1
|
Ma T, Huang W, Ding Y, Ji R, Ge S, Liu Q, Liu Y, Chen J, Yan Y, Lu S, Ren Q, Fan Y, Mao R, Lu C. AIBP protects drug-induced liver injury by inhibiting MAPK-mediated NR4A1 expression. iScience 2024; 27:110873. [PMID: 39398235 PMCID: PMC11467680 DOI: 10.1016/j.isci.2024.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/30/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024] Open
Abstract
Drug-induced liver injury (DILI) is an important adverse drug reaction that can lead to acute liver failure or even death in severe cases. AIBP is a binding protein of apolipoprotein AI involved in lipid metabolism and maintenance of oxidative respiration in mitochondria, but its role in DILI is unclear. By constructing AIBP knockout mice, overexpressing and knocking down AIBP in cell lines, we established animal and cell models of DILI. Using western blotting and real-time qPCR assay, we explored the influence of AIBP in activation of mitogen-activated protein kinases (MAPK) signal pathways and possible targets. AIBP was downregulated during hepatocyte injury. AIBP deficient mice develop severe liver injury and more sensitive to drug-induced cell death. Overexpression of AIBP protects cells under APAP treatment. Furthermore, AIBP inhibits the activation of MAPK pathways, through which AIBP regulates NR4A1. These results suggest that AIBP is expected to become a valuable biomarker and therapeutic target in liver injury.
Collapse
Affiliation(s)
- Tao Ma
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yihong Ding
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Gastroenterology, Rugao People’s Hospital, Nantong, Jiangsu, China
| | - Ran Ji
- Department of Gastroenterology, Nantong First People’s Hospital, Nantong, Jiangsu, China
| | - Sijia Ge
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingqing Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Yiheng Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Yan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Shushu Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiqi Ren
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Yihui Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
2
|
Sun M, Liu Y, Wang X, Wang L. HPGD: An Intermediate Player in Microglial Polarization and Multiple Sclerosis Regulated by Nr4a1. Mol Neurobiol 2024:10.1007/s12035-024-04280-8. [PMID: 38842672 DOI: 10.1007/s12035-024-04280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
HPGD encodes 15-Hydroxyprostaglandin dehydrogenase catalyzing the decomposition of prostaglandin E2 and has not been reported in multiple sclerosis (MS). We previously found that Nr4a1 regulated microglia polarization and inhibited the progression of experimental autoimmune encephalomyelitis (EAE). Bioinformatics analysis suggested that HPGD might be regulated by Nr4a1. Therefore, this study aimed to explore the role of HPGD in microglia polarization and determine whether HPGD mediates the inhibition of EAE by Nr4a1. C57BL/6 mice were treated with MOG35-55 peptide to induce EAE. BV-2 cells were treated with LPS/IL-4 to induce M1/M2 polarization. We then analyzed the pathological changes of spinal cord tissue, detected the expression levels of M1/M2 genes in tissues and cells, and explored the effect of HPGD on PPARγ activation to clarify the role of HPGD in EAE. The interaction between HPGD and Nr4a1 was verified by ChIP and pull-down assay. HPGD was downregulated in the spinal cord of EAE mice and HPGD overexpression alleviated the progression of EAE. Experiments in vitro and in vivo revealed that HPGD inhibited M1 polarization, promoted M2 polarization and increased PPARγ-DNA complex level. Nr4a1 could bind to the promoter of HPGD and its overexpression increased HPGD level. HPGD overexpression (or knockdown) reversed the effect of Nr4a1 knockdown (or overexpression) on M1/2 polarization. HPGD is regulated by Nr4a1 and inhibits the progression of EAE through shifting the M1/M2 polarization and promoting the activation of PPARγ signaling pathway. This study provides potential targets and basis for the development of MS therapeutic drugs.
Collapse
Affiliation(s)
- Mengyang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaowan Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Limei Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Setayesh T, Hu Y, Vaziri F, Chen X, Lai J, Wei D, Yvonne Wan YJ. Targeting stroma and tumor, silencing galectin 1 treats orthotopic mouse hepatocellular carcinoma. Acta Pharm Sin B 2024; 14:292-303. [PMID: 38261802 PMCID: PMC10793093 DOI: 10.1016/j.apsb.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 09/15/2023] [Indexed: 01/25/2024] Open
Abstract
This study examines inhibiting galectin 1 (Gal1) as a treatment option for hepatocellular carcinoma (HCC). Gal1 has immunosuppressive and cancer-promoting roles. Our data showed that Gal1 was highly expressed in human and mouse HCC. The levels of Gal1 positively correlated with the stages of human HCC and negatively with survival. The roles of Gal1 in HCC were studied using overexpression (OE) or silencing using Igals1 siRNA delivered by AAV9. Prior to HCC initiation induced by RAS and AKT mutations, lgals1-OE and silencing had opposite impacts on tumor load. The treatment effect of lgals1 siRNA was further demonstrated by intersecting HCC at different time points when the tumor load had already reached 9% or even 42% of the body weight. Comparing spatial transcriptomic profiles of Gal1 silenced and OE HCC, inhibiting matrix formation and recognition of foreign antigen in CD45+ cell-enriched areas located at tumor-margin likely contributed to the anti-HCC effects of Gal1 silencing. Within the tumors, silencing Gal1 inhibited translational initiation, elongation, and termination. Furthermore, Gal1 silencing increased immune cells as well as expanded cytotoxic T cells within the tumor, and the anti-HCC effect of lgals1 siRNA was CD8-dependent. Overall, Gal1 silencing has a promising potential for HCC treatment.
Collapse
Affiliation(s)
- Tahereh Setayesh
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Ying Hu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Farzam Vaziri
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Xin Chen
- Cancer Biology Program, the University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA 95825, USA
| | - Dongguang Wei
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Qin BF, Gao S, Feng QY, Chen W, Sun HM, Song J. Regulation of Nur77-TLR4/MyD88 signaling pathway is required for Ginsenoside Rc ameliorates hepatic fibrosis regression by deactivating hepatic stellate cells. Acta Histochem 2023; 125:152079. [PMID: 37527595 DOI: 10.1016/j.acthis.2023.152079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
HSCs (hepatic stellate cells) contribute to the excessive extracellular matrix (ECM) deposition plays a key role in the progression of hepatic fibrosis. The present study focused on the hepatoprotective effect of Ginsenoside Rc (Rc), one of the protopanaxadiol type ginsenoside, which has contributed to reverse activated HSCs to improve hepatic fibrosis via regulating Nur77-TLR4/MyD88 signaling pathway. We established the hepatic fibrosis model by intraperitoneal injection of carbon tetrachloride (CCl4). And HSCs were stimulated with TGF-β, followed by silencing of Nur77, and then incubated in Rc. Rc significantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Rc could upregulate the Nur77 and downregulate fibrosis markers in the liver of mice, including decreasing the expressions of α-SMA, Collagen-I, the ratio of TIMP-1/MMP-13. Rc significantly increased the expression of Nur77 and suppressed the production of ECM in HSCs. Rc inhibited TLR4 signaling pathway, consequently reversing the inflammatory response, including the production of MyD88, IRAK1, IRAK4 and IL-23. When Nur77 was knocked in TGF-β-stimulated HSCs, TLR4 and α-SMA production were increased. Rc suppressed these activatory effects in Nur77 knockdown HSCs. Rc reduced inflammatory reaction by regulating the Nur77-TLR4 signaling pathway while suppressing the fibrogenesis suggesting, underscoring a promising approach of Rc for the treatment in hepatic fibrosis. Targeting Nur77-TLR4 signaling in HSCs would be the potential strategy for Rc against hepatic fibrosis.
Collapse
Affiliation(s)
- Bo-Feng Qin
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Shan Gao
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Qi-Yuan Feng
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Wei Chen
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| |
Collapse
|
5
|
Hu Y, Setayesh T, Vaziri F, Wu X, Hwang ST, Chen X, Yvonne Wan YJ. miR-22 gene therapy treats HCC by promoting anti-tumor immunity and enhancing metabolism. Mol Ther 2023; 31:1829-1845. [PMID: 37143325 PMCID: PMC10277895 DOI: 10.1016/j.ymthe.2023.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
MicroRNA-22 (miR-22) can be induced by beneficial metabolites that have metabolic and immune effects, including retinoic acids, bile acids, vitamin D3, and short-chain fatty acids. The tumor suppressor effects of miR-22 have been suggested, but whether miR-22 treats orthotopic hepatocellular carcinoma (HCC) is not established. The role of miR-22 in regulating tumor immunity is also poorly understood. Our data showed that miR-22 delivered by adeno-associated virus serotype 8 effectively treated HCC. Compared with FDA-approved lenvatinib, miR-22 produced better survival outcomes without noticeable toxicity. miR-22 silenced hypoxia-inducible factor 1 (HIF1α) and enhanced retinoic acid signaling in both hepatocytes and T cells. Moreover, miR-22 treatment improved metabolism and reduced inflammation. In the liver, miR-22 reduced the abundance of IL17-producing T cells and inhibited IL17 signaling by reducing the occupancy of HIF1α in the Rorc and Il17a genes. Conversely, increasing IL17 signaling ameliorated the anti-HCC effect of miR-22. Additionally, miR-22 expanded cytotoxic T cells and reduced regulatory T cells (Treg). Moreover, depleting cytotoxic T cells also abolished the anti-HCC effects of miR-22. In patients, miR-22 high HCC had upregulated metabolic pathways and reduced IL17 pro-inflammatory signaling compared with miR-22 low HCC. Together, miR-22 gene therapy can be a novel option for HCC treatment.
Collapse
Affiliation(s)
- Ying Hu
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Farzam Vaziri
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Xuesong Wu
- Department of Dermatology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Samuel T Hwang
- Department of Dermatology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA.
| |
Collapse
|
6
|
Watkins RD, Buckarma EH, Tomlinson JL, McCabe CE, Yonkus JA, Werneburg NW, Bayer RL, Starlinger PP, Robertson KD, Wang C, Gores GJ, Smoot RL. SHP2 inhibition enhances Yes-associated protein mediated liver regeneration in murine partial hepatectomy models. JCI Insight 2022; 7:159930. [PMID: 35763355 PMCID: PMC9462473 DOI: 10.1172/jci.insight.159930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Disrupted liver regeneration following hepatectomy represents an “undruggable” clinical challenge associated with poor patient outcomes. Yes-associated protein (YAP), a transcriptional coactivator that is repressed by the Hippo pathway, is instrumental in liver regeneration. We have previously described an alternative, Hippo-independent mechanism of YAP activation mediated by downregulation of protein tyrosine phosphatase nonreceptor type 11 (PTPN11, also known as SHP2) inhibition. Herein, we examined the effects of YAP activation with a selective SHP1/SHP2 inhibitor, NSC-87877, on liver regeneration in murine partial hepatectomy models. In our studies, NSC-87877 led to accelerated hepatocyte proliferation, improved liver regeneration, and decreased markers of injury following partial hepatectomy. The effects of NSC-87877 were lost in mice with hepatocyte-specific Yap/Taz deletion, and this demonstrated dependence on these molecules for the enhanced regenerative response. Furthermore, administration of NSC-87877 to murine models of nonalcoholic steatohepatitis was associated with improved survival and decreased markers of injury after hepatectomy. Evaluation of transcriptomic changes in the context of NSC-87877 administration revealed reduction in fibrotic signaling and augmentation of cell cycle signaling. Cytoprotective changes included downregulation of Nr4a1, an apoptosis inducer. Collectively, the data suggest that SHP2 inhibition induces a pro-proliferative and cytoprotective enhancement of liver regeneration dependent on YAP.
Collapse
Affiliation(s)
- Ryan D Watkins
- Department of Surgery, Mayo Clinic, Rochester, United States of America
| | - EeeLN H Buckarma
- Department of Surgery, Mayo Clinic, Rochester, United States of America
| | | | - Chantal E McCabe
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, United States of America
| | - Jennifer A Yonkus
- Department of Surgery, Mayo Clinic, Rochester, United States of America
| | - Nathan W Werneburg
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, United States of America
| | - Rachel L Bayer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, United States of America
| | | | - Keith D Robertson
- Division of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, United States of America
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, United States of America
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, United States of America
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic, Rochester, United States of America
| |
Collapse
|
7
|
Xu Y, Tian J, Kang Q, Yuan H, Liu C, Li Z, Liu J, Li M. Knockout of Nur77 Leads to Amino Acid, Lipid, and Glucose Metabolism Disorders in Zebrafish. Front Endocrinol (Lausanne) 2022; 13:864631. [PMID: 35547009 PMCID: PMC9084189 DOI: 10.3389/fendo.2022.864631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Orphan nuclear receptor Nur77 has been reported to be implicated in a diverse range of metabolic processes, including carbohydrate metabolism and lipid metabolism. However, the detailed mechanism of Nur77 in the regulation of metabolic pathway still needs to be further investigated. In this study, we created a global nur77 knockout zebrafish model by CRISPR/Cas9 technique, and then performed whole-organism RNA sequencing analysis in wildtype and nur77-deficient zebrafish to dissect the genetic changes in metabolic-related pathways. We found that many genes involved in amino acid, lipid, and carbohydrate metabolism changed by more than twofold. Furthermore, we revealed that nur77-/- mutant displayed increased total cholesterol (TC) and triglyceride (TG), alteration in total amino acids, as well as elevated glucose. We also demonstrated that the elevated glucose was not due to the change of glucose uptake but was likely caused by the disorder of glycolysis/gluconeogenesis and the impaired β-cell function, including downregulated insb expression, reduced β-cell mass, and suppressed insulin secretion. Importantly, we also verified that targeted expression of Nur77 in the β cells is sufficient to rescue the β-cell defects in global nur77-/- larvae zebrafish. These results provide new information about the global metabolic network that Nur77 signaling regulates, as well as the role of Nur77 in β-cell function.
Collapse
Affiliation(s)
- Yang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Juanjuan Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qi Kang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hang Yuan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chengdong Liu
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Zhehui Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- *Correspondence: Mingyu Li, ; Jie Liu,
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- *Correspondence: Mingyu Li, ; Jie Liu,
| |
Collapse
|
8
|
Wang G, Chu P, Chen M, Cheng L, Zhao C, Chen S, Li X, Yang G, Chang C. Osteopontin promotes rat hepatocyte proliferation both in vitro and in vivo. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3745-3757. [PMID: 31544532 DOI: 10.1080/21691401.2019.1666862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aim: This study aimed to examine the effects of osteopontin (OPN) on hepatocyte growth and liver regeneration (LR). Methods: A recombinant lentivirus expressing OPN and OPN-siRNAs were used to treat BRL-3A cells, while the adenovirus expressing OPN or OPN-targeted shRNA were applied for rat primary hepatocytes. Moreover, rrOPN and OPN-Ab were added to treat BRL-3A. Next, rrOPN was administrated into rat regenerating livers. Then in vitro and in vivo assays were performed to evaluate the biological function of OPN in hepatocyte growth and LR. Results: OPN overexpression facilitated proliferation and viability of BRL-3A cells and primary hepatocytes, while OPN silencing reversed these effects. Similarly, rrOPN stimulated cell cycle progression and viability, but OPN-Ab led to cell cycle arrest and decreased viability. OPN overexpression induced the expression of p-STAT3, p-AKT and CCND1, and OPN siRNA led to reduction of p-AKT and CCND1. Furthermore, rrOPN promoted the expression of p-STAT3 and p-AKT, while OPN-Ab and PI3K/Akt inhibitor LY294002 both inhibited the expressions of p-AKT and Bcl2. Moreover, LR rate, serum IL-6 and TNF-α, Ki-67+ proportion and the phosphorylation of STAT3, AKT and p65 were augmented by rrOPN treatment. Conclusion: OPN promotes hepatocyte proliferation both in vitro and in vivo through STAT3 and AKT signaling pathways.
Collapse
Affiliation(s)
- Gaiping Wang
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Peipei Chu
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Meng Chen
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Liya Cheng
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Congcong Zhao
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Shasha Chen
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Xiaofang Li
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Ganggang Yang
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,Henan Engineering Research Center of Functional Protein Application, Henan Normal University , Xinxiang , Henan Province , China
| | - Cuifang Chang
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| |
Collapse
|
9
|
Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues. Cells 2019; 8:cells8111373. [PMID: 31683815 PMCID: PMC6912296 DOI: 10.3390/cells8111373] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
The Nr4a family of nuclear hormone receptors is composed of three members-Nr4a1/Nur77, Nr4a2/Nurr1 and Nr4a3/Nor1. While currently defined as ligandless, these transcription factors have been shown to regulate varied processes across a host of tissues. Of particular interest, the Nr4a family impinge, in a tissue dependent fashion, on cellular proliferation, apoptosis and fuel utilization. The regulation of these processes occurs through both nuclear and non-genomic pathways. The purpose of this review is to provide a balanced perspective of the tissue specific and Nr4a family member specific, effects on cellular proliferation, apoptosis and fuel utilization.
Collapse
|
10
|
Zhang L, Wang Q, Liu W, Liu F, Ji A, Li Y. The Orphan Nuclear Receptor 4A1: A Potential New Therapeutic Target for Metabolic Diseases. J Diabetes Res 2018; 2018:9363461. [PMID: 30013988 PMCID: PMC6022324 DOI: 10.1155/2018/9363461] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Orphan nuclear receptor 4A1 (NR4A1) is a transcriptional factor of the nuclear orphan receptor (NR4A) superfamily that has sparked interest across different research fields in recent years. Several studies have demonstrated that ligand-independent NR4A1 is an immediate-early response gene and the protein product is rapidly induced by a variety of stimuli. Hyperfunction or dysfunction of NR4A1 is implicated in various metabolic processes, including carbohydrate metabolism, lipid metabolism, and energy balance, in major metabolic tissues, such as liver, skeletal muscle, pancreatic tissues, and adipose tissues. No endogenous ligands for NR4A1 have been identified, but numerous compounds that bind and activate or inactivate nuclear NR4A1 or induce cytoplasmic localization of NR4A1 have been identified. This review summarizes recent advances in our understanding of the molecular biology and physiological functions of NR4A1. And we focus on the physiological functions of NR4A1 receptor to the development of the metabolic diseases, with a special focus on the impact on carbohydrate and lipid metabolism in skeletal muscle, liver, adipose tissue, and islet.
Collapse
Affiliation(s)
- Lei Zhang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Qun Wang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Wen Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Fangyan Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| |
Collapse
|
11
|
Liu HX, Hu Y, Wan YJY. Microbiota and bile acid profiles in retinoic acid-primed mice that exhibit accelerated liver regeneration. Oncotarget 2016; 7:1096-106. [PMID: 26701854 PMCID: PMC4811446 DOI: 10.18632/oncotarget.6665] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022] Open
Abstract
Background & Aims All-trans Retinoic acid (RA) regulates hepatic lipid and bile acid homeostasis. Similar to bile acid (BA), RA accelerates partial hepatectomy (PHx)-induced liver regeneration. Because there is a bidirectional regulatory relationship between gut microbiota and BA synthesis, we examined the effect of RA in altering the gut microbial population and BA composition and established their relationship with hepatic biological processes during the active phases of liver regeneration. Methods C57BL/6 mice were treated with RA orally followed by 2/3 PHx. The roles of RA in shifting gut microbiota and BA profiles as well as hepatocyte metabolism and proliferation were studied. Results RA-primed mice exhibited accelerated hepatocyte proliferation revealed by higher numbers of Ki67-positive cells compared to untreated mice. Firmicutes and Bacteroidetes phyla dominated the gut microbial community (>85%) in both control and RA-primed mice after PHx. RA reduced the ratio of Firmicutes to Bacteroidetes, which was associated with a lean phenotype. Consistently, RA-primed mice lacked transient lipid accumulation normally found in regenerating livers. In addition, RA altered BA homeostasis and shifted BA profiles by increasing the ratio of hydrophilic to hydrophobic BAs in regenerating livers. Accordingly, metabolic regulators fibroblast growth factor 21, Sirtuin1, and their downstream targets AMPK and ERK1/2 were more robustly activated in RA-primed than unprimed regenerating livers. Conclusions Priming mice with RA resulted in a lean microbiota composition and hydrophilic BA profiles, which were associated with facilitated metabolism and enhanced cell proliferation.
Collapse
Affiliation(s)
- Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ying Hu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
12
|
Abstract
Psychological stress is one of the factors associated with human cardiovascular disease. Here, we demonstrate that acute perceived stress impairs the natural capacity of heart regeneration in zebrafish. Beside physical and chemical disturbances, intermittent crowding triggered an increase in cortisol secretion and blocked the replacement of fibrotic tissue with new myocardium. Pharmacological simulation of stress by pulse treatment with dexamethasone/adrenaline reproduced the regeneration failure, while inhibition of the stress response with anxiolytic drugs partially rescued the regenerative process. Impaired heart regeneration in stressed animals was associated with a reduced cardiomyocyte proliferation and with the downregulation of several genes, including igfbp1b, a modulator of IGF signalling. Notably, daily stress induced a decrease in Igf1r phosphorylation. As cardiomyocyte proliferation was decreased in response to IGF-1 receptor inhibition, we propose that the stress-induced cardiac regenerative failure is partially caused by the attenuation of IGF signalling. These findings indicate that the natural regenerative ability of the zebrafish heart is vulnerable to the systemic paracrine stress response.
Collapse
Affiliation(s)
- Pauline Sallin
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Liu HX, Rocha CS, Dandekar S, Wan YJY. Functional analysis of the relationship between intestinal microbiota and the expression of hepatic genes and pathways during the course of liver regeneration. J Hepatol 2016; 64:641-50. [PMID: 26453969 PMCID: PMC4761311 DOI: 10.1016/j.jhep.2015.09.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/08/2015] [Accepted: 09/19/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS The pathways regulating liver regeneration have been extensively studied within the liver. However, the signaling contribution derived from the gut microbiota to liver regeneration is poorly understood. METHODS Microbiota and expression of hepatic genes in regenerating livers obtained from mice at 0h to 9days post 2/3 partial hepatectomy were temporally profiled to establish their interactive relationships. RESULTS Partial hepatectomy led to rapid changes in gut microbiota that was reflected in an increased abundance of Bacteroidetes S24-7 and Rikenellaceae and decreased abundance of Firmicutes Clostridiales, Lachnospiraceae, and Ruminococcaceae. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to infer biological functional changes of the shifted microbiota. RNA-sequencing data revealed 6125 genes with more than a 2-fold difference in their expression levels during regeneration. By analyzing their expression pattern, six uniquely expressed patterns were observed. In addition, there were significant correlations between hepatic gene expression profiles and shifted bacterial populations during regeneration. Moreover, hepatic metabolism and immune function were closely associated with the abundance of Ruminococcacea, Lachnospiraceae, and S24-7. Bile acid profile was analyzed because bacterial enzymes produce bile acids that significantly impact hepatocyte proliferation. The data revealed that specific bacteria were closely associated with the concentration of certain bile acids and expression of hepatic genes. CONCLUSIONS The presented data established, for the first time, an intimate relationship between intestinal microbiota and the expression of hepatic genes in regenerating livers.
Collapse
Affiliation(s)
- Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA
| | - Clarissa Santos Rocha
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
14
|
Liu HX, Keane R, Sheng L, Wan YJY. Implications of microbiota and bile acid in liver injury and regeneration. J Hepatol 2015; 63:1502-10. [PMID: 26256437 PMCID: PMC4654653 DOI: 10.1016/j.jhep.2015.08.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/15/2015] [Accepted: 08/02/2015] [Indexed: 02/07/2023]
Abstract
Studies examining the mechanisms by which the liver incurs injury and then regenerates usually focus on factors and pathways directly within the liver, neglecting the signaling derived from the gut-liver axis. The intestinal content is rich in microorganisms as well as metabolites generated from both the host and colonizing bacteria. Through the gut-liver axis, this complex "soup" exerts an immense impact on liver integrity and function. This review article summarizes data published in the past 30 years demonstrating the signaling derived from the gut-liver axis in relation to liver injury and regeneration. Due to the intricate networks of implicated pathways as well as scarcity of available mechanistic data, it seems that nutrigenomic, metabolomics, and microbiota profiling approaches are warranted to provide a better understanding regarding the interplay and impact between nutrition, bacteria, and host response in influencing liver function and healing. Therefore elucidating the possible molecular mechanisms that link microbiota alteration to host physiological response and vice versa.
Collapse
Affiliation(s)
- Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA
| | - Ryan Keane
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA.
| |
Collapse
|
15
|
Tang GH, Yang HY, Zhang JC, Ren JJ, Sang XT, Lu X, Zhong SX, Mao YL. Magnesium isoglycyrrhizinate inhibits inflammatory response through STAT3 pathway to protect remnant liver function. World J Gastroenterol 2015; 21:12370-12380. [PMID: 26604644 PMCID: PMC4649120 DOI: 10.3748/wjg.v21.i43.12370] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/18/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protective effect of magnesium isoglycyrrhizinate (MgIG) on excessive hepatectomy animal model and its possible mechanism.
METHODS: We used the standard 90% hepatectomy model in Sprague-Dawley rats developed using the modified Emond’s method, in which the left, middle, right upper, and right lower lobes of the liver were removed. Rats with 90% liver resection were divided into three groups, and were injected intraperitoneally with 3 mL saline (control group), 30 mg/kg (low-dose group) and 60 mg/kg (high-dose group) of MgIG, respectively. Animals were sacrificed at various time points and blood was drawn from the vena cava. Biochemical tests were performed with an automatic biochemical analyzer for the following items: serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyl endopeptidase, total bilirubin (TBil), direct bilirubin (DBil), total protein, albumin, blood glucose (Glu), hyper-sensitivity C-reactive protein, prothrombin time (PT), and thrombin time (TT). Postoperative survival time was observed hourly until death. Hepatocyte regeneration was analyzed by immunohistochemistry. Serum inflammatory cytokines (IL-1, IL-6, IL-10, and iNOS) was analyzed by ELISA. STAT3 protein and mRNA were analyzed by Western blot and quantitative reverse-transcription PCR, respectively.
RESULTS: The high-dose group demonstrated a significantly prolonged survival time, compared with both the control and the low-dose groups (22.0 ± 4.7 h vs 8.9 ± 2.0 vs 10.3 ± 3.3 h, P = 0.018). There were significant differences among the groups in ALT, Glu and PT levels starting from 6 h after surgery. The ALT levels were significantly lower in the MgIG treated groups than in the control group. Both Glu and PT levels were significantly higher in the MgIG treated groups than in the control group. At 12 h, ALT, AST, TBil, DBil and TT levels showed significant differences between the MgIG treated groups and the control group. No significant differences in hepatocyte regeneration were found. Compared to the control group, the high-dose group showed a significantly increase in serum inflammatory cytokines IL-1 and IL-10, and a decrease in IL-6. Both STAT3 protein and mRNA levels were significantly lower in the MgIG treated groups than in the control group at 6 h, 12 h, and 18 h after surgery.
CONCLUSION: High-dose MgIG can extend survival time in rats after excessive hepatectomy. This hepatoprotective effect is mediated by inhibiting the inflammatory response through inhibition of the STAT3 pathway.
Collapse
|
16
|
Yuan H, Wen B, Liu X, Gao C, Yang R, Wang L, Chen S, Chen Z, de The H, Zhou J, Zhu J. CCAAT/enhancer-binding protein α is required for hepatic outgrowth via the p53 pathway in zebrafish. Sci Rep 2015; 5:15838. [PMID: 26511037 PMCID: PMC4649991 DOI: 10.1038/srep15838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/01/2015] [Indexed: 12/28/2022] Open
Abstract
CCAAT/enhancer-binding protein α (C/ebpα) is a transcription factor that plays
important roles in the regulation of hepatogenesis, adipogenesis and hematopoiesis. Disruption of
the C/EBPα gene in mice leads to disturbed liver architecture and neonatal death due
to hypoglycemia. However, the precise stages of liver development affected by C/ebpα loss
are poorly studied. Using the zebrafish embryo as a model organism, we show that inactivation of the
cebpa gene by TALENs results in a small liver phenotype. Further studies reveal that
C/ebpα is distinctively required for hepatic outgrowth but not for hepatoblast
specification. Lack of C/ebpα leads to enhanced hepatic cell proliferation and subsequent
increased cell apoptosis. Additional loss of p53 can largely rescue the hepatic defect in
cebpa mutants, suggesting that C/ebpα plays a role in liver growth regulation via the
p53 pathway. Thus, our findings for the first time demonstrate a stage-specific role for
C/ebpα during liver organogenesis.
Collapse
Affiliation(s)
- Hao Yuan
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wen
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Liu
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ce Gao
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ruimeng Yang
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luxiang Wang
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saijuan Chen
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hugues de The
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France
| | - Jun Zhou
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhu
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France
| |
Collapse
|