Yasuda M, Nakamura H, Makiguchi T, Yokoo S, Hoshina D, Abe R, Takahashi K, Ishikawa O. The significance of tumor cells-derived MFG-E8 in tumor growth of angiosarcoma. J Dermatol Sci 2019; 96:18-25. [PMID: 31447183 DOI: 10.1016/j.jdermsci.2019.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Previous studies have indicated that MFG-E8 enhances tumor cell survival, invasion and angiogenesis. However, the role of MFG-E8 in angiosarcoma (AS) has not been clarified. OBJECTIVE Objective was to elucidate the mechanism of the regulation by MFG-E8 in AS and the association between MFG-E8 and clinicopathological features of AS. METHODS The effects of the depletion of MFG-E8 by siRNA on tube formation, migration and proliferation in murine AS cells were examined. The effect of administration of anti-MFG-E8 antibody (Ab) on tumor growth of AS in mice was examined. The associations of MFG-E8 expression and clinicopathological features of human AS were assessed. RESULTS The expressions of MFG-E8 in murine and human AS cells were significantly higher than those in melanoma cells, macrophages and endothelial cells. Depletion of MFG-E8 in murine AS cells by siRNA significantly inhibited the formation of capillary-like structures and migration, but not proliferation. Administration of anti-MFG-E8 Ab significantly inhibited tumor growth and decreased the number of tumor-associated macrophages (TAMs) in AS tumors. Tumor size and the number of TAMs in human AS with high expression of MFG-E8 were significantly increased compared to those of AS with low expression of MFG-E8. Progression-free survival and overall survival time of the patients of AS with high expression of MFG-E8 were significantly shorter than those of AS with low expression of MFG-E8. CONCLUSIONS AS-derived MFG-E8 might enhance tumor growth via angiogenesis and the induction of TAMs in autocrine/paracrine manner, and administration of anti-MFG-E8 Ab could be a therapeutic potential for AS.
Collapse
Affiliation(s)
- Chisako Fujiwara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Aoi Ohira
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Sayaka Yamaguchi
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahito Yasuda
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideharu Nakamura
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takaya Makiguchi
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Satoshi Yokoo
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Daichi Hoshina
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Riichiro Abe
- Niigata University Graduate School of Medicine and Dental Science, Division of Dermatology, Niigata, Japan
| | - Kenzo Takahashi
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
31
|
Shi Z, Zhang Y, Wang Q, Jiang D. MFG‐E8 regulates inflammation and apoptosis in tendon healing, and promotes tendon repair: A histological and biochemical evaluation. IUBMB Life 2019; 71:1986-1993. [DOI: 10.1002/iub.2143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Zhengzhou Shi
- Department of Urology, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Youbo Zhang
- Department of Pediatric SurgeryNantong Maternal and Child Health Hospital Nantong Jiangsu China
| | - Qi Wang
- Department of Urology, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Dapeng Jiang
- Department of Urology, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
32
|
Wang X, Wang J, Shi X, Pan C, Liu H, Dong Y, Dong R, Mang J, Xu Z. Proteomic analyses identify a potential mechanism by which extracellular vesicles aggravate ischemic stroke. Life Sci 2019; 231:116527. [DOI: 10.1016/j.lfs.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 06/01/2019] [Indexed: 12/18/2022]
|
33
|
Okamoto A, Sakakura K, Takahashi H, Motegi SI, Kaira K, Yokobori-Kuwabara Y, Ishikawa O, Chikamatsu K. Immunological and Clinicopathological Significance of MFG-E8 Expression in Patients with Oral Squamous Cell Carcinoma. Pathol Oncol Res 2019; 26:1263-1268. [PMID: 31256324 DOI: 10.1007/s12253-019-00692-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022]
Abstract
Milk fat globule-epidermal growth factor 8 (MFG-E8) is a glycoprotein secreted by the activated macrophages and acts as a bridge between apoptotic cells and phagocytes. Aside from macrophages, a variety of malignant cells also express MFG-E8. The objective of this study is to elucidate the clinical relevance and significance of MFG-E8 in the tumor microenvironment (TME) of patients with oral squamous cell carcinoma (OSCC). We investigated MFG-E8 expression in 74 patients with OSCC by immunohistochemistry and evaluated the relationship between MFG-E8 expression and various clinicopathological factors including immune cell infiltration. MFG-E8 expression was detected in 34 of 74 (45.9%) patients with OSCC and a significant correlation was observed with levels of infiltrating T cells, macrophages, and immunosuppressive M2 macrophages. Furthermore, MFG-E8 expression was also associated with clinical stage, lymphatic/vascular invasion, and Ki-67+ tumor cells but not with survival. Our results suggest that MFG-E8 may play an important role in shaping the immune suppressive network in TME as well as tumor progression.
Collapse
Affiliation(s)
- Ayako Okamoto
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 3718511, Japan
| | - Koichi Sakakura
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 3718511, Japan
| | - Hideyuki Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 3718511, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuki Yokobori-Kuwabara
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 3718511, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 3718511, Japan.
| |
Collapse
|
34
|
Cheyuo C, Aziz M, Wang P. Neurogenesis in Neurodegenerative Diseases: Role of MFG-E8. Front Neurosci 2019; 13:569. [PMID: 31213977 PMCID: PMC6558065 DOI: 10.3389/fnins.2019.00569] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are devastating medical conditions with no effective treatments. Restoration of impaired neurogenesis represents a promising therapeutic strategy for neurodegenerative diseases. Milk fat globule-epidermal growth factor-factor VIII (MFG-E8) is a secretory glycoprotein that plays a wide range of cellular functions including phagocytosis of apoptotic cells, anti-inflammation, tissue regeneration, and homeostasis. The beneficial role of MFG-E8 has been shown in cerebral ischemia (stroke), neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease, and traumatic brain injury. In stroke, MFG-E8 promotes neural stem cell proliferation and their migration toward the ischemic brain tissues. These novel functions of MFG-E8 are primarily mediated through its receptor αvβ3-integrin. Here, we focus on the pivotal role of MFG-E8 in protecting against neuronal diseases by promoting neurogenesis. We also discuss the mechanisms of MFG-E8-mediated neural stem/progenitor cell (NSPC) proliferation and migration, and the potential of MFG-E8 for neural stem cell niche maintenance via angiogenesis. We propose further investigation of the molecular pathways for MFG-E8 signaling in NSPC and effective strategies for MFG-E8 delivery across the blood–brain barrier, which will help develop MFG-E8 as a future drug candidate for the bedside management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Cletus Cheyuo
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
35
|
McCoy AM, Arrington J, Yau PM. Effect of Preparation Method on the Protein Profile of Equine Amnion Dressings. J Proteome Res 2019; 18:2676-2685. [PMID: 31117638 DOI: 10.1021/acs.jproteome.9b00240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The protein content of amnion is thought to be the primary contributor to its efficacy as a biological dressing for wounds. Protein elution into antibiotic processing media has been reported, but the effect of antiseptic-based processing methods is unknown. Amniotic membranes were collected from eight healthy mares. Samples were collected after removal of gross debris. Tissues were subsequently divided and processed with either 0.05% chlorhexidine or 2% iodine/0.25% acetic acid. After protein extraction and trypsin digestion, the proteins were labeled with 8-plex iTRAQ tags, combined, and analyzed by high-resolution liquid chromatography-mass spectrometry. The MaxQuant-Perseus software suite was used to identify and quantify sample proteins, with functional annotation performed in PANTHER. There were 220 unique proteins identified, of which 144 were found in all individuals and across all conditions, several with a known role in wound healing. Contrary to expectations, processing did not significantly alter the protein content of the amnion tissue. Limitations include the small sample size and single time point. These results suggest that either processing method is acceptable for use in the preparation of equine amnion dressings. The role of expressed proteins in the biological activity of amnion dressings remains to be elucidated.
Collapse
Affiliation(s)
- Annette M McCoy
- Department of Veterinary Clinical Medicine , University of Illinois Urbana-Champaign , 1008 West Hazelwood Drive , Urbana , Illinois 61802 , United States
| | - Justine Arrington
- Protein Sciences Facility, Roy J. Carver Biotechnology Center , University of Illinois Urbana-Champaign , 505 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Peter M Yau
- Protein Sciences Facility, Roy J. Carver Biotechnology Center , University of Illinois Urbana-Champaign , 505 South Matthews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
36
|
Yavuz MC, Pekbağriyanik T, Sağlam M, Köseoğlu S. Evaluation of milk fat globule-epidermal growth factor-factor VIII and IL-1β levels in gingival crevicular fluid and saliva in periodontal disease and health. Odontology 2019; 107:449-456. [PMID: 30903320 DOI: 10.1007/s10266-019-00419-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
The aim of this study is to determine the levels of MFG-E8 and interleukin (IL)-1β in saliva and gingival crevicular fluid (GCF) associated with periodontal health and disease. Whole saliva and GCF samples were obtained from systemically healthy participants who were either periodontally healthy (n = 24) or suffered from gingivitis (n = 25) or chronic periodontitis (n = 25). Full-mouth clinical periodontal measurements, including bleeding on probing, probing depth, gingival index, plaque index, and clinical attachment level were also recorded. Enzyme-linked immunosorbent assay was used to estimate MFG-E8 and IL-1β levels in the samples. Analysis of variance, Kruskal-Wallis tests, and Pearson correlation tests were used to analyse the data statistically. The total level of MFG-E8 in GCF was significantly higher in the healthy group than in the other two groups (P = 0.01). Salivary MFG-E8 levels did not differ significantly among the groups. There were negative correlations between the level of MFG-E8 in GCF and probing depth (P = 0.03), bleeding on probing (P = 0.001), plaque index (P = 0.003), and gingival index (P = 0.003). The total level of IL-1β in GCF was significantly lower in the healthy group than in the groups with gingivitis and chronic periodontitis (P < 0.001). Salivary IL-1β levels showed significant differences across all three groups (P < 0.001). The level of MFG-E8 in GCF was higher in the healthy group than in the periodontal disease groups. Furthermore, there was no difference between gingivitis and periodontitis groups. The relationship between MFG-E8 and periodontal status should be further investigated.
Collapse
Affiliation(s)
- Mustafa Cihan Yavuz
- Department of Periodontology, Faculty of Dentistry, Istanbul Medeniyet University, 34100, Istanbul, Turkey.
| | | | - Mehmet Sağlam
- Department of Periodontology, Faculty of Dentistry, Izmir Katip Çelebi University, Izmir, Turkey
| | - Serhat Köseoğlu
- Department of Periodontology, Faculty of Dentistry, University of Health Science, Istanbul, Turkey
| |
Collapse
|
37
|
Uchiyama A, Nayak S, Graf R, Cross M, Hasneen K, Gutkind JS, Brooks SR, Morasso MI. SOX2 Epidermal Overexpression Promotes Cutaneous Wound Healing via Activation of EGFR/MEK/ERK Signaling Mediated by EGFR Ligands. J Invest Dermatol 2019; 139:1809-1820.e8. [PMID: 30772301 DOI: 10.1016/j.jid.2019.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/09/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
Abstract
Oral mucosa contains a unique transcriptional network that primes oral wounds for rapid resolution in humans. Our previous work identified genes that were consistently upregulated in the oral mucosa and demonstrated that induction of one of the identified genes, transcription factor SOX2, promoted cutaneous wound healing in mice. In this study, we investigated the molecular and cellular mechanisms by which SOX2 accelerates wound healing in skin. RNA-sequencing analysis showed that SOX2 induced a proliferative and wound-activated phenotype in skin keratinocytes prior to wounding. During wound healing, SOX2 induced proliferation of epithelial and connective tissue cells and promoted angiogenesis. Chromatin immunoprecipitation assay revealed that SOX2 directly regulates expression of EGFR ligands, resulting in activation of EGFR. In vitro, skin keratinocytes overexpressing SOX2 promoted cell migration via the EGFR/MEK/ERK pathway. We conclude that induction of SOX2 in skin keratinocytes accelerates cutaneous wound healing by promoting keratinocyte migration and proliferation, and enhancement of angiogenesis via upregulation of EGFR ligands and activation of EGFR/MEK/ERK pathway. Through the identification of putative cutaneous SOX2 targets, such as HBEGF, this study opens venues to determine clinical targets for treatment of skin wounds.
Collapse
Affiliation(s)
- Akihiko Uchiyama
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Subhashree Nayak
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Rose Graf
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Michael Cross
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Kowser Hasneen
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA.
| |
Collapse
|
38
|
Fujiwara C, Uehara A, Sekiguchi A, Uchiyama A, Yamazaki S, Ogino S, Yokoyama Y, Torii R, Hosoi M, Suto C, Tsunekawa K, Murakami M, Ishikawa O, Motegi S. Suppressive Regulation by MFG‐E8 of Latent Transforming Growth Factor β–Induced Fibrosis via Binding to αv Integrin: Significance in the Pathogenesis of Fibrosis in Systemic Sclerosis. Arthritis Rheumatol 2019; 71:302-314. [DOI: 10.1002/art.40701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Akihito Uehara
- Gunma University Graduate School of Medicine Maebashi Japan
| | | | | | | | - Sachiko Ogino
- Gunma University Graduate School of Medicine Maebashi Japan
| | - Yoko Yokoyama
- Gunma University Graduate School of Medicine Maebashi Japan
| | - Ryoko Torii
- Gunma University Graduate School of Medicine Maebashi Japan
| | - Mari Hosoi
- Gunma University Graduate School of Medicine Maebashi Japan
| | - Chiaki Suto
- Gunma University Graduate School of Medicine Maebashi Japan
| | | | | | - Osamu Ishikawa
- Gunma University Graduate School of Medicine Maebashi Japan
| | | |
Collapse
|
39
|
Morikawa S, Iribar H, Gutiérrez-Rivera A, Ezaki T, Izeta A. Pericytes in Cutaneous Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:1-63. [DOI: 10.1007/978-3-030-16908-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Samal R, Sappa PK, Gesell Salazar M, Wenzel K, Reinke Y, Völker U, Felix SB, Hammer E, Könemann S. Global secretome analysis of resident cardiac progenitor cells from wild-type and transgenic heart failure mice: Why ambience matters. J Cell Physiol 2018; 234:10111-10122. [PMID: 30575044 DOI: 10.1002/jcp.27677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/04/2018] [Indexed: 01/08/2023]
Abstract
Resident cardiac progenitor cells (CPCs) have gained attention in cardiac regenerative medicine primarily due to their paracrine activity. In our current study we determined the role of pathological conditions such as heart failure on the autocrine-paracrine action of stem cell antigen-1 (Sca-1) expressing CPC. This comparative secretome profiling of Sca-1+ cells derived from transgenic heart failure (αMHC-cyclin-T1/Gαq overexpression [Cyc] cells) versus healthy (wild-type [Wt] cells) mice, achieved via mass-spectrometric quantification, enabled the identification of over 700 proteins. Our results demonstrate that the heart failure milieu caused a 2-fold enrichment of extracellular matrix proteins (ECM) like biglycan, versican, collagen XII, and angiogenic factors like heparan sulfate proteoglycan 2, plasminogen activator inhibitor 1 in the secretome. We further elucidated the direct influence of the secretome on the functional behavior of Sca-1 + cells via in vitro tube forming assay. Secreted factors present in the diseased milieu induced tube formation in Cyc cells (1.7-fold; p < 0.01) when compared with Wt cells after 24 hr of exposure. The presence of conditioned media moderately increased the proliferation of Cyc cells but had a more pronounced effect on Wt cells. Overall, these findings revealed global modifications in the secretory activity of adult Sca-1 + cells in the heart failure milieu. The secretion of ECM proteins and angiogenic factors, which are crucial for cardiac remodeling and recovery, was notably enriched in the supernatant of Cyc cells. Thus, during heart failure the microenvironment of Sca-1 + cells might favor angiogenesis and proliferation suggesting their potential to recover the damaged heart.
Collapse
Affiliation(s)
- Rasmita Samal
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Praveen Kumar Sappa
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Department of Hematology and Oncology, Internal Medicine C, University Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Kristin Wenzel
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Yvonne Reinke
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Stephan Burkhard Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Stephanie Könemann
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| |
Collapse
|
41
|
Nahar S, Nakashima Y, Miyagi-Shiohira C, Kinjo T, Toyoda Z, Kobayashi N, Saitoh I, Watanabe M, Noguchi H, Fujita J. Cytokines in adipose-derived mesenchymal stem cells promote the healing of liver disease. World J Stem Cells 2018; 10:146-159. [PMID: 30631390 PMCID: PMC6325075 DOI: 10.4252/wjsc.v10.i11.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are a treatment cell source for patients with chronic liver injury. ADSCs are characterized by being harvested from the patient's own subcutaneous adipose tissue, a high cell yield (i.e., reduced immune rejection response), accumulation at a disease nidus, suppression of excessive immune response, production of various growth factors and cytokines, angiogenic effects, anti-apoptotic effects, and control of immune cells via cell-cell interaction. We previously showed that conditioned medium of ADSCs promoted hepatocyte proliferation and improved the liver function in a mouse model of acute liver failure. Furthermore, as found by many other groups, the administration of ADSCs improved liver tissue fibrosis in a mouse model of liver cirrhosis. A comprehensive protein expression analysis by liquid chromatography with tandem mass spectrometry showed that the various cytokines and chemokines produced by ADSCs promote the healing of liver disease. In this review, we examine the ability of expressed protein components of ADSCs to promote healing in cell therapy for liver disease. Previous studies demonstrated that ADSCs are a treatment cell source for patients with chronic liver injury. This review describes the various cytokines and chemokines produced by ADSCs that promote the healing of liver disease.
Collapse
Affiliation(s)
- Saifun Nahar
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Takao Kinjo
- Department of Basic Laboratory Sciences, School of Health Sciences in the Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Zensei Toyoda
- Department of Basic Laboratory Sciences, School of Health Sciences in the Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | | | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Masami Watanabe
- Department of Urology, Okayama Univer sity Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| | - Jiro Fujita
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
42
|
Targeting Pericytes to Improve Wound Healing Outcomes. CURRENT PATHOBIOLOGY REPORTS 2018. [DOI: 10.1007/s40139-018-0168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Michalski MN, Seydel AL, Siismets EM, Zweifler LE, Koh AJ, Sinder BP, Aguirre JI, Atabai K, Roca H, McCauley LK. Inflammatory bone loss associated with MFG-E8 deficiency is rescued by teriparatide. FASEB J 2018; 32:3730-3741. [PMID: 29475373 DOI: 10.1096/fj.201701238r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A prolonged increase in proinflammatory cytokines is associated with osteoporotic and autoimmune bone loss and, conversely, anti-inflammatory pathways are associated with protection against bone loss. Milk fat globule-epidermal growth factor (MFG-E)-8 is a glycoprotein that is proresolving, regulates apoptotic cell clearance, and has been linked to autoimmune disease and skeletal homeostasis. The role of MFG-E8 in the young vs. adult skeleton was determined in mice deficient in MFG-E8 (KO). In vivo, trabecular bone was similar in MFG-E8KO and wild-type (WT) mice at 6 and 16 wk, whereas 22 wk adult MFG-E8KO mice displayed significantly reduced trabecular BV/TV. The number of osteoclasts per bone surface was increased in 22-wk MFG-E8 KO vs. WT mice, and recombinant murine MFG-E8 decreased the number and size of osteoclasts in vitro. Adult MFG-E8KO spleen weight:body weight was increased compared with WT, and flow cytometric analysis showed significantly increased myeloid-derived suppressor cells (CD11bhiGR-1+) and neutrophils (CD11bhiLy6G+) in MFG-E8KO bone marrow, suggesting an inflammatory phenotype. PTH-treated MFG-E8KO mice showed a greater anabolic response (+124% BV/TV) than observed in PTH-treated WT mice (+64% BV/TV). These data give insight into the role of MFG-E8 in the adult skeleton and suggest that anabolic PTH may be a valuable therapeutic approach for autoimmune-associated skeletal disease.-Michalski, M. N., Seydel, A. L., Siismets, E. M., Zweifler, L. E., Koh, A. J., Sinder, B. P., Aguirre, J. I., Atabai, K., Roca, H., McCauley, L. K. Inflammatory bone loss associated with MFG-E8 deficiency is rescued by teriparatide.
Collapse
Affiliation(s)
- Megan N Michalski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Anna L Seydel
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Erica M Siismets
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Laura E Zweifler
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Benjamin P Sinder
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - J Ignacio Aguirre
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kamran Atabai
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA; and
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
44
|
Barua S, Macedo A, Kolb DS, Wynne-Edwards KE, Klein C. Milk-fat globule epidermal growth factor 8 (MFGE8) is expressed at the embryo– and fetal–maternal interface in equine pregnancy. Reprod Fertil Dev 2018; 30:585-590. [DOI: 10.1071/rd17094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/14/2017] [Indexed: 01/18/2023] Open
Abstract
Milk-fat globule epidermal growth factor (EGF) 8 protein (MFGE8), also known as lactadherin, promotes cell adhesion in an Arg-Gly-Asp (RGD)-dependent modus via integrins. In the present study, the expression of MFGE8 was examined in equine endometrium during oestrus and at Days 12 and 16 after ovulation in pregnant and non-pregnant mares and in mares during the 5th month of gestation. Results demonstrated that MFGE8 is expressed at the embryo– and fetal–maternal interface in equine pregnancy. In non-pregnant endometrium its expression was upregulated by oestrogen, a finding that was confirmed using endometrial explant culture. MFGE8 was expressed at similar levels by conceptuses collected 13 and 14 days after ovulation and by allantochorion sampled during the 5th month of gestation. Pericytes of endometrial blood vessels displayed strong MFGE8 expression upon in situ hybridisation. During the 5th month of gestation, the fetal side of the allantochorionic villi in particular displayed pronounced staining upon in situ hybridisation, confirming that MFGE8 expression is not restricted to early pregnancy but persists and is present at the fetal–maternal interface. Potential roles of MFGE8 in equine pregnancy include mediating cell–cell adhesion, promotion of angiogenesis and placental transfer of fatty acids.
Collapse
|
45
|
Kamińska A, Enguita FJ, Stępień EŁ. Lactadherin: An unappreciated haemostasis regulator and potential therapeutic agent. Vascul Pharmacol 2017; 101:21-28. [PMID: 29169950 DOI: 10.1016/j.vph.2017.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 11/18/2017] [Indexed: 01/01/2023]
Abstract
Lactadherin is a small (53-66kDa) multifunctional glycoprotein belonging to the secreted extracellular matrix protein family. It has a multi-domain structure and is involved in many biological and physiological processes, including phagocytosis, angiogenesis, atherosclerosis, tissue remodeling, and haemostasis regulation. Lactadherin binds phosphatidylserine (PS)-enriched cell surfaces in a receptor-independent manner. Interaction between lactadherin and PS is crucial for regulation of blood coagulation processes. This review summarizes recent knowledge on the possible role of lactadherin in haemostasis control, emphasizing the great significance of the interaction between lactadherin and PS expressed on activated platelets and extracellular vesicles. The possible role of lactadherin as a therapeutic target and biomarker is also discussed.
Collapse
Affiliation(s)
- Agnieszka Kamińska
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Prof. Stanisława Łojasiewicza 11 Street, Kraków 30-348, Poland.
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal.
| | - Ewa Ł Stępień
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Prof. Stanisława Łojasiewicza 11 Street, Kraków 30-348, Poland.
| |
Collapse
|
46
|
Jia M, Yao H, Chen C, Wang Y, Wang H, Cui T, Zhu J. Prognostic Correlation Between MFG-E8 Expression Level and Colorectal Cancer. Arch Med Res 2017; 48:270-275. [PMID: 28923329 DOI: 10.1016/j.arcmed.2017.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Colorectal cancer (CRC) is one of the leading causes of cancer-related death all over the world. Milk fat globule-epidermal growth factor (EGF)-factor VIII (MFG-E8) was found to be highly expressed in a variety of cancers. However its role in CRC is unclear. This study investigates the expression of MFG-E8 in CRC tissues and the correlation with clinicopathological features and prognosis in CRC patients. METHODS The expression of MFG-E8 proteins was detected by immunohistochemical staining in 90 samples of CRC. The localization of MFG-E8 in colorectal tumor was examined by immunofluorescence staining. The correlation between MFG-E8 protein expression and the clinical pathological features of CRC were evaluated by χ2 test and Fisher's exact test. The survival rates were analyzed by the Kaplan-Meier method, and the relationship between prognostic factors and patient survival was analyzed by the Cox proportional hazard models. RESULTS Our results showed that MFG-E8 expression increased significantly in colorectal cancer compared with normal mucosa tissues (p <0.001). We further validated MFG-E8 overexpression in 6 pairs of fresh tumor and adjacent normal mucosa tissues from colorectal cancer patients by Western blot (p <0.05). Immunofluorescence staining showed that MFG-E8 accumulated in close proximity to endothelial cells in human colorectal tumor tissue. In addition, high MFG-E8 protein expression was correlated with lymph node metastasis and some pathological classifications (p <0.05). Furthermore, patients with high protein level of MFG-E8 showed shortened overall survivals (p <0.05). CONCLUSION Our results showed that MFG-E8 could be a potential novel prognostic marker for CRC and overexpression of MFG-E8 might be involved in lymph node metastasis and angiogenesis of CRC.
Collapse
Affiliation(s)
- Min Jia
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Huaning Yao
- Department of Pathology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Chao Chen
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Yueqin Wang
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Han Wang
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Tianpen Cui
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Jianhua Zhu
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China.
| |
Collapse
|
47
|
Laplante P, Brillant-Marquis F, Brissette MJ, Joannette-Pilon B, Cayrol R, Kokta V, Cailhier JF. MFG-E8 Reprogramming of Macrophages Promotes Wound Healing by Increased bFGF Production and Fibroblast Functions. J Invest Dermatol 2017; 137:2005-2013. [DOI: 10.1016/j.jid.2017.04.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
|
48
|
Xiang J, Sun H, Su L, Liu L, Shan J, Shen J, Yang Z, Chen J, Zhong X, Ávila MA, Yan X, Liu C, Qian C. Myocyte enhancer factor 2D promotes colorectal cancer angiogenesis downstream of hypoxia-inducible factor 1α. Cancer Lett 2017; 400:117-126. [PMID: 28478181 DOI: 10.1016/j.canlet.2017.04.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022]
Abstract
Myocyte enhancer factor 2D (MEF2D) is involved in many aspects of cancer progression, including cell proliferation, invasion, and migration. However, little is known about the role of MEF2D in tumor angiogenesis. Using clinical specimens, colorectal cancer (CRC) cell lines and a mouse model in the present study, we found that MEF2D expression was positively correlated with CD31-positive microvascular density in CRC tissues. MEF2D promoted tumor angiogenesis in vitro and in vivo and induced the expression of proangiogenic cytokines in CRC cells. MEF2D was found to be a downstream effector of hypoxia-inducible factor (HIF)-1α in the induction of tumor angiogenesis. HIF-1α transactivates MEF2D expression by binding to the MEF2D gene promoter. These results demonstrate that the HIF-1α/MEF2D axis can serve as a therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Junyu Xiang
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hui Sun
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li Su
- Department of Oncology, Chinese Traditional Medicine Hospital, Chongqing, China
| | - Limei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Juanjuan Shan
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junjie Shen
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhi Yang
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Chen
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xing Zhong
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Matías A Ávila
- Center of Investigation for Applied Medcine, University of Navarra, Pamplona, Spain
| | - Xiaochu Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Chungang Liu
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Cheng Qian
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
49
|
Kishi C, Motegi SI, Ishikawa O. Elevated serum MFG-E8 level is possibly associated with the presence of high-intensity cerebral lesions on magnetic resonance imaging in patients with systemic lupus erythematosus. J Dermatol 2017; 44:783-788. [PMID: 28266034 DOI: 10.1111/1346-8138.13791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/11/2017] [Indexed: 02/04/2023]
Abstract
Human milk fat globule-EGF factor 8 (MFG-E8), also known as lactadherin, is a secreted glycoprotein that plays essential roles in the clearance of apoptotic cells and angiogenesis. It has been reported that serum MFG-E8 levels are higher in systemic lupus erythematosus (SLE) patients compared with in healthy controls; however, a previous study reported no correlation between serum MFG-E8 levels and SLE disease activity. The objective of this study was to assess serum MFG-E8 levels and their clinical associations in patients with SLE. Serum MFG-E8 levels in 49 Japanese patients with SLE, eight with cutaneous LE, and 28 healthy controls were examined. Serum MFG-E8 levels in SLE patients were significantly higher than those in cutaneous LE patients and healthy individuals. In addition, serum MFG-E8 levels were positively correlated with the SLE Disease Activity Index score, which reflects the disease activity of SLE. Notably, the frequency of the presence of high-intensity cerebral lesions on MRI in the SLE patients with elevated serum MFG-E8 levels was significantly higher than that in SLE patients with normal serum MFG-E8 levels. These findings suggest that elevated serum MFG-E8 levels may be associated with cerebrovascular diseases or neuropsychiatric SLE in patients with SLE, and that the measurement of serum MFG-E8 levels in SLE patients is useful for risk stratification of cerebrovascular disease or cerebrovascular disease-related neuropsychiatric SLE.
Collapse
Affiliation(s)
- Chikako Kishi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
50
|
Uchiyama A, Motegi SI, Sekiguchi A, Fujiwara C, Perera B, Ogino S, Yokoyama Y, Ishikawa O. Mesenchymal stem cells-derived MFG-E8 accelerates diabetic cutaneous wound healing. J Dermatol Sci 2017; 86:187-197. [PMID: 28302404 DOI: 10.1016/j.jdermsci.2017.02.285] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/28/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Diabetic wounds are intractable due to complex factors, such as the inhibition of angiogenesis, dysfunction of phagocytosis by macrophages and abnormal inflammatory responses. It is recognized that mesenchymal stem cells (MSCs) promote wound healing in diabetic mice. We previously demonstrated that MSCs produce large amounts of MFG-E8. OBJECT The objective was to ascertain the role of MSCs-derived MFG-E8 in murine diabetic wounds. METHODS MFG-E8 WT/KO MSCs or rMFG-E8 were subcutaneously injected around the wound in diabetic db/db mice, and wound areas were analyzed. Quantification of angiogenesis, infiltrating inflammatory cells, apoptotic cells at the wound area was performed by immunofluorescence staining and real-time PCR. Phagocytosis assay was performed using peritoneal macrophages from WT or db/db mice. RESULTS MFG-E8 expression in granulation tissue in diabetic mice was significantly reduced compared with that in non-diabetic mice. We next examined the effect of subcutaneous injection of MFG-E8 WT/KO MSCs around the wound. Diabetic wound healing was significantly accelerated by the injection of MSCs. Diabetic wound healing in MFG-E8 KO MSCs-injected wounds was significantly delayed compared to that in WT MSCs-injected wounds. The numbers of CD31+ EC and NG2+ pericytes, as well as M2 macrophages in wounds in KO MSCs-injected mice were significantly decreased. MFG-E8 WT MSCs treatment suppressed the number of apoptotic cells and TNF-α+ cells in wounds. In an in vitro assay, MFG-E8 WT MSCs-conditioned medium enhanced phagocytosis of apoptotic cells by peritoneal macrophages from diabetic mice. CONCLUSION MSCs-derived MFG-E8 might accelerate diabetic wound healing by promoting angiogenesis, the clearance of apoptotic cells, and the infiltration of M2 macrophages, and by suppressing inflammatory cytokines in wound area.
Collapse
Affiliation(s)
- Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chisako Fujiwara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Buddhini Perera
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|