1
|
Song Q, Wang P, Wang H, Pan M, Li X, Yao Z, Wang W, Tang G, Zhou S. Integrative analysis of chromatin accessibility and transcriptome landscapes in the induction of peritoneal fibrosis by high glucose. J Transl Med 2024; 22:243. [PMID: 38443979 PMCID: PMC10916192 DOI: 10.1186/s12967-024-05037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Peritoneal fibrosis is the prevailing complication induced by prolonged exposure to high glucose in patients undergoing peritoneal dialysis. METHODS To elucidate the molecular mechanisms underlying this process, we conducted an integrated analysis of the transcriptome and chromatin accessibility profiles of human peritoneal mesothelial cells (HMrSV5) during high-glucose treatment. RESULTS Our study identified 2775 differentially expressed genes (DEGs) related to high glucose-triggered pathological changes, including 1164 upregulated and 1611 downregulated genes. Genome-wide DEGs and network analysis revealed enrichment in the epithelial-mesenchymal transition (EMT), inflammatory response, hypoxia, and TGF-beta pathways. The enriched genes included VEGFA, HIF-1α, TGF-β1, EGF, TWIST2, and SNAI2. Using ATAC-seq, we identified 942 hyper (higher ATAC-seq signal in high glucose-treated HMrSV5 cells than in control cells) and 714 hypo (lower ATAC-seq signal in high glucose-treated HMrSV5 cells versus control cells) peaks with differential accessibility in high glucose-treated HMrSV5 cells versus controls. These differentially accessible regions were positively correlated (R = 0.934) with the nearest DEGs. These genes were associated with 566 up- and 398 downregulated genes, including SNAI2, TGF-β1, HIF-1α, FGF2, VEGFA, and VEGFC, which are involved in critical pathways identified by transcriptome analysis. Integrated ATAC-seq and RNA-seq analysis also revealed key transcription factors (TFs), such as HIF-1α, ARNTL, ELF1, SMAD3 and XBP1. Importantly, we demonstrated that HIF-1α is involved in the regulation of several key genes associated with EMT and the TGF-beta pathway. Notably, we predicted and experimentally validated that HIF-1α can exacerbate the expression of TGF-β1 in a high glucose-dependent manner, revealing a novel role of HIF-1α in high glucose-induced pathological changes in human peritoneal mesothelial cells (HPMCs). CONCLUSIONS In summary, our study provides a comprehensive view of the role of transcriptome deregulation and chromosome accessibility alterations in high glucose-induced pathological fibrotic changes in HPMCs. This analysis identified hub genes, signaling pathways, and key transcription factors involved in peritoneal fibrosis and highlighted the novel glucose-dependent regulation of TGF-β1 by HIF-1α. This integrated approach has offered a deeper understanding of the pathogenesis of peritoneal fibrosis and has indicated potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Qiong Song
- Department of Nephrology, Shaanxi Second People's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Pengbo Wang
- Department of Nephrology, Shaanxi Second People's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Huan Wang
- Department of Emergency, Xijing Hospital, The Fourth Military Medical University of People's Liberation Army, Xi'an, Shaanxi, People's Republic of China
| | - Meijing Pan
- Department of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiujuan Li
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhuan'e Yao
- Department of Nephrology, Shaanxi Second People's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Wei Wang
- Department of Nephrology, Shaanxi Second People's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Guangbo Tang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
| | - Sen Zhou
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
2
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
3
|
Feng J, Lu M, Li W, Li J, Meng P, Li Z, Gao X, Zhang Y. PPARγ alleviates peritoneal fibrosis progression along with promoting GLUT1 expression and suppressing peritoneal mesothelial cell proliferation. Mol Cell Biochem 2022; 477:1959-1971. [PMID: 35380292 PMCID: PMC9206601 DOI: 10.1007/s11010-022-04419-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Peritoneal fibrosis (PF) is commonly induced by bioincompatible dialysate exposure during peritoneal dialysis, but the underlying mechanisms remain elusive. This study aimed to investigate the roles of peroxisome proliferator-activated receptor gamma (PPARγ) in PF pathogenesis. METHODS Rat and cellular PF models were established by high glucose dialysate and lipopolysaccharide treatments. Serum creatinine, urea nitrogen, and glucose contents were detected by ELISA. Histological evaluation was done through H&E and Masson staining. GLUT1, PPARγ, and other protein expression were measured by qRT-PCR, western blotting, and IHC. PPARγ and GLUT1 subcellular distribution were detected using confocal microscopy. Cell proliferation was assessed by MTT and Edu staining. RESULTS Serum creatinine, urea nitrogen and glucose, and PPARγ and GLUT1 expression in rat PF model were reduced by PPARγ agonists Rosiglitazone or 15d-PGJ2 and elevated by antagonist GW9662. Rosiglitazone or 15d-PGJ2 repressed and GW9662 aggravated peritoneal fibrosis in rat PF model. PPARγ and GLUT1 were mainly localized in nucleus and cytosols of peritoneal mesothelial cells, respectively, which were reduced in cellular PF model, enhanced by Rosiglitazone or 15d-PGJ2, and repressed by GW9662. TGF-β and a-SMA expression was elevated in cellular PF model, which was inhibited by Rosiglitazone or 15d-PGJ2 and promoted by GW9662. PPARγ silencing reduced GLUT1, elevated a-SMA and TGF-b expression, and promoted peritoneal mesothelial cell proliferation, which were oppositely changed by PPARγ overexpression. CONCLUSION PPARγ inhibited high glucose-induced peritoneal fibrosis progression through elevating GLUT1 expression and repressing peritoneal mesothelial cell proliferation.
Collapse
Affiliation(s)
- Junxia Feng
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), 48 Xinhua Road, 510800, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meizhi Lu
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), 48 Xinhua Road, 510800, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenhao Li
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), 48 Xinhua Road, 510800, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jingchun Li
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), 48 Xinhua Road, 510800, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), 48 Xinhua Road, 510800, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zukai Li
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| | - Yunfang Zhang
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), 48 Xinhua Road, 510800, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Shu G, Dai C, Yusuf A, Sun H, Deng X. Limonin relieves TGF-β-induced hepatocyte EMT and hepatic stellate cell activation in vitro and CCl 4-induced liver fibrosis in mice via upregulating Smad7 and subsequent suppression of TGF-β/Smad cascade. J Nutr Biochem 2022; 107:109039. [PMID: 35533902 DOI: 10.1016/j.jnutbio.2022.109039] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Liver fibrosis is a pathological process as a result of intrahepatic deposition of excessive extracellular matrix. Epithelial-mesenchymal transition (EMT) of hepatocytes and activation of hepatic stellate cells (HSCs) both play important roles in the etiology of liver fibrosis. Here, we found that limonin repressed transforming growth factor-β1 (TGF-β)-induced EMT in AML-12 hepatocytes and activation of LX-2 HSCs. In both kinds of cells, limonin suppressed TGF-β-provoked Smad2/3 C-terminal phosphorylation and subsequent nuclear translocation. Transcription of Smad2/3-downstream genes was in turn reduced. However, limonin exerted few effects on Smad2/3 phosphorylation at linker region. Mechanistically, limonin increased Smad7 at mRNA level in both AML-12 and LX-2 cells. Knockdown of Smad7 abrogated inhibitory effects of limonin on TGF-β-induced EMT in AML-12 cells and activation of LX-2 cells. Further studies revealed that limonin alleviated mouse liver fibrosis induced by CCl4. In livers of model mice, limonin upregulated Smad7 and declined C-terminal phosphorylation and nuclear translocation of Smad2/3. Transcription of Smad2/3-responsive genes was also attenuated. Our findings indicated that limonin inhibits TGF-β-induced EMT of hepatocytes and activation of HSCs in vitro and CCl4-induced liver fibrosis in mice. Upregulated Smad7 which suppresses Smad2/3-dependent gene transcription is implicated in the hepatoprotective activity of limonin.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Chenxi Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Arslan Yusuf
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Eliseeva IA, Sogorina EM, Smolin EA, Kulakovskiy IV, Lyabin DN. Diverse Regulation of YB-1 and YB-3 Abundance in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S48-S167. [PMID: 35501986 DOI: 10.1134/s000629792214005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
YB proteins are DNA/RNA binding proteins, members of the family of proteins with cold shock domain. Role of YB proteins in the life of cells, tissues, and whole organisms is extremely important. They are involved in transcription regulation, pre-mRNA splicing, mRNA translation and stability, mRNA packaging into mRNPs, including stress granules, DNA repair, and many other cellular events. Many processes, from embryonic development to aging, depend on when and how much of these proteins have been synthesized. Here we discuss regulation of the levels of YB-1 and, in part, of its homologs in the cell. Because the amount of YB-1 is immediately associated with its functioning, understanding the mechanisms of regulation of the protein amount invariably reveals the events where YB-1 is involved. Control over the YB-1 abundance may allow using this gene/protein as a therapeutic target in cancers, where an increased expression of the YBX1 gene often correlates with the disease severity and poor prognosis.
Collapse
Affiliation(s)
- Irina A Eliseeva
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | | | - Egor A Smolin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Dmitry N Lyabin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
6
|
Shi Y, Tao M, Ni J, Tang L, Liu F, Chen H, Ma X, Hu Y, Zhou X, Qiu A, Zhuang S, Liu N. Requirement of Histone Deacetylase 6 for Interleukin-6 Induced Epithelial-Mesenchymal Transition, Proliferation, and Migration of Peritoneal Mesothelial Cells. Front Pharmacol 2021; 12:722638. [PMID: 34526901 PMCID: PMC8435636 DOI: 10.3389/fphar.2021.722638] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Aims: Influenced by microenvironment, human peritoneal mesothelial cells (HPMCs) acquired fibrotic phenotype, which was identified as the protagonist for peritoneal fibrosis. In this study, we examined the role of histone deacetylase 6 (HDAC6) for interleukin-6 (IL-6) induced epithelial-mesenchymal transition (EMT), proliferation, and migration of HPMCs. Methods: The role of HDAC6 in IL-6-elicited EMT of HPMCs was tested by morphological observation of light microscope, immunoblotting, and immune-fluorescence assay; and the function of HDAC6 in proliferation and migration of HPMCs was examined by CCK-8 assay, wound healing experiment, and immunoblotting. Results: IL-6 stimulation significantly increased the expression of HDAC6. Treatment with tubastatin A (TA), a highly selective HDAC6 inhibitor, or silencing of HDAC6 with siRNA decreased the expression of HDAC6. Moreover, TA or HDAC6 siRNA suppressed IL-6-induced EMT, as evidenced by decreased expressions of α-SMA, Fibronectin, and collagen I and the preserved expression of E-cadherin in cultured HPMCs. Mechanistically, HDAC6 inhibition suppressed the expression of transforming growth factor β (TGFβ) receptor I (TGFβRI), phosphorylation of Smad3, secretion of connective tissue growth factor (CTGF), and transcription factor Snail. On the other hand, the pharmacological inhibition or genetic target of HDAC6 suppressed HPMCs proliferation, as evidenced by the decreased optical density of CCK-8 and the expressions of PCNA and Cyclin E. The migratory rate of HPMCs also decreased. Mechanistically, HDAC6 inhibition blocked the activation of JAK2 and STAT3. Conclusion: Our study illustrated that IL-6-induced HDAC6 not only regulated IL-6 itself downstream JAK2/STAT3 signaling but also co-activated the TGF-β/Smad3 signaling, leading to the change of the phenotype and mobility of HPMCs. HDAC6 could be a potential therapeutic target for the prevention and treatment of peritoneal fibrosis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ni
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lunxian Tang
- Emergency Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Liu F, Yu C, Qin H, Zhang S, Fang L, Wang Y, Wang J, Cui B, Hu S, Liu N, Zhuang S. Nintedanib attenuates peritoneal fibrosis by inhibiting mesothelial-to-mesenchymal transition, inflammation and angiogenesis. J Cell Mol Med 2021; 25:6103-6114. [PMID: 33949772 PMCID: PMC8256343 DOI: 10.1111/jcmm.16518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nintedanib, an Food and Drug Administration (FDA) approved multiple tyrosine kinase inhibitor, exhibits an anti-fibrotic effect in lung and kidneys. Its effect on peritoneal fibrosis remains unexplored. In this study, we found that nintedanib administration lessened chlorhexidine gluconate (CG)-induced peritoneal fibrosis and reduced collagen I and fibronectin expression. This coincided with suppressed phosphorylation of platelet-derived growth factor receptor, fibroblast growth factor receptors, vascular endothelial growth factor receptor and Src family kinase. Mechanistically, nintedanib inhibited injury-induced mesothelial-to-mesenchymal transition (MMT), as demonstrated by decreased expression of α-smooth muscle antigen and vimentin and preserved expression of E-cadherin in the CG-injured peritoneum and cultured human peritoneal mesothelial cells exposed to transforming growth factor-β1. Nintedanib also suppressed expression of Snail and Twist, two transcription factors associated with MMT in vivo and in vitro. Moreover, nintedanib treatment inhibited expression of several cytokines/chemokines, including tumour necrosis factor-α, interleukin-1β and interleukin-6, monocyte chemoattractant protein-1 and prevented infiltration of macrophages to the injured peritoneum. Finally, nintedanib reduced CG-induced peritoneal vascularization. These data suggest that nintedanib may attenuate peritoneal fibrosis by inhibiting MMT, inflammation, and angiogenesis and have therapeutic potential for the prevention and treatment of peritoneal fibrosis in patients on peritoneal dialysis.
Collapse
Affiliation(s)
- Feng Liu
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Chao Yu
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Huan Qin
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Shenglei Zhang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Lu Fang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yi Wang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Jun Wang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Binbin Cui
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Susie Hu
- Department of MedicineRhode Island Hospital and Alpert Medical SchoolBrown UniversityProvidenceRIUSA
| | - Na Liu
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Shougang Zhuang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of MedicineRhode Island Hospital and Alpert Medical SchoolBrown UniversityProvidenceRIUSA
| |
Collapse
|
8
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Zhu W, Zhang X, Gao K, Wang X. Effect of astragaloside IV and the role of nuclear receptor RXRα in human peritoneal mesothelial cells in high glucose‑based peritoneal dialysis fluids. Mol Med Rep 2019; 20:3829-3839. [PMID: 31485615 PMCID: PMC6755149 DOI: 10.3892/mmr.2019.10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/25/2019] [Indexed: 12/03/2022] Open
Abstract
Peritoneal fibrosis is a serious complication that can occur during peritoneal dialysis (PD), which is primarily caused by damage to peritoneal mesothelial cells (PMCs). The onset of peritoneal fibrosis is delayed or inhibited by promoting PMC survival and inhibiting PMC epithelial-to-mesenchymal transition (EMT). In the present study, the effect of astragaloside IV and the role of the nuclear receptor retinoid X receptor-α (RXRα) in PMCs in high glucose-based PD fluids was investigated. Human PMC HMrSV5 cells were transfected with RXRα short hairpin RNA (shRNA), or an empty vector, and then treated with PD fluids and astragaloside IV. Cell viability, apoptosis and EMT were examined using the Cell Counting Kit-8 assay and flow cytometry, and by determining the levels of caspase-3, E-cadherin and α-smooth muscle actin (α-SMA) via western blot analysis. Cell viability and apoptosis were increased, as were the levels of E-cadherin in HMrSV5 cells following treatment with PD fluid. The protein levels of α-SMA and caspase-3 were increased by treatment with PD fluid. Exposure to astragaloside IV inhibited these changes; however, astragaloside IV did not change cell viability, apoptosis, E-cadherin or α-SMA levels in HMrSV5 cells under normal conditions. Transfection of HMrSV5 cells with RXRα shRNA resulted in decreased viability and E-cadherin expression, and increased apoptosis and α-SMA levels, in HMrSV5 cells treated with PD fluids and co-treated with astragaloside IV or vehicle. These results suggested that astragaloside IV increased cell viability, and inhibited apoptosis and EMT in PMCs in PD fluids, but did not affect these properties of PMCs under normal condition. Thus, the present study suggested that RXRα is involved in maintaining viability, inhibiting apoptosis and reducing EMT of PMCs in PD fluid.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xin Zhang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Kun Gao
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xufang Wang
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
10
|
Wang Z, Liu Q, Dai W, Hua B, Li H, Li W. Pioglitazone downregulates Twist-1 expression in the kidney and protects renal function of Zucker diabetic fatty rats. Biomed Pharmacother 2019; 118:109346. [PMID: 31506251 DOI: 10.1016/j.biopha.2019.109346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 12/23/2022] Open
Abstract
AIMS Renal interstitial fibrosis and glomerulosclerosis are the characteristic presentation of diabetic nephropathy progression. Twist-1 overexpression contributes to renal fibrosis. Previous studies have demonstrated that pioglitazone (PIO), a PPAR-γ agonists, can ameliorate renal fibrosis and protect renal function. However, whether PIO attenuates renal fibrosis and delays diabetic nephropathy progression by regulating Twist-1 expression remains unclear. METHODS Male Zucker diabetic fatty (ZDF) rats were randomly divided into 3 groups: (1) ZDF group, (2) ZDF + PIO group treated with PIO for 10 weeks, (3) ZDF + PIO + GW9662 group treated with GW9662 (a PPAR-γ antagonist) and PIO for 10 weeks. Age-matched Zucker lean rats (ZL group) were used as a control group. Urinary albumin/creatinine ratio (UACR) and renal blood flow were measured. Renal histopathology and Twist-1 expression were determined by immunohistochemistry. The protein and mRNA levels of Twist-1 and PPAR-γ were analyzed by Western blot and qRT-PCR. RESULTS PIO considerably reduced UACR and improved renal blood flow. This was associated with amelioration of glomerulosclerosis and tubulointerstitial fibrosis evidenced by the expression decrease of collagen I, aquaporin 1, α-SMA, transforming growth factor β1 and nephrin, although glycaemia remained high. Moreover, Twist-1 protein and mRNA expression in kidney of ZDF rats were significantly increased compared with ZL rats and PIO significantly decreased Twist-1 levels. CONCLUSIONS This study shows that PIO can downregulate Twist-1 expression in the kidney, inhibit renal fibrosis and protect renal function in ZDF rats. These PIO-mediated effects are independent of glycemic control.
Collapse
Affiliation(s)
- Zijian Wang
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Qingbo Liu
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Wendi Dai
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Bing Hua
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China; Department of Internal Medicine, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China; Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing 100069, PR China
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China; Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing 100069, PR China.
| |
Collapse
|
11
|
Jiang N, Lin JJ, Wang J, Zhang BN, Li A, Chen ZY, Guo S, Li BB, Duan YZ, Yan RY, Yan HF, Fu XY, Zhou JL, Yang HM, Cui Y. Novel treatment strategies for patients with HER2-positive breast cancer who do not benefit from current targeted therapy drugs. Exp Ther Med 2018; 16:2183-2192. [PMID: 30186457 PMCID: PMC6122384 DOI: 10.3892/etm.2018.6459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Human epidermal growth factor receptor-2 positive breast cancer (HER2+ BC) is characterized by a high rate of metastasis and drug resistance. The advent of targeted therapy drugs greatly improves the prognosis of HER2+ BC patients. However, drug resistance or severe side effects have limited the application of targeted therapy drugs. To achieve more effective treatment, considerable research has concentrated on strategies to overcome drug resistance. Abemaciclib (CDK4/6 inhibitor), a new antibody-drug conjugate (ADC), src homology 2 (SH2) containing tyrosine phosphatase-1 (SHP-1) and fatty acid synthase (FASN) have been demonstrated to improve drug resistance. In addition, using an effective vector to accurately deliver drugs to tumors has shown good application prospects. Many studies have also found that natural anti-cancer substances produced effective results during in vitro and in vivo anti-HER2+ BC research. This review aimed to summarize the current status of potential clinical drugs that may benefit HER2+ BC patients in the future.
Collapse
Affiliation(s)
- Nan Jiang
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, 306 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Jing-Jing Lin
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, 306 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Jun Wang
- Department of Hepatology, 302 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Bei-Ning Zhang
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, PLA 306 Clinical Hospital of Anhui Medical University, Beijing 230000, P.R. China
| | - Ao Li
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, PLA 306 Clinical Hospital of Anhui Medical University, Beijing 230000, P.R. China
| | - Zheng-Yang Chen
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, 306 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Song Guo
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, 306 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Bin-Bin Li
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, PLA 306 Clinical Hospital of Anhui Medical University, Beijing 230000, P.R. China
| | - Yu-Zhong Duan
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Ru-Yi Yan
- Department of General Surgery, PLA 306 Clinical Hospital of Anhui Medical University, Beijing 230000, P.R. China
- Department of Pathology, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Hong-Feng Yan
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Xiao-Yan Fu
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Jin-Lian Zhou
- Department of Pathology, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - He-Ming Yang
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Yan Cui
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| |
Collapse
|
12
|
Twist Expression in Circulating Hepatocellular Carcinoma Cells Predicts Metastasis and Prognoses. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3789613. [PMID: 30046595 PMCID: PMC6038670 DOI: 10.1155/2018/3789613] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/01/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading malignancies worldwide. Enumeration of circulating tumor cells (CTCs) has been demonstrated to be a prognostic indicator in HCC. Twist plays a critical role in metastasis and has been proposed as a biomarker for epithelial-mesenchymal transition (EMT). However, links between the expression of Twist in CTCs and HCC clinical parameters are still unclear. This study aims to evaluate the relationship between Twist expression in CTCs and clinicohistopathological risk factors of HCC. Between June 2015 and July 2017, 80 HCC patients and 10 healthy volunteers were enrolled in this study. CTCs were isolated and analyzed by the optimized CanPatrol™ CTC-enrichment technique. Our analysis showed that Twist+ CTCs were detected in 54 of the 80 (67.5%) HCC patients. The positive ratios of Twist+ CTCs correlated with portal vein tumor thrombi, TNM staging, AFP, cirrhosis, tumor number, tumor size, and microvascular invasion. Meanwhile, the follow-up results of the 33 HCC patients who underwent hepatectomy showed that the positive ratios of Twist+ CTCs were closely correlated with the rate of metastasis or recurrence and the mortality rate. The ROC curve analyses suggested that the prognostic evaluation of Twist+ CTCs outperforms CTCs alone. Twist+ CTCs showed higher expression in Glypican-3 protein. In conclusion, Twist expression in CTCs could serve as a biomarker for evaluating HCC metastasis and prognosis.
Collapse
|
13
|
Lin YC, Liu LC, Ho CT, Hung CM, Way TD. Luteolin inhibits ER-α expression through ILK inhibition is regulated by a pathway involving Twist and YB-1. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Ma JW, Hung CM, Lin YC, Ho CT, Kao JY, Way TD. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells. Oncotarget 2018; 7:58915-58930. [PMID: 27391337 PMCID: PMC5312285 DOI: 10.18632/oncotarget.10410] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/12/2016] [Indexed: 12/12/2022] Open
Abstract
Human epidermal growth factor receptor-2 (HER-2)-positive breast cancer tends to be aggressive, highly metastatic, and drug resistant and spreads rapidly. Studies have indicated that emodin inhibits HER-2 expression. This study compared the HER-2-inhibitory effects of two compounds extracted from rhubarb roots: aloe-emodin (AE) and rhein. Our results indicated that AE exerted the most potent inhibitory effect on HER-2 expression. Treatment of HER-2-overexpressing breast cancer cells with AE reduced tumor initiation, cell migration, and cell invasion. AE was able to suppress YB-1 expression, further suppressing downstream HER-2 expression. AE suppressed YB-1 expression through the inhibition of Twist in HER-2-overexpressing breast cancer cells. Our data also found that AE inhibited cancer metastasis and cancer stem cells through the inhibition of EMT. Interestingly, AE suppressed YB-1 expression through the downregulation of the intracellular integrin-linked kinase (ILK)/protein kinase B (Akt)/mTOR signaling pathway in HER-2-overexpressing breast cancer cells. In vivo study showed the positive result of antitumor activity of AE in nude mice injected with human HER-2-overexpressing breast cancer cells. These findings suggest the possible application of AE in the treatment of HER-2-positive breast cancer.
Collapse
Affiliation(s)
- Jui-Wen Ma
- Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Chao-Ming Hung
- Department of General Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Ying-Chao Lin
- Division of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Jung-Yie Kao
- Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Tzong-Der Way
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Ning X, Zhang K, Wu Q, Liu M, Sun S. Emerging role of Twist1 in fibrotic diseases. J Cell Mol Med 2018; 22:1383-1391. [PMID: 29314610 PMCID: PMC5824384 DOI: 10.1111/jcmm.13465] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/20/2017] [Indexed: 01/04/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a pathological process that occurs in a variety of diseases, including organ fibrosis. Twist1, a basic helix–loop–helix transcription factor, is involved in EMT and plays significant roles in various fibrotic diseases. Suppression of the EMT process represents a promising approach for the treatment of fibrotic diseases. In this review, we discuss the roles and the underlying molecular mechanisms of Twist1 in fibrotic diseases, including those affecting kidney, lung, skin, oral submucosa and other tissues. We aim at providing new insight into the pathogenesis of various fibrotic diseases and facilitating the development of novel diagnostic and therapeutic methods for their treatment.
Collapse
Affiliation(s)
- Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qingfeng Wu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Minna Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Che M, Shi T, Feng S, Li H, Zhang X, Feng N, Lou W, Dou J, Tang G, Huang C, Xu G, Qian Q, Sun S, He L, Wang H. The MicroRNA-199a/214 Cluster Targets E-Cadherin and Claudin-2 and Promotes High Glucose-Induced Peritoneal Fibrosis. J Am Soc Nephrol 2017; 28:2459-2471. [PMID: 28428333 DOI: 10.1681/asn.2016060663] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
Serum response factor (SRF) was found to be involved in the phenotypic transition and fibrosis of the peritoneal membrane during treatment with peritoneal dialysis (PD), but the exact mechanism remains unclear. SRF regulates microRNAs (miRNAs) that contain the SRF-binding consensus (CArG) element in the promoter region. Therefore, we investigated whether the miR-199a/214 gene cluster, which contains a CArG element in its promoter, is directly regulated by SRF. High-glucose (HG) treatment significantly unregulated the expression of the miR-199a-5p/214-3p gene cluster in human peritoneal mesothelial cells (HPMCs). By chromatin immunoprecipitation and reporter assays, we found that SRF binds to the miR-199a-5p/214-3p gene cluster promoter after HG stimulation. In vitro, in HPMCs, silencing of miR-199a-5p or miR-214-3p inhibited the HG-induced phenotypic transition and cell migration but enhanced cell adhesion, whereas ectopic expression of mimic oligonucleotides had the opposite effects. Both miR-199a-5p and miR-214-3p targeted claudin-2 and E-cadherin mRNAs. In a PD rat model, treatment with an SRF inhibitor silenced miR-199a-5p and miR-214-3p and alleviated HG-PD fluid-induced damage and fibrosis. Overall, this study reveals a novel SRF-miR-199a/miR-214-E-cadherin/claudin-2 axis that mediates damage and fibrosis in PD.
Collapse
Affiliation(s)
- Mingwen Che
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Medicine, Hospital of PLA, Korla, Xinjiang, China
| | - Tiantian Shi
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Medicine, Yangling Demonstration Zone Hospital, Yangling, Shaanxi, China; and
| | - Shidong Feng
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huan Li
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaomin Zhang
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ning Feng
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weijuan Lou
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianhua Dou
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guangbo Tang
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen Huang
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guoshuang Xu
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qi Qian
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Mayo Clinic Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Mayo Graduate School, Rochester, Minnesota
| | - Shiren Sun
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lijie He
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China; .,Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hanmin Wang
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China;
| |
Collapse
|